Rigid N3O2-Pentadentate Ligand-Assisted Octacoordinate Mononuclear Ln(III) Complexes: Syntheses, Characterization, and Slow Magnetization Relaxation
Abstract
A series of air-stable mononuclear octacoordinate Ln(III) complexes, [(L)Ln(TPPO)3]OTf (Ln = Y (1·Y); Gd (1·Gd); Tb (1·Tb); Dy (1·Dy); Ho (1·Ho); and Er (1·Er)) and [(L)Ln(TPPO)(NO3)] (Ln = Y (2·Y) and Dy (2·Dy)), are synthesized employing a rigid N3O2-pentadentate chelating ligand as the basis ligand and meridional ancillary ligands (where H2L = 2,6-diacetylpyridine bis-benzoylhydrazone, TPPO = triphenylphosphine oxide, and OTf– = trifluoromethanesulfonate). All the complexes are synthesized under aerobic conditions and characterized comprehensively by spectroscopic and X-ray crystallographic techniques. Magnetic property investigation on the polycrystalline solid samples of 1·Ln (Ln = Gd, Tb, Dy, Ho, and Er) and 2·Dy are reported. A field-induced single-molecule magnet behavior was observed for the Dy derivatives. 1·Dy exhibits the highest effective energy barrier of magnetization reversal, Ueff/kB = 47 K under Hdc = 1 kOe among the complexes presented herein.
Domains
Coordination chemistry
Origin : Publisher files allowed on an open archive