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Abstract: 23 

 24 

Accelerometry has been widely used to estimate energy expenditure in a broad array of terrestrial 25 

and aquatic species. However, a recent reappraisal of the method showed that relationships 26 

between dynamic body acceleration (DBA) and energy expenditure weaken as the proportion of 27 

non-mechanical costs increase. Aquatic air breathing species often exemplify this pattern, as 28 

buoyancy, thermoregulation and other physiological mechanisms disproportionately affect 29 

oxygen consumption during dives. Combining biologging with the doubly-labelled water 30 

method, we simultaneously recorded daily energy expenditure (DEE) and triaxial acceleration in 31 

one of the world’s smallest wing-propelled breath-hold divers, the dovekie (Alle alle). These data 32 

were used to estimate the activity-specific costs of flying and diving and to test whether overall 33 

dynamic body acceleration (ODBA) is a reliable predictor of DEE in this abundant seabird. 34 

Average DEE for chick-rearing dovekies was 604 ± 119 kJ/d across both sampling years. 35 

Despite recording lower stroke frequencies for diving than for flying (in line with allometric 36 

predictions for auks), dive costs were estimated to surpass flight costs in our sample of birds 37 

(flying: 7.24, diving: 9.37 X BMR). As expected, ODBA was not an effective predictor of DEE 38 

in this species. However, accelerometer-derived time budgets did accurately estimate DEE in 39 

dovekies. This work represents an empirical example of how the apparent energetic costs of 40 

buoyancy and thermoregulation limit the effectiveness of ODBA as the sole predictor of overall 41 

energy expenditure in small shallow-diving endotherms.  42 

  43 
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Introduction 44 

Energy is the most important currency in animal ecology, influencing behavioural 45 

decisions, timing of reproduction and, ultimately, fitness (Brown et al. 2004; Grémillet et al. 46 

2018). Nonetheless, animal ecologists have developed only a handful of methods for estimating 47 

energy costs in the wild, all having strengths and weaknesses (Fort et al., 2011). For example, the 48 

doubly labelled water method provides only a single accurate, time-averaged value (Speakman, 49 

1997). Heart-rate methods provide values at fine temporal scales, but often involve surgery and 50 

can be influenced by cardiovascular adjustments that do not affect energy expenditure (Butler et 51 

al., 2004; Green, 2011). In the past two decades, accelerometry has become a popular tool for 52 

estimating energy expenditure in wild animals (Elliott, 2016; Wilson et al., 2006), though its 53 

origins date back to the early 1960s when laboratory studies began validating the technique on 54 

humans (Cavagna et al. 1963; Halsey et al. 2011b). Because the dynamic component of body 55 

acceleration should be a robust index of mechanical power output for a known body mass, 56 

accelerometers can, in theory, provide an index of nearly instantaneous energy expenditure, 57 

assuming that mechanical power is a constant proportion of total energy costs (Wilson et al., 58 

2006). Indeed, studies on several animal taxa have shown the effectiveness of accelerometers as 59 

tools for accurately estimating activity-specific energetic costs (Elliott et al., 2013a; Halsey et al., 60 

2011a; Lear et al., 2017; Murchie et al., 2011). Although observation-based time-budgets have 61 

provided rough estimates of activity costs, accelerometers are capable of recording activity in 62 

greater detail and do not require constant visual contact by observers (Halsey et al., 2011a; 63 

Wilson et al., 2006). While other biologgers such as time-depth-temperature tags can also help 64 

estimate energy costs in some species, they are often less effective than accelerometers at 65 

identifying certain behaviours (Elliott and Gaston, 2014). Furthermore, the continued 66 

miniaturization of technology means biologists are able to equip smaller and smaller organisms 67 

with accelerometers. 68 

While undoubtedly a revolutionary advance in the field of wildlife energetics, nearly two 69 

decades of study on a wide variety of species has revealed a few weaknesses with the use of 70 

dynamic body acceleration (DBA) as the sole predictor of metabolic rate in some animals. In a 71 

recent reappraisal of DBA’s use in energetics modeling, Wilson et al. (2020) demonstrated that 72 

high and variable non-locomotory energetic costs, such as those linked to thermoregulation, can 73 

sometimes mask the relationship between DBA and metabolic rate. Thermal substitution, or the 74 
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reduction of thermoregulatory costs linked to residual heat produced by muscles during periods 75 

of elevated activity (Lovvorn, 2007), can also significantly change the nature of the DBA-energy 76 

expenditure relationship in cold environments (Wilson et al., 2020). Animals moving through 77 

different media or relying on more than one method of locomotion provide another potential 78 

pitfall for researchers attempting to correlate overall energy expenditure with DBA. For example, 79 

a similar recording of DBA in air and in water could result in very different energy expenditures 80 

for an animal moving in both aerial and aquatic habitats. This difference is also exacerbated 81 

when movement in each medium results from different locomotory mechanisms. Hence, some 82 

behaviours may disproportionally affect recorded DBA without a coinciding change in energy 83 

use (Wilson et al., 2020). Therefore, DBA’s relationship with energy expenditure can be 84 

variable, often requiring context- or activity-specific assessments (Elliott et al. 2013b; Elliott 85 

2016). 86 

For the reasons outlined above, modeling the energetics of breath-hold divers such as 87 

seals, turtles and seabirds using DBA has been particularly challenging  (Grémillet et al., 2018; 88 

Halsey et al., 2011b; Halsey et al., 2011c). Notably, dive costs tend to increase non-linearly with 89 

lower oxygen consumption rates near the end of long dives as individuals suppress non-essential 90 

functions, reduce core temperature and shunt blood directly to arteries (Elliott et al., 2013b; 91 

Halsey et al., 2011c; Meir et al., 2008; Niizuma et al., 2007). Additionally, oxygen consumption 92 

at the level of the muscle and respiratory system are uncoupled in time during dives (Butler, 93 

2006). Thus, although DBA accurately predicts energy expenditure in flying and running animals 94 

(Bishop et al., 2015; Halsey et al., 2011a; Wilson et al., 2006), relationships in diving marine 95 

vertebrates are often weak without the addition of other model parameters (Halsey, 2017; Rosen 96 

et al., 2017; Wilson et al., 2020). Several studies on diving seabirds have shown that 97 

accelerometers can predict costs remarkably well in the wild (Elliott et al., 2013a,b; Hicks et al., 98 

2017 and 2020; Stothart et al., 2016; Sutton et al., 2021). However, several of these studies were 99 

focused on flightless species, while others were on relatively large (>1 kg), deep-diving species 100 

where thermoregulatory and other non-mechanical dive costs may be straightforward to model. 101 

For instance, in one species, the fit was better when dive costs were modeled to decrease 102 

exponentially with dive duration (Elliott et al., 2013b). Conversely, the dive energetics of small 103 

seabirds are likely to be especially difficult to model using DBA, due to the variable mechanical 104 

costs associated with buoyancy and their large surface area to volume ratio leading to 105 
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particularly high thermoregulatory costs when diving in cold water (Gabrielsen et al., 1991; 106 

Lovvorn and Jones, 1991; Lovvorn et al., 2004; Wilson et al., 1992).  107 

Dovekies (or little auks, Alle alle) are small Arctic-breeding seabirds in the family 108 

Alcidae. Their abundance makes them key components of many Arctic ecosystems, both as 109 

ecosystem engineers and as prey for terrestrial and avian predators (Burnham and Burnham, 110 

2005; González-Bergonzoni et al., 2017). As one of the smallest diving marine endotherms (only 111 

the Aethia auklets and Pelecanoides diving-petrels are slightly smaller), dovekies are also an 112 

important species from an energetic standpoint, and though their metabolism has been studied in 113 

the past, the specific energetic costs of flying and diving remain unknown (Gabrielsen et al., 114 

1991; Harding et al., 2009a; Harding et al., 2009b; Welcker et al., 2009). Dovekies are diving 115 

seabirds that feed on a variety of zooplankton, including fish larvae, euphausids and their 116 

primary prey, copepods (Fort et al., 2010). Given that the ranges of their preferred prey, Calanus 117 

glacialis, Calanus finmarchicus and Calanus hyperboreus are shifting northward due to climate 118 

change (Beaugrand et al., 2009), dovekies will likely have to switch to a less nutritious species or 119 

increase foraging effort, both of which may increase daily energy expenditure (Amélineau et al., 120 

2016; Grémillet et al., 2012). So far, dovekies have shown a remarkable resilience to the shift, 121 

but their ability to buffer its effects may be reaching its limit (Amélineau et al., 2019; Grémillet 122 

et al., 2012; Harding et al., 2009b). Understanding dovekie energetics is key to forecasting their 123 

current and future responses to global change. 124 

 In this context, we tested whether accelerometers could estimate activity-specific 125 

energetic costs in this small breath-hold diving species.  We estimated the energetic costs of 126 

flying and diving in dovekies using both time-averaged energy expenditure, obtained using the 127 

doubly labeled water (DLW) method, and individual activity profiles, derived from triaxial 128 

acceleration data. We expected dovekie dive costs to be higher than in other auk species due to 129 

high buoyancy and thermoregulatory costs for small, shallow-diving seabirds. In agreement with 130 

the current literature, we also expected these higher non-mechanical costs to weaken the overall 131 

relationship between DBA and energy expenditure in this species. Since stroke frequency 132 

coincides directly with the power generated by the contraction of muscle fibres in animals that 133 

swim and/or fly (Pennycuick, 2008), we expanded on previous allometric analyses of stroke 134 

frequency across species to further assess whether high dive costs in dovekies could be explained 135 

by mechanical costs alone, or whether other non-locomotory factors are at play. 136 
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 137 

Methods 138 

 139 

Study Area & Data Collection 140 

 Dovekies were studied at Ukaleqarteq (Kap Höegh), East Greenland (70° 43' N, 21° 33 141 

W) during the 2017 and 2018 breeding seasons. In total, 89 individuals (35 in 2017 and 54 in 142 

2018) were captured using a variety of methods including noose carpets and lassos placed on the 143 

rocks surrounding their nests. Each dovekie was injected intraperitoneally with 0.3 mL (2017) or 144 

0.45 mL (2018) of doubly-labelled water (the dosage was increased in 2018 to extend the 145 

recapture window; Speakman, 1997). Of those birds, we taped small triaxial accelerometers 146 

(Axy4, Technosmart, Italy; 3.4g including tubing and tape) to the breast feathers of 60 birds to 147 

record their activity. Recaptures began approximately 20 hours after the birds were released. 148 

Body measurements (flattened wing, tarsus and beak length) were taken for each dovekie 149 

following final blood sampling.  150 

  151 

Energy Expenditure 152 

 To estimate the average energy expenditure of each of our birds, we used the doubly 153 

labeled water (DLW) method (Speakman, 1997; Welcker et al., 2009). This method estimates 154 

carbon-dioxide production using the differential decline of heavy isotopes of hydrogen and 155 

oxygen in the body. The two-sample approach involves taking a blood sample at the beginning 156 

and at the end of a measurement period, while the one-sample approach involves taking only a 157 

final sample and interpolating the initial enrichments of 18oxygen and deuterium. We used the 158 

one-sample method for all our accelerometer-equipped birds to reduce handling time (handling 159 

time: ~10-15 minutes). The increased handling time associated with the two-sample approach is 160 

known to alter behaviour, and therefore energy expenditure, in other seabirds (Schultner et al., 161 

2010). As such, the two-sample approach was reserved for the birds not being equipped with 162 

accelerometers and whose initial isotope enrichments could be used to interpolate the initial 163 

enrichments of the one-sample birds using body mass (R2 = 0.68-0.74 between isotopes and 164 

mass depending on year; see data appendix). 165 

 Immediately following capture, all birds were weighed in an opaque breathable bag using 166 

a small hanging scale and then injected intraperitoneally with DLW (65% H2O
18; 35% D2O). The 167 



 7 

one-sample birds were equipped with an accelerometer, marked with dye, and then released. 168 

Following the DLW injection, we placed the two-sample birds in the shade for one hour to allow 169 

the DLW to equilibrate with the body water. After the hour had elapsed, an initial blood sample 170 

was taken from each bird’s brachial vein, following which, the birds were marked with dye and 171 

released. All birds were recaptured for a final weighing and blood sample after 15 to 50 hours 172 

(accelerometers were removed prior to weighing). The isotopic enrichments of blood samples 173 

were measured using an isotopic water analyzer (Los Gatos, San Jose, USA). We calculated the 174 

amount of carbon dioxide produced by individuals over the course of each deployment using the 175 

plateau method (See Speakman, 1997 for details on calculations and supporting theory). To 176 

estimate energy expenditure, we converted these values into kilojoules using a conversion 177 

coefficient of 27.97 J/mL of CO2 (Welcker et al., 2009). Daily energy expenditure (DEE) was 178 

then estimated by dividing total energy expenditure by the deployment duration for each 179 

dovekie. An unbalanced two-way ANOVA was performed using the car package in R (Fox and 180 

Weisberg, 2019) to test for differences in mean DEE estimated for dovekies across sampling 181 

years and DLW sampling approaches (i.e. one- and two-sample). Normality and homogeneity of 182 

variance was assessed visually using standard residual plots (Q-Q plot and residuals vs. fitted 183 

plot). 184 

 185 

Accelerometry & Activity Costs 186 

 Raw acceleration data in the surge, heave and sway axes were recorded at a sampling rate 187 

of 50 Hz and used to calculate stroke frequency and pitch (i.e. body angle) in R using code 188 

adapted from Patterson et al.’s work on thick-billed murres (2019). Specifically, a fast Fourier 189 

transform, applied over a 5-second moving window, was used to determine the peak frequency in 190 

the heave axis (Patterson et al., 2019). Flights were identified as any period with a stroke 191 

frequency greater than 10 Hz. Pitch was calculated using a 2-second moving average of the 192 

heave, sway, and surge axes. To account for differences among individuals and the placement of 193 

accelerometers on birds, pitch values were standardized to 0 during flights (Patterson et al., 194 

2019). A 3-second moving window of pitch was used to define periods when the dovekie was 195 

descending (pitch < -45°) or ascending (pitch >45°).  196 

As we did not have a pressure sensor, the start of likely dives was determined based on 197 

periods when the dovekie was descending for at least 2 seconds, with a stroke frequency between 198 
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1 and 6 Hz. During the bottom phase of a dive, the dovekie uses either dive strokes or changes in 199 

pitch to maintain buoyancy and search for prey. From the start of a likely dive, we identified the 200 

next time where the bird was not ascending or descending, did not have a stroke frequency 201 

between 1 – 6 Hz, and change in pitch was less than 10° (i.e. assumed to be back at the surface). 202 

If these conditions were not met within 120 seconds (the presumed maximum dive duration), 203 

then the end of the dive was defined as 120 seconds after the dive start. These diving periods 204 

were also identified visually in a subset of deployments in order to verify the validity of the 205 

automatic classifications and were found to be in close agreement (Cohen’s kappa coefficient = 206 

0.82 ±0.08, n=10). As such, only automatically defined dives were used in all further analyses. 207 

Automatic dive classification R-code is available in the Appendix. 208 

 209 

 To estimate energetic costs in dovekies, we compared several models using activity-210 

specific time-budgets and dynamic body acceleration as predictors. We began by conducting 211 

multiple regression analyses with activity-specific time budgets (percentages of total deployment 212 

time) as explanatory variables and mass-specific DEE as the response variable. We opted to use 213 

mass-specific DEE instead of absolute DEE to facilitate comparisons with the dynamic body 214 

acceleration models described in the next section (further justification is available in the SI 215 

appendix). Since one of the primary objectives of the study was to estimate flight and dive costs, 216 

three activity categories were initially selected for analysis: flying, diving and other (resting, 217 

walking, etc).  218 

 219 

DEE = a(%Timefly) + b(%Timedive) + c(%Timeother)                   (Model 1) 220 

 221 

The intercept was forced through zero to account for the fact that no energy is expended when no 222 

time has elapsed (this also applies to the other time-budget models described below). The output 223 

of the multiple regression analysis was then used to estimate the activity-specific costs of flying 224 

and diving in dovekies.  225 

Other model variants were subsequently tested against our basic model to see which best 226 

explained DEE. Several variants used combinations of the basic time budget categories outlined 227 

above as explanatory variables (Models 2-4), while another split the “other” category into 228 

“resting on land” and “unknown” (Model 5; details available in the SI appendix).  Unfortunately, 229 
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we could not further breakdown the “unknown” category into other potentially important 230 

behaviours using acceleration data only, a limitation of working with such a small species where 231 

larger tags cause behavioural disruption. Since dive costs could have declined exponentially with 232 

dive duration (e.g. Elliott et al., 2013b), as measured in penguins and modelled in larger auks, we 233 

also tested a model variant that replaced the percentage of time spent diving with an exponential 234 

cost function for each dive (Model 6; details available in SI appendix). We then considered 235 

models incorporating overall dynamic body acceleration (ODBA) as a possible predictor of 236 

DEE. ODBA represents the summed dynamic acceleration across all three axes of movement. 237 

Dynamic acceleration was calculated by subtracting the static component of acceleration (i.e. 238 

that associated with gravity and body position) from the raw acceleration for each axis. Static 239 

acceleration was calculated by applying a 2-second rolling mean to the raw acceleration data in 240 

order to remove any signal resulting from the animal’s movement (e.g. wingbeats). As time’s 241 

effect on summed ODBA inflates its importance in energetics models (Halsey, 2017) , the first 242 

ODBA model variant (Model 7) used overall time-averaged ODBA as the sole explanatory 243 

variable. The second ODBA model variant (Model 8) multiplied mean activity-specific ODBA 244 

by the time-budget percentages for each behavioural category to see if incorporating ODBA 245 

improved the fit of the basic time-budget model (i.e. Model 1).  246 

 247 

DEE = d(%Timefly*ODBAfly) + e(%Timedive*ODBAdive) + f(%TimeotherODBAother)      (Model 8) 248 

 249 

We selected the best model(s) using Akaike’s Information Criterion (AIC) which 250 

penalizes unnecessarily complex models (Table 1). The model with the lowest AIC score was 251 

considered best, and models with a ∆AIC<2 were assumed equivalent to the best model and 252 

discussed in further detail throughout (Symonds and Moussalli, 2011). Using the coefficients 253 

resulting from selected models, we calculated predicted DEE and plotted it against doubly 254 

labeled water derived DEE. We then performed a reduced major axis (RMA) regression using 255 

the smatr package for R (Warton et al. 2012) to check whether predicted DEE was in close 256 

agreement with the doubly labeled water derived DEE estimates that our models were based on. 257 

To illustrate the potential relationship between DEE and ODBA (i.e. Model 7), doubly labeled 258 

water derived DEE was plotted against mean ODBA, revealing an obvious gap between points 259 

for dovekies tagged in 2017 and those tagged in 2018. Since sampling year could have 260 
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influenced the relationship between mean ODBA and DEEdlw, we subsequently conducted a 261 

linear regression analysis on both the pooled dataset (2017 and 2018, Model 7) and the dataset 262 

for dovekies tagged in 2017 only. We did not analyse the 2018 dataset independently given the 263 

small sample size for that year. Differences in mean ODBA across our three basic behaviour 264 

categories (flight, diving and other) were assessed using a one-way ANOVA followed by a 265 

Tukey post-hoc test. Given the small sample sizes for each test group, residual plots (Q-Q and 266 

Residuals vs. fitted) were used to check the normality and homogeneity of variance assumptions 267 

instead of a formal test. All statistical analyses were conducted in R (R Core Team, 2018).  268 

 269 

Allometry of Stroke Frequency 270 

Density plots were used to identify the dominant stroke frequency exhibited by 271 

individuals during locomotion in the air and underwater. We then tested for an intra-specific 272 

linear relationship between log10(stroke frequency) and log10(mass) in dovekies while flying and 273 

diving. In an attempt to explain some of the residual variation surrounding these relationships, 274 

we regressed residuals against wing-loading, which was calculated for each bird by dividing their 275 

mass by the area of their wings (approximated by wing-length squared). We continued to plot the 276 

mean dominant stroke frequency observed across all sampled individuals with literature values 277 

for other vertebrates (Sato et al., 2007), as well as for Alcids specifically (Elliott et al., 2004). If a 278 

species was represented in both studies, we chose the value provided in Sato’s paper which relied 279 

on accelerometer derived estimates instead of video analysis (Literature values presented in 280 

Supplementary Table 1). We then conducted a linear regression analysis on log10-transformed 281 

mass and stroke frequency to derive inter-specific allometric scaling relationships for stroke 282 

frequency in diving and flying Alcids and compared them to those published by Elliott et al. 283 

(2004) and Sato et al. (2007) for Alcids and marine vertebrates respectively.  284 

 285 

Results 286 

Due to weather and logistics constraints, 54% of the 35 deployed dovekies were recaptured in 287 

2017 and only 31% of the 54 birds deployed in 2018. Of these, several were caught outside of 288 

the timeframe when DLW analysis is possible. We estimated DEE in a total of 24 birds across 289 

both sampling years (14 one-sample and 10 two-sample individuals). Of the recaptured 290 

individuals for whom DEE could not be estimated, we were able to recover acceleration data 291 
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from an additional six birds, bringing the total number of recovered accelerometers from one-292 

sample birds to 20. Average DLW derived daily energy expenditure (DEE) for dovekies in 2017 293 

and 2018 was 621 ± 103 kJ.d-1 and 590 ± 133 kJ.d-1, respectively (Supplementary Table 2). A 294 

two-way ANOVA showed no significant differences between estimates for both sampling years 295 

(p=0.90, n=11 in 2017 and n=13 in 2018), nor between those for one- and two-sample birds 296 

(p=0.22, n=14 one-sample and n=10 two-sample).   297 

Of the eight model variants used to explain DLW-derived DEE, two were selected by 298 

comparing AIC values, both of which were time-budget models (Model 1 and Model 2; Table 1). 299 

The coefficients resulting from these models provided energetic cost estimates for each 300 

behaviour category (Table 2). From Model 1, the estimated flight cost for dovekies was 98 W kg-301 

1 (95% CI= 63-133 W kg-1) or approximately 7.24 X BMR (using a BMR estimate of 177.9 kJ d-1 302 

for dovekies of mean mass = 152.5 g [Gabrielsen et al., 1991]). Our estimated dive cost was 126 303 

W kg-1 (95% CI= 86-167 W kg-1) or approximately 9.37 X BMR. Model 2, which combined time 304 

budgets for flying and diving, estimated a combined cost of 110 W kg-1 (95% CI=86-135 W kg-1) 305 

for these behaviours (i.e. 8.16 X BMR). Figures 1A and 1B illustrate the utility of our model 306 

coefficients with regards to predicting DLW-derived DEE (RMA regression with n=13, Model 1: 307 

R2= 0.77, p=7.48x10-05, Fig.1A, and Model 2: R2= 0.74, p=0.000145, Fig.1B). Models 308 

incorporating ODBA (Models 7 and 8) did not improve on time-budget models, nor did 309 

replacing percent of time spent diving with an exponential cost function (Model 6).  310 

The tagged dovekies used in our energy expenditure modeling exhibited an overall mean 311 

ODBA of  0.41 g s-1 ±0.06 (SD), while activity-specific ODBA was 0.71 g s-1 ±0.06 for flight, 312 

0.67 g s-1 ±0.07 for diving and 0.25 ±0.08 for the other behavioural category (Table 3). A one-313 

way ANOVA showed there was significant differences in mean ODBA across behaviours (F2,36 314 

=167.1, p=0.000). A Tukey post-hoc test revealed that mean ODBA during flight and diving 315 

were not significantly different from each other (p= 0.270), but both differed significantly from 316 

mean ODBA during “other” behaviours (p=0.000).  We did not find a significant relationship 317 

between DEE and mean ODBA for the 2017 and 2018 pooled dataset (p= 0.734, n=13, Fig. 2). 318 

However, a weak linear relationship was found when only using data for dovekies tagged in 319 

2017 (R2 = 0.41, p= 0.0478, n=10).  320 

 321 
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Stroke frequency varied significantly with mass across individual dovekies during flight 322 

(p= 0.00641, R2=0.35; Fig. 3A), but not diving (p= 0.116; Fig. 3B). However, confidence 323 

intervals for the allometric exponent for flight were quite broad, indicating a high level of 324 

uncertainty surrounding the estimate (exponent = -0.42, 95% CI= -0.70 to -0.13). Wing loading 325 

did not explain residual variation (p=0.155). Combining our mean dominant stroke frequency for 326 

dovekies with published values for other species of Alcid yielded an allometric scaling exponent 327 

of -0.22 ± 0.048 for flight  (p=0.00176, R2=0.73, n=10, 95% CI = -0.33 to -0.11, Fig. 4A), and -328 

0.27 ± 0.033 for diving (p= 0.00367, R2=0.96, n=5, 95% CI = -0.38 to -0.17, Fig. 4B).   329 



 13 

Discussion 330 

 331 

In accordance with our expectations for a small shallow-diving endotherm in the Arctic, 332 

time-averaged ODBA was not an effective predictor of DEE, though a weak relationship was 333 

found when considering data for 2017 only. Similarly, the addition of activity-specific ODBA to 334 

basic time budget models did not improve their ability to explain variation in DEE. In fact, our 335 

two best models used only accelerometer-derived time budgets as explanatory variables. Despite 336 

recording similar ODBA in flying and diving dovekies (Table 3), time-budget models suggested 337 

the energetic cost of diving could be almost 30% higher than that of flying (7.24 BMR for flight 338 

and 9.37 BMR for diving). Put together, these findings suggest that high non-mechanical costs 339 

such as thermoregulation during dives are weakening the relationship between ODBA and DEE 340 

(Wilson et al., 2020). Furthermore, while dive costs were relatively high compared to flight in 341 

dovekies, their average stroke frequency while diving was consistent with inter-species 342 

allometric scaling relationships. Thus, dovekies represent an empirical example of how the link 343 

between DBA metrics and energy expenditure is weaker in species apparently facing greater 344 

proportions of non-mechanical costs and which exhibit multiple movement modes (Wilson et al., 345 

2020).  346 

  347 

Daily Energy Expenditure 348 

 349 

Despite rapid environmental changes in the Arctic, DEE estimates for nesting dovekies in 350 

2017 and 2018 in East Greenland were comparable to previous estimates going back ~30 years 351 

for birds breeding at the same site and in Svalbard (~600-760 kJ/day; Gabrielsen et al., 1991; 352 

Harding et al., 2009b; Welcker et al., 2009). Thermoregulatory energy savings resulting from 353 

warming temperatures may be offsetting losses associated with changing foraging dynamics, 354 

allowing dovekies to buffer the effects of climate change in East Greenland (Grémillet et al. 355 

2012). However, as prey dynamics continue to shift with increasing temperatures, dovekies may 356 

soon face increased energetic demands that exceed their capacity to buffer, eventually leading to 357 

decreases in fitness (Kidawa et al. 2015; Amélineau et al. 2019). As such, it is essential that we 358 

continue to monitor the behaviour, energetics and breeding success of these abundant Arctic 359 

seabirds. Going forward, the models presented here can be used to easily estimate energy 360 
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expenditure using basic time-budgets derived from accelerometers or other tag types if they can 361 

identify periods of flight and diving.  362 

 363 

Activity Costs 364 

 365 

Until now, only rough estimates of the energetic costs of flying and diving existed for 366 

dovekies and these were based on allometric relationships or biomechanical modeling (i.e. the  367 

Pennycuick model; Pennycuick 1989). Prior to the availability of fine scale movement data made 368 

possible through the use of accelerometers, diving and flying were estimated in dovekies to cost 369 

between 4.8 and 11.6 X BMR (Fort et al., 2009; Gabrielsen et al., 1991). While both our 370 

estimated flight and dive costs fell within that range (7.24 and 9.37 X BMR), dive costs were 371 

relatively high compared to flight costs. Some species are known to trade-off time budgets for 372 

energetically costly behaviours in order to minimize overall costs (Elliott et al 2013), which may 373 

explain why time budgets for flight and diving were negatively correlated across all 374 

accelerometer-equipped individuals in our study (r= -0.61,  n=20, details available in SI 375 

appendix). Regardless, our estimated activity costs can be used to inform our current 376 

understanding of the long-term health of dovekie populations globally by improving existing 377 

models (e.g. Clairbaux et al. 2019).  378 

The flight costs derived in this study support the idea that high wing-loading in dovekies is 379 

resulting in high energetic costs during flapping-flight. For instance, these estimates are almost 380 

double that of the similarly sized sooty tern (Sterna fuscata), which has a much lower wing-381 

loading than the dovekie (Flint and Nagy, 1984). Even so, when compared to the flight costs of 382 

the largest auk species, the thick-billed murre (Uria lomvia, 31 X BMR; Elliott et al., 2013b), 383 

dovekies have relatively low flight costs. This is almost certainly because thick-billed murres 384 

have roughly two times higher wing-loading than dovekies (Gabrielsen et al. 1991; Elliott et al. 385 

2013b), and induced flight costs increase non-linearly with wing-loading (proportionate to 386 

(Mass/wingspan)2; Pennycuick, 2008). The effect of mass has been widely studied and, though a 387 

level of variability exists, flight costs tend to increase with mass both inter- and intra-specifically 388 

in birds (Videler, 2006). This pattern is obvious when comparing the flight costs of one of the 389 

smallest Alcids (the dovekie, 98 W kg-1) with the largest (the thick-billed murre, 146 W kg-1; 390 
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Elliott et al., 2013b)  but may also be present among individual dovekies of varying mass, though 391 

this is beyond the scope of the present study.  392 

As expected, dovekies had relatively high dive costs compared to other species. Though 393 

these small seabirds have short dive-adapted wings, they are still longer (relative to body size) 394 

than in other Alcids, like the thick-billed murre whose relative dive costs are typically lower than 395 

in dovekies (~40W/kg for an average length dive, Elliott et al., 2013b). Longer wings increase 396 

hydrodynamic drag when moving through the water and this translates to increases in the 397 

energetic requirements of diving (Elliott et al., 2007). On average, dovekies also exhibit much 398 

shorter and shallower dives than thick-billed murres and this likely means that they face much 399 

higher costs linked to buoyancy when diving (Elliott et al., 2007; Harding et al., 2009a; Lovvorn 400 

et al., 2004). Buoyancy is predicted to decline exponentially with depth and so shallow divers 401 

must spend more time and energy overcoming it (Lovvorn et al., 2004; Wilson et al., 1992). 402 

Dovekies have been recorded making up to 240 individual dives per day at an average depth of 403 

10m (Harding et al., 2009a), and so, the cost of buoyancy is likely a large contributor to the 404 

particularly high dive costs observed in these birds.  405 

Thermoregulatory costs are also likely higher in diving dovekies than in thick-billed murres 406 

because of their relatively large surface area to volume ratio (Gabrielsen et al., 1991; Gardner et 407 

al., 2011). Small endotherms lose heat much faster in water than in air, leading to significantly 408 

higher metabolic rates in water (Croll and McLaren, 1993). These thermoregulatory costs 409 

increase steeply as temperatures drop; something which has been demonstrated in many seabirds 410 

resting on water, including three other Alcids (Croll and McLaren, 1993; Richman and Lovvorn, 411 

2011). While thermal substitution can offset some of these costs by recycling heat generated by 412 

muscles during dives (Lovvorn, 2007), thermoregulatory costs are likely still high for small 413 

Arctic species diving in near-freezing waters. On the other hand, as shallow divers (average 414 

depth ~10 m; Harding et al., 2009b), dovekies may benefit from the air trapped in their feathers 415 

whose insulative properties would diminish significantly at greater depth (Lovvorn, 2007). 416 

Regardless, the high non-mechanical costs incurred by diving dovekies explains the elevated 417 

dive costs predicted here, as well as the decoupling of DBA from energy expenditure observed in 418 

these birds (Halsey et al., 2011b; Wilson et al., 2020). 419 

The morphological and physiological characteristics of a species are not the only factors that 420 

can influence activity costs. Environmental conditions can also have significant effects on the 421 
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energetic costs associated with specific behaviours and could explain some of the variation 422 

observed in our model. For example, a study undertaken on two species of seabird found that 423 

flight costs increased with increasing head winds (Elliott et al., 2014). As such, differences in the 424 

wind regimes experienced by the dovekies deployed in 2017 and 2018 could have led to 425 

differences in the relative energetic costs associated with flight in each cohort, and previous 426 

research on dovekies has shown that DEE increases with wind speed in this species (Gabrielsen 427 

et al., 1991). Unfortunately, wind speed could not be measured at the study site during those two 428 

years. Similarly, interannual differences in sea surface temperature could have affected the 429 

thermoregulatory dive costs incurred by dovekies in both sampling years. For example, sea 430 

surface temperatures in the colony’s foraging range were higher in 2018 (mean SST for July and 431 

August = 1.70 ± 0.39 °C) than in 2017 (0.72 ± 0.47 °C ), consistent with DEE in 2018 being 432 

lower than expected based on activity levels alone (Fig. 1; refer to the appendix for details on 433 

how bimonthly mean SSTs were derived).  434 

While estimating activity costs for birds tagged in each year separately could have helped 435 

highlight any effects of varying environmental conditions, sample sizes in the present study were 436 

too small for this purpose. Given the high thermoregulatory costs predicted for the species, 437 

incorporating biologged ambient temperature into energetic models could also improve their 438 

predictive power moving forward, especially in light of the rapidly changing environmental 439 

conditions faced by dovekies in the Arctic. For example, annual energy expenditure models for 440 

the larger common guillemot (Uria aalge) showed that DEE was closely linked to biologged 441 

temperature in the species (Dunn et al., 2020). However, this may prove challenging for dovekies 442 

given additional sensors would increase the weight of tag packages, likely affecting the 443 

behaviours and energy expenditures recorded for these small birds (Sun et al., 2020).  444 

 445 

Allometry of Stroke Frequency 446 

 447 

Dominant stroke frequency during flight varied across individual dovekies with Mass-0.42, 448 

higher than the predicted inter- and intra-specific exponent of between -1/6 and -1/3, but lower 449 

than the -1/2 exponent predicted for intra-individual stroke frequency allometry in birds (Berg et 450 

al., 2019; Pennycuick, 2008). Inter-individual variation in wingspan and wing area may be 451 

relatively small across dovekies, leading to an allometric scaling exponent that approaches -1/2. 452 
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This could be the case if mass differences across individuals are resulting from varying fat 453 

reserves instead of overall differences in body size (Pennycuick, 2008). While nesting dovekies 454 

may benefit from large fat reserves, they also likely incur higher activity costs associated with 455 

increased stroke frequency during flight (Taylor, 1994). However, wing loading did not explain 456 

the high degree of variation surrounding the relationship between body mass and stroke 457 

frequency in flying dovekies nor the lack of a significant relationship for diving dovekies, 458 

suggesting other factors are at play here.  459 

We combined the mean stroke frequency of flying and diving dovekies with literature data 460 

for other Alcids to assess the inter-specific allometry of stroke frequency in this family with the 461 

inclusion of one of its smallest members. Despite having lower mass-specific stroke frequencies 462 

than other swimming vertebrate taxa, the scaling exponent (-0.27) obtained for diving Alcids was 463 

nearly identical to that observed across birds, fish, reptiles and mammals in a previous study (-464 

0.29, Sato et al. 2007; Fig. 4B). This supports the idea that a morphological trade-off between 465 

efficient locomotion in air and water affects the intercept and not the slope of log-log 466 

relationships for stroke frequency allometry in diving Alcids (Sato et al., 2007). Our estimated 467 

allometric exponent for flight in Alcids (-0.22) agrees closely with the exponent published by 468 

Elliott et al. (2004) despite the addition of data points for three species of Alcid not present in the 469 

original dataset. These added species included the largest and smallest studied auks (i.e. the 470 

dovekie and the thick billed murre). Dovekie stroke frequency was well predicted by our derived 471 

allometric relationships for flight and diving in Alcids, implying once again that their unusually 472 

high dive costs are not being driven by mechanical costs alone.   473 

 474 

 475 

Conclusion 476 

 477 

The use of accelerometers has greatly enhanced our ability to study the fine-scale behaviour 478 

and energetics of wildlife. However, our results support the hypothesis that dynamic body 479 

acceleration alone is not an effective predictor of daily energy expenditure in species 480 

experiencing high non-mechanical energetic costs and using multiple movement modes (Wilson 481 

et al., 2020). Nevertheless, acceleration derived time-budgets were effective at providing 482 

estimates of energy expenditure in dovekies, and revealed that dive costs are particularly high in 483 
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this species. Since the DLW method is challenging to perform in species like dovekies, 484 

accelerometers can be used to study their energetics going forward. Additionally, the use of 485 

accelerometer-derived information in ecological modeling is not restricted to energetics alone. 486 

The detailed data provided by these tags can also be used to parametrize other models 487 

forecasting the fitness, distribution and population dynamics of species faced with the mounting 488 

pressures of global change (e.g. Grémillet et al. 2018). 489 

 490 

 491 
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Tables 

 

 515 

Table 1: ∆AIC comparison of time budget (n=6) and ODBA (n=2) models used to explain 516 

doubly-labeled water estimates of mass-specific daily energy expenditure in dovekies equipped 517 

with accelerometers (n=13). Akaike weights are presented alongside delta AIC.  518 

ID 
Model ∆AIC Weights 

2 
%Timefly+dive + %Timeother 0.00 0.48 

1 
% Timefly + % Timedive + %Timeother 0.47 0.38 

5 
% Timefly + % Timedive + %Timerest + %Timeunknown 2.36 0.15 

3 
% Timedive + %Timeother+fly 12.51 0.00 

6 
% Timefly + ∑ (1-e

-duration/19.68
) + %Timeother 12.98 0.00 

8 
%Timefly*ODBAfly + %Timedive*ODBAdive + %Timeother*ODBAother 13.54 0.00 

4 
% Timefly + %Timeother+dive 14.70 0.00 

7 
ODBAmean 17.62 0.00 

 519 

 520 

 521 

Table 2: Output of the best models (∆AIC<2) for explaining doubly-labeled water estimates of 522 

mass-specific daily energy expenditure in dovekies equipped with accelerometers. 95% 523 

confidence intervals are presented in brackets beside each estimate. 524 

  Activity cost 

  *kJ d-1g-1 W kg-1 **BMR 

%Timefly+dive 9.52 (7.40-11.63) 110.1 (85.7-134.6) 8.16 (6.35-9.97) 

%Timeother 0.97 ([-0.25]-2.19) 11.2 ([-2.9]-25.4) 0.83 ([-0.21]-1.88) 

%Timefly 8.45 (5.44-11.45) 97.8 (63.0-132.5) 7.24 (4.67-9.82) 

%Timedive 10.93 (7.41-14.45) 126.5 (85.7-167.2) 9.37 (6.35-12.38) 

%Timeother 0.86 ([-0.38]-2.10) 10.0 ([-4.4]-24.3) 0.74 ([-0.33]-1.80) 

*Since our models used time budget percentages as opposed to proportions, coefficients were 525 

multiplied by 100 to get standard units of energy expenditure (i.e. kJ d-1g-1). 526 

**Activity cost estimates presented as multiples of basal metabolic rate (BMR) using a 527 

previously published value (BMR = 177.9 KJ d-1, n=16, at mean body mass = 152.5 g; 528 

Gabrielsen et al. 1991). 529 

 530 

  531 
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Table 3: Overall mean and activity-specific time-averaged ODBA for the accelerometer tagged 532 

dovekies used in our daily energy expenditure modeling. Standard deviations (SD) are provided 533 

beside estimates.  534 

  Time averaged ODBA (g s-1) 
  

  

Year Mean ±SD Flying ±SD Diving ±SD Other ±SD n 

2017 0.39 ±0.05 0.71 ±0.07 0.67 ±0.03 0.22 ±0.05 10 

2018 0.48 ±0.02 0.71 ±0.04 0.66 ±0.17 0.37 ±0.02 3 

Both 0.41 ±0.06 0.71 ±0.06 0.67 ±0.07 0.25 ±0.08 13 

 535 

 536 

 537 

 538 

Figures 539 

 540 

 541 
Figure 1: Time-budget predicted daily energy expenditure for the two model variants with 542 

∆AIC<2 (Model 1 [A] and Model 2 [B]) plotted against doubly labeled water derived estimates 543 

of daily energy expenditure (DEEdlw). Black lines represent the output of a reduced major axis 544 

regression with shaded regions depicting 95% confidence intervals (n=13, Model 1: R2= 0.77, 545 

p<0.0001, DEEdlw = 1.14(Predicted DEE) – 0.56; Model 2: R2= 0.74, p<0.001, DEEdlw = 546 

1.16(Predicted DEE) – 0.65;). Dashed lines depict the lines of equality (i.e. 1:1 relationship). 547 

 548 

 549 
Figure 2: Doubly labeled water derived estimates of daily energy expenditure (DEEdlw) plotted 550 

against time-averaged overall dynamic body acceleration (ODBAmean). There was a weak 551 
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significant linear relationship between DEEdlw and ODBAmean for dovekies tagged in 2017 552 

(R2=0.41, p<0.05, n=10; DEEdlw= 5.87(ODBAmean)+ 1.90; shaded region represents the 95% 553 

confidence intervals), but none for the combined datasets of 2017 and 2018 (p>0.05, n=13).  554 

 555 

 556 
Figure 3: Dominant stroke frequencies (Hz) plotted against mass for (A) flying (Stoke frequency 557 

= 94.914[Mass]-0.416; p< 0.01, R2= 0.35, n=20) and (B) diving dovekies (no significant 558 

relationship).  559 

 560 

 561 
Figure 4: Mean stroke frequencies (Hz) plotted against mass for (A) flying and (B) diving 562 

animals. In panel (B), the “All animals” trendline is inclusive of “Auks” and “Other Seabirds”. 563 

All data points aside from those for dovekies are derived from previous research by Sato et al. 564 

(2007) and Elliott et al. (2004). Stroke frequency varied significantly with mass across auks 565 

during flight (Stoke frequency = 8.188[Mass]-0.221; p<0.01, R2=0.73, n=8), and while diving 566 

(Stroke frequency = 2.4453[Mass]-0.274; p<0.01, R2=0.96, n=5). Data for dovekies are indicated 567 

by black arrows. 568 
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