
HAL Id: hal-03746567
https://hal.science/hal-03746567

Submitted on 5 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Full Wafer Process Control Through Object Detection
Using Region-Based Convolutional Neural Networks

Thomas Alcaire, Delphine Le Cunff, Jean-Herve Tortai, Sebastien Soulan,
Virginie Brouzet, Romain Duru, Christophe Euvrard

To cite this version:
Thomas Alcaire, Delphine Le Cunff, Jean-Herve Tortai, Sebastien Soulan, Virginie Brouzet, et al..
Full Wafer Process Control Through Object Detection Using Region-Based Convolutional Neural
Networks. 2022 33rd Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC),
May 2022, Saratoga Springs, France. pp.1-5, �10.1109/ASMC54647.2022.9792479�. �hal-03746567�

https://hal.science/hal-03746567
https://hal.archives-ouvertes.fr


 

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Full Wafer Process Control Through Object Detection 
Using Region-Based Convolutional Neural Networks 

Thomas Alcaire  
Metrology 

STMicroelectronics 

Crolles, France 
thomas.alcaire@st.com 

 
 

Delphine Le Cunff 
Metrology 

STMicroelectronics 

Crolles, France 
delphine.le-cunff@st.com 

 
 

Jean-Hervé Tortai 
Minasee 

LTM/CNRS/CEA-LETI 

Grenoble, France 
jean-herve.tortai@ltmlab.fr 

 
 

Sebastien Soulan 
Minasee 

LTM/CNRS/CEA-LETI 
Grenoble, France 

sebastien.soulan@cea.fr 

Virginie Brouzet 
Metrology 

STMicroelectronics 
Crolles, France 

virginie.brouzet@st.com 
 

Romain Duru 
Metrology 

STMicroelectronics 

Crolles, France 
romain.duru@st.com 

 

Christophe Euvrard 
Defectivity 

STMicroelectronics 
Crolles, France 

christophe.euvrard@st.com

 

Abstract — Full wafer measurement techniques are used in 

the semiconductor industry to acquire information at a large 

scale to control process variation or detect potential defects. 

This process usually results in the generation of full wafer 

images, containing various objects that need to be identified to 

evaluate their impact on the final product performance. 

Artificial intelligence is very powerful to automate this 

identification routine. In this paper, we present the application 

of Region-based Convolutional Neural Networks (RCNN) for 

enhanced process control from full wafer images gathered by 

two industrial metrology equipments. 

Keywords — Full wafer, Process control, Photoluminescence 

imaging, Scanning Acoustic Microscopy, RCNN 

I. INTRODUCTION 

The fourth industrial revolution brings fundamental 
changes that will redefine manufacturing paradigm especially 
in the semiconductor industry: artificial intelligence, big data, 
and cloud computing allows connections between every level 
of the manufacturing cycle, from the supply chain logistics to 
the production and test equipments. In semiconductor front-
end factories, process control is one of the key concerned areas 
where major evolutions are being undertaken to adopt those 
new concepts. 

Traditionally, metrology control is carried out on pre-
designed target structures located in sacrificial areas of the 
wafer. Those are limited in number especially at the extreme 
edge of the wafer and are in some ways not always 
representative of the real devices. Alternative and innovative 
approaches are emerging which consist in collecting the 
metrology signal directly from the dies and ideally at the full 
wafer scale. The resulting signal can then be treated through a 
model less approach based on artificial intelligence 
algorithms. Moreover, the treatment of metrology response at 
the entire wafer scale by its own can also reveal signature that 
would be ignored in a die-to-die comparison approach. Here 
we present two interesting use cases based on 
Photoluminescence and Acoustic imaging techniques. 

II. FULL WAFER MEASUREMENT TECHNIQUES 

A. Macroscopic Photoluminescence Imaging 

Photoluminescence is an optical technique that can be 
implemented in manufacturing line to control silicon quality 
and characterize its properties. In this technique, a laser source 
(λ = 808nm) is used to generate free carriers that will radiate 
light when they recombine. The emitted light properties 
(wavelength, intensity, etc.) can be used to determine 
impurity, defect, or doping levels as well as quantum 
efficiency and other properties (Fig 1.a). In our case, we used 
a macroscopic photoluminescence (MPL) imaging acquisition 
system (Fig 1.b) which provides full wafer images allowing a 
large-scale control. The key outcome of such control is to 
detect anomalies which correspond to a decrease in PL band-
to-band signal intensity and will be later referred as “dark 
spots” in the image. This PL signal loss can be due to many 
different mechanisms [1,2] that will not be detailed in this 
article. A traditional approach to analyze MPL images and 
provide quantitative results would consist in reporting the 
mean and the standard deviation of the measured 
photoluminescence intensity over the full wafer. This is 
actually very poor restitution of the collected information 

especially ignoring any spatial consideration. 

 

Fig. 1.  (a) Energy diagram showing how defects in the silicon induce a 
reduction in band-to-band signal intensity through photoluminesence 
and (b) functional schematic of the MPL equipment.  



 

 

To maximize the outcome, a different approach applying 
RCNN algorithm was evaluated to detect and localize dark 
spots directly from the full wafer image. One important 
background information to mention here is that due to the 
extreme sensitivity of photoluminescence response, MPL 
images collected at a given process step of the manufacturing 
line generally always exhibit dark spots. What is of particular 
importance is then to differentiate atypical signatures from 
common ones.  So, as a first preliminary study, MPL images 
were collected at the given process step for a significant 
number of wafers. The common signature were identified by 
stacking of the gathered MPL images. This allowed us to 
identify two classes of common signatures (triangular) that 
will have to be ignored during the automatic detection (Fig. 
2). Any other dark spot will have to be identified as “atypical”, 
leading to a further action on the affected wafer. 

 

Fig. 2. Example of a MPL cartography with common signatures. 

B. Scanning Acoustic Microscopy 

Scanning Acoustic Microscopy (SAM) is an acoustic 
technique that uses focused sound to identify defects by 
studying the scattered sound induced by the wave 
encountering the defect (Fig. 3). Further explanations can be 
found in [3,4]. This technique is widely used to control 
bonding quality and detect voids in many wafer-on-wafer 
bonding architecture (temporary, molecular, hybrid...).  

 

Fig. 3. Functional schematics of the SAM equipment, showing how defects 
and flat layer surface induce different echoes and can then be identified. 

The resulting outcome is also full wafer image (Fig. 4) 
where voids appear this time as white spots or areas. One 
possible approach to detect the bonding defects can pass 
through image treatment techniques notably thresholding. 
This type of approach requires a very time-consuming recipe 
creation which is (in addition) specific of the product layout. 
Moreover, as the expected result is also to further classify the 
defects depending on their nature (design, particle 
contamination, etc.…) for troubleshooting action, this would 
lead to a very complex algorithm. Therefore, a RCNN 
approach seems more promising and was evaluated to detect 
and classify the voids from full wafer images (Fig. 5).  The 
final objective is to provide a robust solution allowing relevant 
decisions such as bonding rework or die inking. 

 

Fig. 4. Example of full wafer SAM cartographie showing white spots from 
voids of various origins. 

 

Fig. 5. Typical example of each class. 

III. REGION-BASED CONVOLUTIONAL NEURAL NETWORK 

Neural networks are now proven to be one of the strongest 
ways to generate complex models, capable of numerous tasks 
such as image classification, clustering, or outcome 
prediction. More advanced architectures are used to perform 



 

 

object detection, where regions of interest (containing the 
objects) of images are extracted by a segmentation neural 
network and classified by a convolutional neural network. 
Such algorithms are called Region-based Convolutional 
Neural Networks (Fig. 6). They are notably used for object 
tracking in autonomous vehicles or cell classification for 
cancer detection, but also in semiconductor industrial process 
control to improve accuracy in default detection [5,6]. They 
are also able to adapt themselves better to contrast/brightness 
and product/design variation than the mathematical image 
treatments commonly used by metrology and defectivity 
equipments. To train those neural networks, a dataset 
consisting of images containing the objects to be detected, and 
an annotation file containing the location, size, and class of 
said objects must be provided. In our case, to reduce the 
amount of data and computing time needed for this training, 
transfer learning from a pre-trained network (RetinaNet [5]) 
was used. RetinaNet is one of the best one-stage object 
detection models that has proven to work well with dense and 
small-scale objects. For this reason, it has become a popular 
object detection model to be used with aerial and satellite 
imagery. Transfer learning allows the adaptation of the pre-
trained network, commonly used to detect everyday objects 
(e.g. animals, vehicles…), to our specific dataset by keeping 
the core capabilities of the original network (namely interest 
region proposal and feature extraction), but slightly adjusting 
the neurons weights to better fit the new data. As stated 
previously, this requires far less data and training time than 
training a neural network from scratch. It is to be noted that 
while the training can be computationally intensive (~hours on 
a commercial GPU), the inference (usage of trained network 
on new data) can be quickly performed with minimal 
computing power (~seconds on CPU). RCNN is then a very 
powerful neural network approach that was tested in a slightly 
different way depending on the measurement technique’s 

(MPL and SAM) specificity. 

For the MPL images, the goal is to detect all the dark spots 
present on the images, and then to classify them as common 
or unusual spots depending on their location. A two-step 
strategy was set. At first, the RCNN was trained to detect all 
dark spots, regardless of their location on the wafer map. That 
way, for the inference step, which corresponds to the 
prediction of the neural network in detecting and classifying 
new data, all the dark spot signatures are detected. Secondly, 
once the spots locations on the wafer are found, a subsequent 
algorithm apply geometrical rules that allows to classify them 
as common or unusual signature. A training dataset composed 
of 275 experimental images, gathered with the MPL 
equipment, containing 1420 annotations was then generated to 

train this first network.  

For the SAM images, the global process is closer to the 
usual RCNN approach. It was indeed trained to automatically 
detect and classify of voids on the full wafer images. The 
individual voids were annotated for the training set and were 
also classified depending on their origin/nature so that the 
convolutional neural network will be able, once trained, to 

automatically classify and identify the cause of the detected 
defect. The training was then performed on a dataset 
containing 12644 classified annotations of defects present on 
155 images. In both cases, an additional validation dataset of 
annotated images was kept in order to evaluate the 

performance of the trained RCNNs on unseen data. 

 

Fig. 6. Schematic diagram of a region-based convolutional neural network, 
showing the segmented sub-images being classified by the CNN 

IV. RESULTS AND PERSPECTIVES 

 
The performances obtained on the validation datasets once 

both networks were trained on MPL and SAM images are 
presented in the Table I and Table II. The results are 
represented in a confusion matrix where predicted classes are 
compared to the actual class of the defect. We can then 
determine the detection accuracy (amount of defect detected) 
and prediction purity (amount of detected defect correctly 

classified) of both networks.  

Table I .  Performance results represented in confusion matrix for MPL  

MPL 
True 

Common Atypical Undetected 

P
r
e
d

ic
te

d
 

Common 542 0 11 

Atypical 0 117 0 

Table II.  Performance results represented in confusion matrix for SAM 

SAM 
True 

a b c d e f Undet 

P
r
e
d

ic
te

d
 

a 96 0 0 0 0 0 0 

b 5 564 0 14 0 0 4 

c 0 0 73 0 0 0 0 

d 0 1 0 781 0 0 25 

e 0 0 0 0 412 0 51 

f 0 0 0 0 0 254 7 

 
For the MPL full wafer image analysis, the trained RCNN 

was applied to detect and classify the dark spots present on the 
validation datasets and the results were compared to the 
manually annotated spots. Out of 670 annotations on 142 
images, the neural network was successful in detecting 659 
(98.3%), only missing a few faint common signatures. An 
example of inferred MPL image is presented in figure 7. For 
most of those signatures, a standard metrology approach 
monitoring the mean and standard deviation of the overall 
MPL signal would be unsuccessful in detecting these 



 

 

anomalies, because they do not induce a large enough 

variation in the global photoluminescence signal.  

 

Fig. 7. Inference results on MPL image showing classification of dark spots 
depending on location – Red = Uncommon , Green = Common 

For the SAM images, in the same way, we evaluated the 
trained RCNNs performance on the validation dataset, and 
result shows that, in 96.19% (2200/2287) of cases, the 
algorithm was able to correctly detect the voids and classify 
them correctly according to their physical origin. Those results 
are very impressive considering the large number of objects 
detected per full wafer image in some cases and considering 
the fact that the defect characteristics from different classes 
are not always significantly different from one another. Two 
inferred SAM images originating from the validation dataset 
are presented in figure 8 and 9.  

 

Fig. 8. SAM images with classified voids depending on their origins (Class 
a in blue and Class e in green here) 

 

Fig. 9. SAM images with classified voids depending on their origins (Class 
b in purple and Class f  in red here) 

 
In order to increase the robustness of this approach, and 

allow for new signatures to be identified, multiple neural 
networks could be trained with the same datasets and used in 
parallel. First, signature detection and classification are 
improved by the redundancy of networks. But most 
importantly, in the event of a new defect type being present on 
the wafer images, the RCNNs results can be used to detect 
them. Indeed, because the classification accuracy of properly 
trained neural network is very high, any signature classified 
into different classes by the networks most likely indicates a 
new type of signature. To test this hypothesis, we trained 4 
networks without the Class c signature and observed the 
different inference outcomes. The results are presented in 

figure 10. 

 

Fig. 10. SAM images containing Class c defects, identified as Class a or 
Class b defects by the RCNN models trained without this specific class. 

The 4 trained RCNN inference results show that they 
disagree on the classification of the Class c voids. This can be 
used to trigger a new signature alert, or in the case of a false 
alarm (misclassification of a known defect), lead to re-training 

of the networks to eliminate this error. 



 

 

To increase their performance, additional training of both 
networks will then be done using the inference results from 
production data, completing the missing detections if needed, 
and generating additional annotation files. 

V. CONCLUSION 

Full wafer images were acquired from two metrology 
equipments and successfully treated by Region-based 
Convolutional Neural Networks in order to automate the 
detection and classification of multiple signatures. This 
innovative approach of using neural networks for process 
control is less sensitive to image acquisitions variations such 
as brightness and contrast and is  able to detect new signatures, 

while improving in performance while in production.  
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