Guillaume Ducoffe
email: guillaume.ducoffe@ici.ro

Optimal centrality computations within bounded clique-width graphs *

Given an n-vertex m-edge graph G of clique-width at most k, and a corresponding k-expression, we present algorithms for computing some well-known centrality indices (eccentricity and closeness) that run in O(2 O(k) (n + m) 1+ϵ) time for any ϵ > 0. Doing so, we can solve various distance problems within the same amount of time, including: the diameter, the center, the Wiener index and the median set. Our runtimes match conditional lower bounds of Coudert et al. (SODA'18) under the Strong Exponential-Time Hypothesis. On our way, we get a distance-labeling scheme for n-vertex m-edge graphs of clique-width at most k, using O(k log 2 n) bits per vertex and constructible in Õ(k(n+m)) time from a given k-expression. Doing so, we match the label size obtained by Courcelle and Vanicat (DAM 2016), while we considerably improve the dependency on k in their scheme. As a corollary, we get an Õ(kn 2)-time algorithm for computing All-Pairs Shortest-Paths on n-vertex graphs of clique-width at most k, being given a kexpression. This partially answers an open question of Kratsch and Nelles (STACS'20). Our algorithms work for graphs with non-negative vertex-weights, under two different types of distances studied in the literature. For that, we introduce a new type of orthogonal range query as a side contribution of this work, that might be of independent interest.

Introduction

For any undefined graph terminology, see [START_REF] Bondy | Graph theory[END_REF][START_REF] Diestel | Graph Theory[END_REF]. Unless stated otherwise, all graphs considered in this work are simple and connected. We here consider clique-width, which is one of the most studied parameters in Graph Theory, superseded only by treewidth. Roughly, clique-width is a measure of the closeness of a graph to a cograph (a.k.a., P 4 -free graph). We postpone its formal definition until Sec. 2. The cliquewidth was shown to be bounded on many important subclasses of perfect graphs [START_REF] Brandstädt | Bounding the clique-width of H-free split graphs[END_REF][START_REF] Brandstädt | Bounding the Clique-Width of H-Free Chordal Graphs[END_REF][START_REF] Dabrowski | Classifying the clique-width of H-free bipartite graphs[END_REF][START_REF] Golumbic | On the clique-width of some perfect graph classes[END_REF][START_REF] Lozin | Chordal bipartite graphs of bounded tree-and clique-width[END_REF], and beyond [START_REF] Brandstädt | Gem-and co-gem-free graphs have bounded clique-width[END_REF][START_REF] Brandstädt | New graph classes of bounded clique-width[END_REF][START_REF] Brandstädt | Chordal co-gem-free and (P 5 , gem)-free graphs have bounded clique-width[END_REF][START_REF] Brandstadt | Clique-width for 4-vertex forbidden subgraphs[END_REF][START_REF] Brandstädt | P 6 -and triangle-free graphs revisited: structure and bounded clique-width[END_REF][START_REF] Dabrowski | Clique-width of graph classes defined by two forbidden induced subgraphs[END_REF][START_REF] Makowsky | On the clique-width of graphs with few P 4 's[END_REF][START_REF] Suchan | On powers of graphs of bounded NLC-width (clique-width)[END_REF][START_REF] Vanherpe | Clique-width of partner-limited graphs[END_REF]. For instance, distance-hereditary graphs, and so, trees, have clique-width at most three [START_REF] Golumbic | On the clique-width of some perfect graph classes[END_REF]. Every graph of bounded treewidth also has bounded clique-width, but the converse is not true [START_REF] Corneil | On the relationship between clique-width and treewidth[END_REF]. Indeed, unlike for treewidth, there are dense graphs of bounded clique-width (e.g., the complete graphs). This generality comes at some cost: whereas the celebrated Courcelle's theorem asserts that any problem expressible in MSO 2 logic can be solved in FPT linear time on bounded treewidth graphs [START_REF] Courcelle | The monadic second-order logic of graphs. I. Recognizable sets of finite graphs[END_REF], the same is true for bounded clique-width graphs only for the problems expressible in the more restricted MSO 1 logic [START_REF] Courcelle | Linear time solvable optimization problems on graphs of bounded clique-width[END_REF]. Fomin et al. showed this to be unavoidable, in the sense that there are problems expressible in MSO 2 logic that are W [START_REF] Abboud | Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs[END_REF]-hard in the clique-width [START_REF] Fomin | Intractability of clique-width parameterizations[END_REF][START_REF] Fomin | Almost optimal lower bounds for problems parameterized by clique-width[END_REF][START_REF] Fomin | Clique-width III: Hamiltonian Cycle and the Odd Case of Graph Coloring[END_REF]. We refer to [START_REF] Espelage | How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time[END_REF] for other algorithmic applications of clique-width in parameterized complexity.

Our focus is about the so-called "FPT in P" program. Here the goal is, for some problem solvable in O(m q+o (1)) time on arbitrary m-edge graphs, to design an O(f (k)m p+o (1))-time algorithm, for some p < q, within the class of graphs where some fixed parameter is at most k (one usually seeks for p = 1 and f (k) = k O (1)). The idea of using tools and methods from parameterized complexity in order to solve faster certain polynomial-time solvable problems has been here and there in the literature for a while (e.g., see [START_REF] Hagerup | Characterizing multiterminal flow networks and computing flows in networks of small treewidth[END_REF]). Nevertheless it was only recently that such idea was better formalized [START_REF] Giannopoulou | Polynomial fixed-parameter algorithms: A case study for longest path on interval graphs[END_REF], in part motivated by some surprising results obtained for treewidth [START_REF] Abboud | Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs[END_REF]. Indeed, on the positive side, the treewidth does help in solving faster many important problems in P, that is, in Õ(k O (1) n) time on graphs and matrices of treewidth at most k [START_REF] Fomin | Fully polynomial-time parameterized computations for graphs and matrices of low treewidth[END_REF][START_REF] Iwata | On the power of tree-depth for fully polynomial FPT algorithms[END_REF]. But for other such problems, any truly subquadratic-time parameterized algorithm requires exponential dependency on the treewidth. For example, given a graph G with a non-negative weight function on its edge-set (resp., on its vertex-set), the weight of a path equals the sum of the weights of all its edges (resp., of all its vertices). For unweighted graphs, this is exactly the number of edges (resp, the number of edges plus one). The distance d G (u, v) between two vertices u and v is equal to the least weight of a uv-path. Finally, the diameter of G is defined as diam(G) = max u,v∈V (G) d G (u, v). Abboud et al. proved that under the Strong Exponential-Time Hypothesis (SETH), for any ϵ > 0, there is no O(2 o(k) n 2-ϵ)-time algorithm for computing the diameter of n-vertex unweighted graphs of treewidth at most k [START_REF] Abboud | Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs[END_REF]. An algorithm for this problem on weighted graphs, running in O(2 O(k) n 1+ϵ) time for any ϵ > 0, was proved recently in [START_REF] Bringmann | Multivariate Analysis of Orthogonal Range Searching and Graph Distances[END_REF] by using the orthogonal range query framework of Cabello and Knauer [START_REF] Cabello | Algorithms for graphs of bounded treewidth via orthogonal range searching[END_REF].

Insofar, clique-width has received less attention than treewidth in the nascent field of FPT in P. Perhaps one good reason for that is that, for most problems on edge-weighted graphs, clique-width provably does not help [START_REF] Kratsch | Efficient and adaptive parameterized algorithms on modular decompositions[END_REF]. This is because we may regard any graph as a weighted clique, where each non-edge got replaced by an edge of sufficiently large weight. Note however that most conditional lower bounds in the literature hold even for unweighted graphs (this is the case for the diameter and the other distance problems that we here study). Furthermore, in a recent paper Kratsch and Nelles [START_REF] Kratsch | Efficient Parameterized Algorithms for Computing All-Pairs Shortest Paths[END_REF] have evidenced that some applications of clique-width to unweighted graphs could be extended to vertex-weighted graphs. We give further evidence for that in our work. One other well-known drawback of clique-width is that, unlike for treewidth, the parameterized complexity of computing it is a wide open problem [START_REF] Corneil | Polynomial Time Recognition of Clique-Width ≤ 3 Graphs[END_REF]. Until very recently, the best-known approximation algorithms for clique-width were running in O(n 3)-time [START_REF] Oum | Approximating clique-width and branch-width[END_REF]. However, this has now been improved to O(n 2) for constant clique-width graphs [START_REF] Fomin | Fast fpt-approximation of branchwidth[END_REF]. Furthermore, on many subclasses of bounded clique-width graphs, there exist linear-time algorithms in order to compute a so called "k-expression", for some k = O(1), with the latter certifying the clique-width of the graph to be at most k [START_REF] Golumbic | On the clique-width of some perfect graph classes[END_REF][START_REF] Makowsky | On the clique-width of graphs with few P 4 's[END_REF]. Therefore, the study of graph problems in P parameterized by clique-width may be regarded as a unifying framework for all such subclasses. In this respect, Coudert et al. obtained Õ(k O (1) (n + m))-time algorithms for triangle and cycle problems on n-vertex m-edge graphs of clique-width at most k [START_REF] Coudert | Fully polynomial FPT algorithms for some classes of bounded clique-width graphs[END_REF]. However, they also observed that assuming SETH, even on n-vertex cubic graphs of clique-width at most k, for any ϵ > 0, there is no O(2 o(k) n 2-ϵ)-time algorithm for computing the diameter. Unlike for treewidth, it was open until this paper whether there does exist a parameterized quasi-linear-time algorithm for this problem on bounded clique-width graphs that matches their conditional lower bound. Indeed, we are only aware of a linear-time algorithm for computing the diameter of bounded clique-width graphs in [START_REF] Courcelle | Query efficient implementation of graphs of bounded clique-width[END_REF], but with a super-exponential dependency on the clique-width in the runtime, due to the use of Courcelle's theorem. The work of Coudert et al. has also been continued in [START_REF] Ducoffe | The use of a pruned modular decomposition for maximum matching algorithms on some graph classes[END_REF][START_REF] Ducoffe | The b-matching problem in distance-hereditary graphs and beyond[END_REF][START_REF] Kratsch | Efficient and adaptive parameterized algorithms on modular decompositions[END_REF] and especially in [START_REF] Kratsch | Efficient Parameterized Algorithms for Computing All-Pairs Shortest Paths[END_REF], where the authors obtained an O((kn) 2)-time algorithm for All-Pairs Shortest Paths (APSP) on n-vertex graphs of clique-width at most k.

Results. We provide new insights on the fine-grained complexity of polynomial-time solvable distance problems within bounded clique-width graphs. As in all previous works in this area, all our algorithmic results require a k-expression to be given in the input. Specifically, let G = (V, E, w) be such that |V | = n, |E| = m, and w : V → N is a vertex-weight function. The eccentricity of a vertex u, denoted e G (u), is its largest distance to any other vertex; its inverse is sometimes called the graph centrality of u [START_REF] Hage | Eccentricity and centrality in networks[END_REF]. The closeness centrality of u, denoted C G (u), equals 1/ v d G (u, v) [START_REF] Sabidussi | The centrality index of a graph[END_REF]. For a discussion about these centrality measures, and others, and their role in social network analysis, we refer to [START_REF] Das | Study on centrality measures in social networks: a survey[END_REF]. Our main contribution is an algorithm for computing all eccentricities, and closeness centralities within the n-vertex m-edge graphs of clique-width at most k, being given a k-expression, that runs in O(2 O(k) (n + m) 1+ϵ) time for any ϵ > 0 (Theorem 4.1).

We point out that the diameter of a graph is its largest eccentricity. The radius of a graph is its least eccentricity, and its center is the set of all vertices whose eccentricity equals the radius. Therefore, our result for computing all eccentricities implies, for any ϵ > 0, an O(2 O(k) (n + m) 1+ϵ)-time algorithm for computing the diameter, the radius, and the center of a graph of clique-width at most k, if a k-expression is given. To the best of our knowledge, it is the first algorithm to match the conditional lower bound of Coudert et al. Previously, the only known algorithms for these problems were applications of Courcelle's theorem [START_REF] Courcelle | Linear time solvable optimization problems on graphs of bounded clique-width[END_REF]. The Wiener index W (G) of a graph G is the sum of all its distances, while its median set contains all the vertices of maximal closeness centrality. In the same way, our result for computing the closeness centrality implies, for any ϵ > 0, an O(2 O(k) (n + m) 1+ϵ)-time algorithm for computing both the Wiener index and the median set of a graph of clique-width at most k, if a k-expression is given. Our runtimes are also optimal under SETH for the Wiener index, and so, for the closeness centrality (the conditional lower bound is the same as for the diameter problem, see the discussion in Sec. 4).

Recall that our results hold for vertex-weighted graphs. A related problem, studied in location theory, is given an unweighted graph G = (V, E) and a cost function p : V → N, to compute for every vertex u its p-eccentricity (resp., its total p-distance sum), defined as e p (u) := max v p(v)d G (u, v) (resp., as T D p (u) := v p(v)d G (u, v)). Note that the total distance for unweighted graphs is nothing but the inverse of closeness centrality. Our approach can also be applied to that case (Theorem 5.1).

Finally, as a byproduct of our techniques, we obtain a new distance labeling scheme for bounded cliquewidth graph classes which outperforms the state of the art [START_REF] Courcelle | Query efficient implementation of graphs of bounded clique-width[END_REF] 1 . See our Theorem 3.2 for details. In doing so, we get an Õ(kn 2)-time algorithm in order to solve All-Pairs Shortest-Paths within n-vertex vertex-weighted graphs of clique-width at most k (Corollary 3.5). This improves on the previously best-known O((kn) 2)-time algorithm, and it almost completely solves an open problem from Kratsch and Nelles [START_REF] Kratsch | Efficient Parameterized Algorithms for Computing All-Pairs Shortest Paths[END_REF] who asked whether there exists an O(kn 2)-time algorithm for this problem.

Overview of our techniques. Roughly, the standard approach for bounded clique-width graphs is to process a k-expression sequentially. It is possible to transform a k-expression into a so called partition tree, a purely combinatorial object that has been used in [START_REF] Courcelle | A characterisation of cliquewidth through nested partitions[END_REF] in order to derive a new characterization of the cliquewidth. -We formally define clique-width and partition trees in Sec. 2. -Doing so, it becomes easier and more transparent to apply standard algorithmic approaches, for trees, to the k-expressions. In particular, it is known that every bounded clique-width graph has a balanced edge-cut of bounded neighbourhood diversity (i.e., whose edges can be partitioned in a bounded number of complete bipartite graphs) [START_REF] Borie | Robust polynomial time algorithms on clique-width k graphs[END_REF][START_REF] Dragan | Collective tree spanners in graphs with bounded parameters[END_REF]. As a side contribution of this work, we show how to compute such balanced cuts in parameterized linear time in the clique-width from a given partition tree. -Note that the original runtime from [START_REF] Borie | Robust polynomial time algorithms on clique-width k graphs[END_REF] is unknown to us as we were unable to find this reference. -This procedure of recursively finding such an edge-cut produces a special type of centroid decomposition of a partition tree, with algorithmic applications to several distance problems on bounded clique-width graphs. While such a divide-and-conquer approach can hardly be considered as 'new', its usefulness in the fine-grained complexity study of polynomial-time solvable problems on bounded clique-width graphs has remained to be demonstrated until our work. We expect several other results to be found with this approach, in a similar way to what has been done for bounded treewidth graphs in [START_REF] Iwata | On the power of tree-depth for fully polynomial FPT algorithms[END_REF].

The distance-labeling scheme of Theorem 3.2 follows almost directly from our centroid decomposition of a partition tree, that is why we chose to present it first in the paper. In order to compute the centrality indices, we combine this centroid decomposition with two other tools. One is the range query framework of Cabello and Knauer [START_REF] Cabello | Algorithms for graphs of bounded treewidth via orthogonal range searching[END_REF] that we use to compute some distance information (depending on the centrality index) between the vertices that are on different sides of an edge-cut of small neighbourhood diversity. To our best knowledge, our work is the first (but admittedly, simple) application of this framework to edge-cuts. We also augment this framework with a new type of orthogonal range query, with applications to the fast computation of all p-eccentricities and total p-distances, see Sec. 5. Our second tool is inspired from prior works on bounded treewidth graphs [START_REF] Abboud | Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs[END_REF][START_REF] Bringmann | Multivariate Analysis of Orthogonal Range Searching and Graph Distances[END_REF] and Cunningham's split decomposition [START_REF] Cunningham | Decomposition of directed graphs[END_REF]. Specifically, we design some edge-weighted gadgets in order to preserve the distances of the original graph in the two subgraphs resulting from the removal of an edge-cut of bounded neighbourhood diversity. Adding weighted edges is problematic because the diameter problem cannot even be solved in truly subquadratic time within edgeweighted graphs of bounded clique-width. To address this issue, we restrict our addition of weighted edges to ensure that when we further partition the graph via more edge-cuts, the weighted edges are not included in these edge-cuts. To do this, we partition the vertices of our gadgets into at most O(log n) clusters of only O(k 2) vertices each, so that weighted edges are only added between pairs of vertices in the same cluster. Then, we ensure that no cluster is ever separated by an edge-cut computed from the partition tree. Doing so, we are still able to ensure that we can find unweighted edge-cuts that satisfy the requirement of being both balanced and of small neighborhood diversity. We stress that to prove correctness of our construction, we had to carefully analyze the structure of a partition tree, which is arguably the most technical part of our analysis. While it is tempting to make our gadgets vertex-weighted (e.g., by properly subdividing the weighted edges), we did not find a satisfying way to do that without increasing the neighbourhood diversity of some of the cuts.

Notations. Throughout the remainder of the paper, we shall write G = (V, E) for an unweighted graph, and G = (V, E, w) for a vertex-weighted graph, where w : V → N. The neighbour set of a vertex v ∈ V , resp. of a subset S ⊆ V , is defined as

N G (v) = {u ∈ V | uv ∈ E}, resp. as N G (S) = v∈S N G (v) \ S.
We may also define the distance between a vertex v ∈ V and a subset S ⊆ V as d G (v, S) = d G (S, v) = min u∈S d G (u, v), and the distance between two subsets S, S ′ as d G (S, S ′) = min u∈S,v∈S ′ d G (u, v). Note that if S = ∅ then, d G (v, S) = d G (S, S ′) = +∞ for any v and S ′ . Recall that for every fixed vertex s, we can compute in O((n + m) log n) time all the distances d G (s, v), for v ∈ V , using Dijkstra algorithm. It is folklore that for every fixed subset S, we can adapt Dijkstra algorithm in order to compute in O((n + m) log n) time all the distances d G (S, v), for v ∈ V (that consists, roughly, in replacing S by a single new vertex s). Throughout the paper, we call it a modified Dijkstra algorithm. We shall introduce additional terminology wherever needed in the paper.

Results of this paper were partially presented at the IPEC'21 conference [START_REF] Ducoffe | Optimal Centrality Computations Within Bounded Clique-Width Graphs[END_REF].

Clique-width and partition trees

First, we recall two equivalent definitions of clique-width [START_REF] Courcelle | A characterisation of cliquewidth through nested partitions[END_REF]. The following definitions can be extended to weighted graphs simply by ignoring all the weights. Clique-width expressions. A k-labeled graph is a triple G = (V, E, ℓ) where ℓ : V → {1, 2, . . . , k} is called a labeling function. A clique-width k-expression (for short, a k-expression) is an algebraic expression where the four allowed operations are: i(v): we add a new isolated vertex with label ℓ(v

) = i; G 1 ⊕ G 2 :
we make the disjoint union of two k-labeled graphs; η(i, j): we add a join (complete bipartite subgraph) between all vertices with label i and all vertices with label j; ρ(i, j): for all vertices v s.t. ℓ(v) = i, we set ℓ(v) = j. The generated graph is the one obtained from the k-expression by deleting all the labels. We say that a graph G = (V, E) has clique-width at most k if it is the graph generated by some k-expression. For instance, 1(a)2(b)η(1, 2)ρ(1, 3)1(c)η(1, 2)ρ(2, 3)2(d)η(1, 2) is a 3-expression generating the four-node path P 4 with nodes a, b, c, d. In particular, the clique-width of P 4 is at most three. This is in fact an equality, as the graphs of clique-width at most two are exactly the cographs [START_REF] Golumbic | On the clique-width of some perfect graph classes[END_REF]. We denote by cw(G) the clique-width of the graph G. The size of a k-expression is its number of operations. If the generated graph has order n and m edges, and there is no unnecessary operation ρ(i, j) nor η(i, j) -which we will assume to be the case throughout the remainder of this paper -, then the k-expression has size in O(n + m) (e.g., see [START_REF] Fürer | A natural generalization of bounded tree-width and bounded clique-width[END_REF], where Fürer proved this result in a more general setting). Partition tree. It is useful to represent a k-expression as a parse tree. We stress that the subtree rooted at any node in the parse tree represents the k-expression of some labelled subgraph of G. By iteratively contracting the edges incident to non-branching nodes of a parse tree, we get a so-called partition tree, whose nodes are mapped to the partition in at most k label classes of the vertices in the corresponding labelled subgraph of G. Formally, given a graph G = (V, E), a partition tree is a pair (T, f) where T is a rooted tree whose inner nodes have at least two children, and f is a function mapping every node of T to a partial partition of V , such that:

• for every node a ∈ V (T), f (a) is a partition of some vertex-subset A ⊆ V ;

• for every vertex v ∈ V , there is a leaf node a v ∈ V (T) s.t. f (a v) = {{v}};
• for every inner node a ∈ V (T), let b 1 , b 2 , . . . , b d be its children. If f (a) is a partition of A, and in the same way for every 1

≤ i ≤ d, f (b i) is a partition of B i , then the vertex-subsets B 1 , B 2 , . . . , B d are pairwise disjoint and A = d i=1 B i . Furthermore, for every 1 ≤ i ≤ d, for every subset X i ∈ f (b i), there is X ∈ f (a) s.t. X i ⊆ X (we say that d i=1 f (b i) refines f (a)
). Finally, for every 1 ≤ i < j ≤ d, for every adjacent vertices v i ∈ B i and v j ∈ B j , if v i ∈ X and v j ∈ Y , for some X, Y ∈ f (a), then we have X ̸ = Y and X × Y ⊆ E (we say that the partition is compatible with the edge-incidence relation in the graph G).

The width of a partition tree is equal to max a∈V (T) |f (a)|. A graph has clique-width at most k if and only if it admits a partition tree of width at most k [START_REF] Courcelle | A characterisation of cliquewidth through nested partitions[END_REF].

Note that if we naively store a partition tree (T, f), then storing explicitly all the labels f (a), for a ∈ V (T), would require O(n 2) space. Instead, for every a ∈ V (T), for every X ∈ f (a), we may create a new vertex (a, X); then if b i is a child of a, for every X i ∈ f (b i) s.t. X i ⊆ X, we add an arc between (a, X) and (b i , X i). This is called in [START_REF] Courcelle | A characterisation of cliquewidth through nested partitions[END_REF] the representation graph of (T, f) and it only requires O(kn) space if the width is at most k.

Lemma 2.1 ([18]

). There is an algorithm that transforms a k-expression of size L into the representation graph of a width-k partition tree in O(kL) time.

In particular, given a k-expression for an n-vertex m-edge graph G, we can construct the representation graph of a width-k partition tree in O(k(n + m)) time.

Relation with k-modules. For a graph G = (V, E), a subset M ⊆ V is a module if we have N G (u) \ M = N G (v) \ M for every vertices u, v ∈ M . A k-module is some M ⊆ V that can be partitioned into k subsets, denoted M 1 , M 2 , . . . , M k , in such a way that for every 1 ≤ i ≤ k, M i is a module in the subgraph G[(V \ M) ∪ M i]
. Some relations between clique-width and k-modules were explored in [START_REF] Rao | Clique-width of graphs defined by one-vertex extensions[END_REF]. We make the following useful observation, whose proof is inspired by [START_REF] Rao | Clique-width of graphs defined by one-vertex extensions[END_REF]Theorem 7].

Lemma 2.2. The following two properties hold for every partition tree (T, f) of a graph G = (V, E):

1. For every node a ∈ V (T), let A = f (a) be the vertex-subset of which f (a) is a partition. Then, A is a |f (a)|-module of G, with a corresponding partition of A being f (a).

2. Let a 1 , a 2 , . . . , a p be some children nodes of some a ′ ∈ V (T) and, for each

1 ≤ i ≤ p, let A i = f (a i) be the vertex-subset of which f (a i) is a partition. Then, A = p i=1 A i is a |f (a ′)|-module of G, with a corresponding partition of A being {X ′ ∩ A | X ′ ∈ f (a ′)}.
Proof. We prove these two above statements simultaneously, by induction on the depth of the nodes. For the base case, let us assume a ∈ V (T) to be the root of T . In particular, A = V . In this situation, every

X ∈ f (a) is a trivial module of G \ (V \ X) = G[X]. Hence, A = V is a k-module of G
with a corresponding partition being f (a). Then, let a 1 , a 2 , . . . , a p be children nodes of some a ′ ∈ V (T), and let us assume by induction that

A ′ = f (a ′) is a |f (a ′)|-module of G, with a corresponding partition being f (a ′). Recall that A = p i=1
A i is the union of all the subsets partitioned by the f (a i)'s. By the refinement property we have A ⊆ A ′ , and therefore Φ

(A) = {X ′ ∩ A | X ′ ∈ f (a ′)} is a partition of A. Let us prove that A is a |Φ(A)|-module of G,
with a corresponding partition being Φ(A) (Property 2 of the lemma). Equivalently, we are left proving that for every

X ∈ Φ(A), for every u, v ∈ X we have N G (u) \ A = N G (v) \ A. For that, recall that there is a X ′ ∈ f (a ′) s.t. X ⊆ X ′ . By our induction hypothesis, X ′ is a module of G \ (A ′ \ X ′). Therefore, N G (u) \ A ′ = N G (v) \ A ′ . In order to prove that X is a module of G \ (A \ X), it now suffices to prove that we have N G (u) ∩ (A ′ \ A) = N G (v) ∩ (A ′ \ A). Let w ∈ A ′ \ A be s.t. uw ∈ E. The refinement property implies the existence of some node b / ∈ {a 1 , a 2 , . . . , a p } s.t. b is another child of a ′ , f (b
) is a partition of some vertex-subset B that is disjoint from A, and w ∈ B. Then, since uw ∈ E, the compatibility property implies the existence of some

Y ′ ∈ f (a ′) s.t. Y ′ ̸ = X ′ , w ∈ Y ′ and X ′ × Y ′ ⊆ E.
In particular, every vertex of X ′ , and so, of X, is adjacent to w. This implies

N G (u) ∩ (A ′ \ A) = N G (v) ∩ (A ′ \ A). Finally, let us prove that for every child a of a ′ , A = f (a) is also a |f (a)|-module of G, with a corresponding partition being f (a) (Property 1 of the lemma). By setting p = 1, we first get that A is a |f (a ′)|-module, with a corresponding partition being Φ(A) = {X ′ ∩ A | X ′ ∈ f (a ′)}.
Then, we are done by the refinement property because every X ∈ f (a) must be contained into some subset

X ′ ∩ A ∈ Φ(A). Finally, recall that a cut of G = (V, E) is a bipartition (A, V \ A) of its vertex-set. The neighbourhood diversity of a cut is the least k s.t. A is a k-module of G. By Lemma 2.2,
each node of a width-k partition tree defines a cut of neighbourhood diversity at most k.

Distance-labeling scheme

We describe our distance oracle for bounded clique-width graph classes. For technical reasons, we need to make it work also for unconnected graphs. While it is likely that we could process each connected component separately, we did not explore this possibility since it was leading to more complicated updates of the partition trees (see the proof of Theorem 3.2 below).

Given a possibly unconnected graph G, the distance d G (u, v) between u, v ∈ V is equal to: +∞ if u and v are on different connected components of G, and to the smallest weight of a uv-path in G otherwise. A distance-labeling scheme consists in some encoding function C G : V → {0, 1} * and some decoding function

D G : {0, 1} * × {0, 1} * → N ∪ {+∞} s.t. d G (u, v) = D G (C G (u), C G (v))
for every vertices u and v. We are interested in minimizing the total pre-processing time in order to compute the labels C G (v), for all vertices v, and the query time in order to compute the distance given two labels. It is often the case that D G runs in time polynomial in the size of the labels. Then, the objective is to minimize

max v∈V |C G (v)|.
The following result is due to Courcelle and Vanicat: [START_REF] Courcelle | Query efficient implementation of graphs of bounded clique-width[END_REF]). The family of n-vertex bounded clique-width unweighted graphs enjoys an exact distance labeling scheme using labels of length O(log 2 n) bits. Moreover, the distance between two vertices can be computed in O(log 2 n) time.

Theorem 3.1 ([
The hidden dependency in the clique-width is a stack of exponentials [START_REF] Gavoille | Distance labeling scheme and split decomposition[END_REF]. We improve the latter while keeping optimal bit size and improved query time, namely: Theorem 3.2. For a vertex-weighted graph, let W denote the maximum weight. The family of n-vertex m-edge vertex-weighted graphs of clique-width at most k enjoys an exact distance labeling scheme using labels of length O(k log n log (nW)) bits (resp., O(k log 2 n) bits if the graph is unweighted). Moreover, all the labels can be pre-computed in O(k(n + m) log 2 n) time if a k-expression is given (resp., in O(k(n + m) log n) time if the graph is unweighted), and the distance between two vertices can be computed in O(k log n) time.

For the related problem of adjacency queries, we refer to [START_REF] Kamali | Compact representation of graphs of small clique-width[END_REF] for a data structure in O(kn) space for the n-vertex graphs of clique-width at most k.

Recall that

d G (v, S) = d G (S, v) = min u∈S d G (u, v).
In particular, d G (v, S) = +∞ if S is empty. We will need the following result: Lemma 3.3. Let G = (V, E, w) be a vertex-weighted graph (possibly not connected) and let (A, V \ A) be a cut of neighbourhood diversity k. Furthermore, let A 1 , A 2 , . . . , A k be a partition of A s.t. for every

1 ≤ i ≤ k, A i is a module of G \ (A \ A i). For 1 ≤ i ≤ k, let B i = N G (A i) \ A.
The following hold for every u, v ∈ V :

• if u ∈ A, v / ∈ A then d G (u, v) = min{d G (u, A i) + d G (B i , v) | 1 ≤ i ≤ k}; • if u, v ∈ A then d G (u, v) = min{d G[A] (u, v)} ∪ {d G (u, A i) + d G (B i , v) | 1 ≤ i ≤ k}; • if u, v / ∈ A then d G (u, v) = min{d G[V \A] (u, v)} ∪ {d G (u, A i) + d G (B i , v) | 1 ≤ i ≤ k}.
Proof. We may assume u and v to be in a same connected component of G. Indeed if it is not the case then we claim that, for any 1

≤ i ≤ k, we have d G (u, A i) = +∞ or d G (B i , v) = +∞;
in particular, the lemma holds true in this special case. In order to prove this claim, there are two simple cases to consider: either

B i = ∅, and then d G (B i , v) = +∞, or B i ̸ = ∅.
In the latter case, A i ∪ B i is connected, and therefore we must have

d G (u, A i) = +∞ or d G (B i , v) = +∞.
From now on, we implicitly assume the existence of a uv-path. Then, for any u and v, for every 1

≤ i ≤ k s.t. B i ̸ = ∅, since there is a complete join between A i and B i there always exists a uv-path of length d G (u, A i) + d G (B i , v) (recall that if B i = ∅, then we have d G (u, A i) + d G (B i , v) = d G (B i , v) = +∞). In particular, d G (u, v) ≤ min{d G (u, A i) + d G (B i , v) | 1 ≤ i ≤ k}.
Then, we consider all three cases of the lemma. If u ∈ A, v / ∈ A then on any shortest uv-path, there must be some edge

u ′ v ′ s.t. u ′ ∈ A, v ′ / ∈ A. In particular, u ′ ∈ A i for some 1 ≤ i ≤ k, and then v ′ ∈ B i . We get d G (u, v) ≥ d G (u, A i) + d G (B i , v). As a result, d G (u, v) = min{d G (u, A i) + d G (B i , v) | 1 ≤ i ≤ k}. If u, v ∈ A then, either there exists a shortest uv-path which is fully contained into A, that implies d G (u, v) = d G[A] (u, v),
or every shortest uv-path must intersect V \ A. In the latter sub-case, we fix a shortest uv-path and we scan it from u until we find an edge

u ′ v ′ s.t. u ′ ∈ A, v ′ / ∈ A.
We deduce as before that we have in this sub-case

d G (u, v) = min{d G (u, A i) + d G (B i , v) | 1 ≤ i ≤ k}.
In the same way, if u, v / ∈ A then either there exists a shortest uv-path which is fully out of A, that implies d G (u, v) = d G[V \A] (u, v), or every shortest uv-path must intersect A. In the latter sub-case, we fix a shortest uv-path and we scan it from v until we find an edge

v ′ u ′ s.t. u ′ ∈ A, v ′ / ∈ A. We get d G (u, v) = min{d G (u, A i) + d G (B i , v) | 1 ≤ i ≤ k}.
Our scheme for bounded clique-width graphs mimics one very well-known for trees which is based on the centroid decomposition [START_REF] Gavoille | Distance labeling in graphs[END_REF]. Specifically, let w : V (T) → N assign non-negative weights to the nodes of some tree T . A w-centroid is a node c s.t. every subtree of T \ {c} has weight at most w(T)/2. Such node always exists and a centroid can be computed in linear time by using a standard dynamic programming approach [START_REF] Goldman | Optimal center location in simple networks[END_REF] (simply orient each edge toward the heaviest subtree, then find a sink). We also need the following easy lemma: Lemma 3.4. Let w : V (T) → N assign non-negative weights to the nodes of some tree T . If c is a wcentroid of a tree T , then the components of T \ {c} can be partitioned in linear time in two forest

F 1 , F 2 s.t. max{w(F 1), w(F 2)} ≤ 2w(T)/3.
Proof. If w(c) ≥ w(T)/3 then the result holds for any bipartition of the components of T \ {c}. From now on we assume that we did not fall in this pathological case. In particular, T \ {c} is unconnected (otherwise, w(T \ {c}) > 2w(T)/3 > w(T)/2, a contradiction). Let T 1 , T 2 , . . . , T d be the subtrees of T \ {c}. We define i 0 as the least index i s.t. i j=1 w(T j) > 2w(T)/3. Note that i 0 > 1 since we assume c to be a w-centroid. Then, there are two cases.

• If d j=i0 w(T j) ≤ 2w(T)/3 then we are done by setting F 1 = j<i0 T j , F 2 = j≥i0 T j .

• Otherwise, we get w(T) + w(T i0) ≥ j≤i0 w(T j) + j≥i0 w(T j) > 4w(T)/3, and so, w(T i0) > w(T)/3.

We set

F 1 = T i0 , F 2 = j̸ =i0 T j .
In both cases, we get the desired partition in two forests of respective weights at most 2w(T)/3.

We are now ready to prove the main result of this section:

Proof of Theorem 3.2. We fix some width-k partition tree (T, f), that takes O(k(n + m)) time to compute by using Lemma 2.1. Let w : V (T) → {0, 1} be s.t. w(a) = 1 if and only if a is a leaf. Observe that w(T) = n since there is a one-to-one mapping between the vertices in V and the leaves of T . In order to construct the labels C G (v), for all v ∈ V (encoding function), we next define a recursive procedure onto the weighted partition tree.

In what follows, let us assume n > 1 (otherwise, there is nothing to be done). We compute in O(|V (T)|) time, and so in O(n) time, a w-centroid c. Note that if n = 2, then T is composed of a root and of two leaves; then, a good choice for the w-centroid c is to take the root. In particular, we may assume c to be an internal node. Otherwise, n ≥ 3, and so, since w(T) = n, we must have that c is an internal node. Then, let a 1 , a 2 , . . . , a d be the children of c. We denote C (resp. A i) the subset of vertices of which f (c) (resp., f (a i)) is a partition. Furthermore, let T c (resp., let T ai) be the subtree rooted at c (resp., at a i). By Lemma 3.4 we can bipartition the trees T \ T c , T a1 , T a2 , . . . , T a d into two forests F 1 , F 2 of respective total weights ≤ 2n/3. In particular, since c is internal, and so w(c) = 0, both forests are non-empty. Up to re-ordering the children nodes of c, we may assume one of those forests, say F 1 , to be equal to p j=1 T aj , for some p ≤ d. For short, we name A := p j=1 A j . Doing so, we define the cut (A, V \ A), whose two sides can be determined in O(n) time by traversing the disjoint subtrees T a1 , T a2 , . . . , T ap .

By Lemma 2.2, A is a k-module of G, with a corresponding partition being Φ(A) = {X ∩ A | X ∈ f (c)} (or f (a 1) if p = 1)
. Note that such a partition can be readily derived in O(n) time from either f (c) (if p > 1) or f (a 1) (if p = 1). In turn, being given the representation graph of (T, f), we can compute f (c) and f (a 1) in O(kn) time by traversing the subtrees rooted at nodes c and a 1 . Let X 1 , X 2 , . . . , X k be a partition of A s.t., for every 1

≤ i ≤ k, X i is a module of G \ (A \ X i). Furthermore, for every 1 ≤ i ≤ k, let Y i := N G (X i) \ A (neighbour sets in V \ A). Since the subsets X i are pairwise disjoint we can compute Y 1 , Y 2 , . . . , Y k in total O(m) time. Finally, for every 1 ≤ i ≤ k, for every v ∈ V , we compute d G (v, X i) and d G (v, Y i). It takes O((m + n) log n) time
per subset, using a modified Dijkstra's algorithm, and so total time in O(k(m + n) log n) (resp., if the graph is unweighted, then it takes O(m + n) time per subset, using a modified BFS, and so total time in O(k(m + n))). We end up applying recursively the same procedure as above on the disjoint (possibly unconnected) subgraphs G[A] and G[V \ A]. For that, we need to build a partition tree for each subgraph.

• For G[A], we take T A = T a1 if p = 1, otherwise we take T A = T c \(j>p T j). Then, for every b ∈ V (T A), we set f A (b) = {X ∩ A | X ∈ f (b)}. Observe that if b ̸ = c then f A (b) = f (b).
Hence, the representation graph of (T A , f A) can be computed from the representation graph of (T, f) in O(kn) time.

• For G[V \ A], a natural choice would be to take the subtree

T V \A = T \ (p j=1 T aj). Then, for every b ∈ V (T V \A), we set f V \A (b) = {X \ A | X ∈ f (b)}.
Again, we observe that the representation graph of (T V \A , f V \A) can be computed from the representation graph of (T, f) in O(kn) time (i.e., by dynamic programming on the path from c to the root of T , removing on the way all groups fully into A). However, doing so, we may not respect all properties of a partition tree. Specifically, if d = p then c has become a leaf-node and it must be removed. But then, its father node c ′ may have only one child b left. If that is the case, then either c ′ is the root of T and then we choose T V \A = T b , or we choose the father node of c ′ as the new father node of b, removing on our way the node c ′ . Note that we do not modify f V \A (b) during this procedure. Finally, if d = p + 1 then c only has one child a d left. We proceed similarly as in the previous case. That is, either c was the root of T and then we set T V \A = T a d , or we choose the father node of c as the new father node of a d , removing on our way the node c. Note that doing so, we do not modify the partition f V \A (a d).

The above procedure recursively defines a so called w-centroid decomposition T (w) . The latter is a binary rooted tree, whose root is labeled by the cut (A, V \ A). Its left and right subtrees are w-centroid decompositions of G[A] and G[V \A] respectively. Note that by construction, the depth of T (w) is in O(log n). Furthermore, there is a one-to-one mapping between the leaves of T (w) and the vertices of G. For every vertex v ∈ V , its label C G (v) contains each cut on its path until the root of T (w) , and the 2k distances computed for each cut. -Infinite distances may be encoded as some special character. -Here, we stress that all these distances are computed in some induced subgraphs of G, and not in G itself (unless it is for the first cut, at the root). Since the depth of

T (w) is in O(log n), each C G (v) stores O(k log n) distances,
G (v), for all v ∈ V , is in O(k(n + m) log 2 n) (resp., in O(k(n + m) log n) if G is unweighted).
We are left describing D G (decoding). Let u, v ∈ V be arbitrary. Their least common ancestor in T (w) corresponds to some cut (A j , A j-1 \A j) s.t. u ∈ A j , v ∈ A j-1 \A j . Consider all the cuts on the path between their least common ancestor and the root of T (w) . We call the latter (A 0 , V \A 0), (A 1 , A 0 \A 1), . . . , (A j , A j-1 \ A j). Since up to reverting their two sides, all these cuts have neighbourhood diversity at most k, then we may apply Lemma 3.

3 j + 1 times in order to compute d G (u, v) (i.e., in G, G[A 0], G[A 1], . . . , G[A j-1]
). Note that j = O(log n). Finally, since for each cut considered, the 2k distances that are required in order to apply this lemma are stored in C G (u) and C G (v), it takes O(k) time per cut, and so, the final query time is in O(k log n).

Recall that All-Pairs Shortest-Paths in an n-vertex graph of clique-width at most k can be solved in O((kn) 2) time [START_REF] Kratsch | Efficient Parameterized Algorithms for Computing All-Pairs Shortest Paths[END_REF]. As a by-product of our Theorem 3.2, we observe below that we can improve the dependency on k, but at the price of a poly-logarithmic overhead in the running time.

G in O(k(n log n) 2) time (resp., in O(kn 2 log n) time if G is unweighted).
Proof. We start applying Theorem 3.2 in order to compute a distance-labeling scheme with O(k log n) query time. Then, we consider all pairs u, v ∈ V (there are O(n 2) such pairs) and we compute d G (u, v) in O(k log n) time.

Centrality indices and beyond

We refine our strategy for Theorem 3.2 in order to prove the main result of this paper: Theorem 4.1. For every connected n-vertex m-edge vertex-weighted graph G = (V, E, w), if cw(G) ≤ k and a k-expression is given, then we can compute in O(2 O(k) (n+m) 1+ϵ) time, for any ϵ > 0: all the eccentricities, and all the closeness centralities. Recall that Coudert et al. proved that assuming SETH, for any ϵ > 0, there is no O(2 o(k) (n+m) 2-ϵ)-time algorithm for computing the diameter within cubic graphs of clique-width at most k [START_REF] Coudert | Fully polynomial FPT algorithms for some classes of bounded clique-width graphs[END_REF]. Therefore, our results for the diameter (and so, for the eccentricities) are optimal under SETH. Our results for the Wiener index (and so, for the closeness centrality) are also optimal under SETH. Indeed, since the pathwidth of a graph is an upper bound for its clique-width [START_REF] Fellows | Clique-width is NP-complete[END_REF], then it follows from [START_REF] Abboud | Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs[END_REF] that it is already "SETH-hard", in the unweighted case, to decide in O(2 o(k) (n + m) 2-ϵ) time whether the diameter is either two or three. It is well-known that diam(G) ≤ 2 if and only if for every v ∈ V of degree δ G (v), T D(v) = 2(n -1) -δ G (v) [START_REF] Bringmann | Multivariate Analysis of Orthogonal Range Searching and Graph Distances[END_REF]. In particular, diam(G) ≤ 2 if and only if W (G) = 2n(n -1) -2m.

Additional notations. In Sec. 4.2, 4.3 and 4.4 we need to also allow edge-weights, due to some technicalities in our final proof of Theorem 4.1. Such a graph is denoted by G = (V, E, w, α), where α : E → N. Then, the weight of a path is the sum of the weights of all its vertices and edges. The special case of vertex-weighted graphs is retrieved by setting α(e) = 0 for every e ∈ E. Finally, we call a cut (A, V \ A) unweighted if all edges between A and V \ A have a zero weight. The neighbourhood diversity of a cut is the same in G as in the underlying unweighted graph obtained from G by removing all the weights.

Minimal partition of k-modules

First, it is not hard to show that every k-module has a partition in a least number of subsets. In what follows, we will often use a few simple properties of this minimal partitioning. Lemma 4.3. Every vertex-subset A in a vertex-weighted graph G = (V, E, w) admits a unique partition A 1 , A 2 , . . . , A k with the following two properties:

1. For every 1 ≤ i ≤ k, for every u i , v i ∈ A i , we have N G (u i) \ A = N G (v i) \ A. In particular, A is a k-module of G. 2. For every k ′ < k, A is not a k ′ -module of G.
We call it the minimal partition of A, and it can be computed in linear time.

Proof. Let G ′ = G\E(A) be the graph obtained from G by removing all edges with their two ends in A. Two vertices are called false twins if they have exactly the same neighbours in G ′ . This is an equivalence relation over V , whose equivalence classes are sometimes called "twin classes". We claim that if A is a k ′ -module, with a corresponding partition being A 1 , A 2 , . . . , A k ′ , then for every 1 ≤ i ≤ k ′ , all the vertices of A i must belong to the same twin class. Indeed, for every

u i , v i ∈ A i we get N G ′ (u i) = N G (u i) \ A = N G (v i) \ A = N G ′ (v i).
Then, the minimal partition of A is composed of all the non-empty intersections of A with the twin classes of G ′ . The twin classes of a graph can be computed in linear time by using classic partition refinement techniques [START_REF] Habib | Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing[END_REF].

Orthogonal range queries

We then need to recall some basics about the framework introduced in [START_REF] Cabello | Algorithms for graphs of bounded treewidth via orthogonal range searching[END_REF] by Cabello and Knauer. Let P ⊆ R k be a static set of k-dimensional points. We assume each point -→ p ∈ P to be assigned a value g(-→ p).

A box is the Cartesian product of k intervals. Note that we allow each interval to be unbounded and/or open or partially open. Roughly, given a box R, a range query on P asks for either reporting or counting all points in P ∩ R, or for some specific point(s) in this intersection maximizing a given objective function.

Here, we consider the following types of range queries:

• (Maximum range query) Given some box R, find some -→ p ∈ P ∩ R maximizing g(-→ p);

• (Sum range query) Given some box R, compute - → p ∈P ∩R g(-→ p).

• (Count range query) Given some box R, compute |P ∩ R|.

Lemma 4.4 ([11]

). For every k-dimensional point set P of size n, for any ϵ > 0, we can construct in O(2 O(k) n 1+ϵ) time, a data structure, sometimes called a k-dimensional range tree, that allows to answer any maximum range query, sum range query or count range query in O(2 O(k) n ϵ) time.

In the following Lemma 4.5 we give a new simple application of Lemma 4.4 to distance problems in graphs, namely: Lemma 4.5. Let G = (V, E, w, α) be a connected n-vertex m-edge graph with respective vertex-and edgeweight functions w and α, let (A, V \ A) be an unweighted cut of neighbourhood diversity at most k, and let A ′ ⊆ A, B ′ ⊆ V \ A. For any ϵ > 0, after a pre-processing in O(km + 2 O(k) n 1+ϵ) time, for every vertex

u ∈ A ′ we can compute the values max v∈B ′ d G (u, v) and v∈B ′ d G (u, v) in Õ(2 O(k) n ϵ) time; in the same way, for every vertex v ∈ B ′ we can compute the values max u∈A ′ d G (v, u) and u∈A ′ d G (v, u) in O(2 O(k) n ϵ) time.
Proof. Let A 1 , A 2 , . . . , A k be the minimal partition of A. By Lemma 4.3, we can compute it in O(m) time. For 1 ≤ i ≤ k, let B i = N G (A i) \ A. Note that since the subsets A i are pairwise disjoint, we can compute B 1 , B 2 , . . . , B k in total O(m) time. Observe that there is at most one index i s.t. B i = ∅ (otherwise, we can merge all groups A j s.t. B j = ∅ into one, thus contradicting the minimality of the partition of A). W.l.o.g., if such index exists then it must be i = k. We want to exclude this index, if it exists, in order to avoid handling with arithmetic over infinite values. So, let

k ′ = k if B k ̸ = ∅, otherwise let k ′ = k -1.
For every 1 ≤ i ≤ k ′ , for every u ∈ A ′ , we compute d G (u, A i). In the same way, for every 1

≤ i ≤ k ′ , for every v ∈ B ′ , we compute d G (B i , v). It takes O(k ′ m log n) = O(km log n) time
in total if we use Dijkstra's single-source shortest-path algorithm. Then, for every v ∈ B ′ and for every 1

≤ i ≤ k ′ , we create a k ′ -dimensional point - → p (v, i): whose first coordinate is the index i, followed by the values d G (B i , v) -d G (B j , v), 1 ≤ j ≤ k ′ , j ̸ = i. Set g(- → p (v, i)) = d G (B i , v).
Finally, let P contain all these k ′ |B ′ | points. We add all points in P into some k ′ -dimensional range tree, that takes O(2 O(k) n 1+ϵ) time for any ϵ > 0 by Lemma 4.4. Now, let u ∈ A ′ be fixed, and assume that we want to compute the values max v∈B ′ d G (u, v) and

v∈B ′ d G (u, v).
Note that if we subdivide each edge e with positive weight and we assign weight α(e) to the resulting vertex then, A ∪ E(A) is a (k ′ + 1)-module in the resulting graph, with E(A) representing the edges in G with their both ends in A (no such vertex has a neighbour in the other side of the cut). By Lemma 3.3 (applied to the resulting graph), for every v ∈ B ′ , we have

d G (u, v) = min{d G (u, A i)+d G (B i , v) | 1 ≤ i ≤ k}. Since d G (B k , v) = +∞ if B k = ∅, we also have d G (u, v) = min{d G (u, A i) + d G (B i , v) | 1 ≤ i ≤ k ′ }. We (virtually) partition B ′ into C 1 , C 2 , . . . C k ′ so that, for every 1 ≤ i ≤ k ′ , v ∈ C i if and only if the least index j s.t. d G (u, v) = d G (u, A j) + d G (B j , v) is equal to i. Specifically, we design boxes R 1 , R 2 , . . . , R k ′ so that p(v, j) ∈ R i ⇐⇒ j = i and v ∈ C i .
Note that if we can do so, then:

max v∈B ′ d G (u, v) = max 1≤i≤k ′ max v∈Ci d G (u, v) = max 1≤i≤k ′ (d G (u, A i) + max{d G (B i , v) | v ∈ C i }) = max 1≤i≤k ′ (d G (u, A i) + max{g(- → p (v, j)) | - → p (v, j) ∈ R i }) .
In particular, we are left doing k ′ maximum range queries. In the same way:

v∈B ′ d G (u, v) = k ′ i=1 v∈Ci d G (u, v) = k ′ i=1 v∈Ci (d G (u, A i) + d G (B i , v)) = k ′ i=1 d G (u, A i) • |C i | + v∈Ci d G (B i , v) = k ′ i=1 d G (u, A i) • |P ∩ R i | + {g(- → p (v, j)) | - → p (v, j) ∈ R i } .
In particular, we are left doing k ′ sum range queries and k ′ count range queries. Hence, being given R 1 , R 2 , . . . , R k ′ , we are done in O(2 O(k) n ϵ) time for any ϵ > 0 by Lemma 4.4.

For every 1 ≤ i ≤ k ′ , the box R i is defined as follows. Let -→ p = (p 1 , p 2 , . . . , p k ′) be a k ′ -dimensional point of P . We have -→ p ∈ R i if and only if:

     p 1 = i ∀1 ≤ j ≤ i -1, p j+1 < (d G (u, A j) -d G (u, A i)) ∀i + 1 ≤ j ≤ k ′ , p j ≤ (d G (u, A j) -d G (u, A i)) .
Indeed, we have:

d G (u, A i) + d G (B i , v) ≤ d G (u, A j) + d G (B j , v) if and only if d G (B i , v) -d G (B j , v) ≤ (d G (u, A j) -d G (u, A i)). Furthermore, by construction, if j < i then d G (B i , v) -d G (B j , v
) is exactly the (j + 1) th coordinate of -→ p (v, i) (in which case we want the inequality to be strict by the definition of C i),

and if j > i then d G (B i , v) -d G (B j , v
) is exactly the j th coordinate of this point. For the vertices v ∈ B ′ , we proceed similarly as above, that is, we create a point-set P ′ from A ′ and we put them in some separate k ′ -dimensional range tree.

Distance-preservers with weighted edges

Our next objective consists in adding some weighted subsets to the two sides of a cut in order to preserve the distances from the original graph. Recall that for every two subsets X and Y , d G (X, Y) = min x∈X,y∈Y d G (x, y). Our construction below is inspired by Cunningham's split decomposition [START_REF] Cunningham | Decomposition of directed graphs[END_REF].

Definition 4.1. Given G = (V, E, w, α) connected, with respective vertex-and edge-weight functions w and α, let (A, V \ A) be an unweighted cut of neighbourhood diversity at most k. Let A 1 , A 2 , . . . , A k be the minimal partition of A and, for every 1

≤ i ≤ k, let B i = N G (A i) \ A. W.l.o.g
., either all the B i 's are nonempty, or B k is the unique empty set amongst the B i 's. We set

k ′ = k if B k ̸ = ∅, and k ′ = k -1 otherwise. • For every 1 ≤ i ≤ k ′ , let b ii ∈ B i be of minimum weight. For every 1 ≤ i < j ≤ k ′ , let also b ij ∈ B i , b ji ∈ B j be the ends of a shortest B i B j -path (possibly, b ij = b ji). The graph H A is obtained from G[A ∪ {b ij | 1 ≤ i, j ≤ k ′ }] by adding, for every 1 ≤ i < j ≤ k ′ s.t. b ij ̸ = b ji , an edge b ij b ji of weight d G (B i , B j) -w(b ij) -w(b ji).
• For every 1 ≤ i ≤ k ′ , let a ii ∈ A i be of minimum weight. For every 1 ≤ i < j ≤ k ′ , let also a ij ∈ A i , a ji ∈ A j be the ends of a shortest

A i A j -path. The graph H B is obtained from G[(V \A)∪{a ij | 1 ≤ i, j ≤ k ′ }] by adding, for every 1 ≤ i < j ≤ k ′ , an edge a ij a ji of weight d G (A i , A j)-w(a ij)-w(a ji).
Below, we observe that it is rather straightforward to compute these two above subgraphs H A and H B in parameterized almost linear time: Lemma 4.6. Given G = (V, E, w, α) connected, with respective vertex-and edge-weight functions w and α, let (A, V \ A) be an unweighted cut of neighbourhood diversity at most k. The gadget subgraphs H A and H B (see Definition 4.1) can be constructed in Õ(k 2 n + km) time.

Proof. Consider all the subsets A i , B i , as they were defined in Definition 4.1. As we already observed in the proof of Lemma 4.5, these 2k subsets can be created in O(m) time by using partition refinement techniques. Then, it suffices to compute the vertices a ij , b ij , and the distances d G (A i , A j), d G (B i , B j). For every fixed i, we choose for b ii any vertex of minimum weight in B i . Then, we execute a modified Dijkstra's single-source shortest-path algorithm in order to compute d G (v, B i) for every v ∈ V . It takes Õ(m) time. For every j > i, let b ji be a vertex of B j minimizing its distance to B i . We choose for b ij a closest vertex to b ji in B i . It can be done in total O(kn) time (for all j > i) by dynamic programming on the shortest-path forest output by our modified Dijkstra's algorithm. We do the same in order to compute the vertices a ij , a ji .

The following two properties are crucial in our proofs of Theorem 4.1.

Lemma 4.7. Given G = (V, E, w, α) connected, with respective vertex-and edge-weight functions w and α, let (A, V \ A) be an unweighted cut of neighbourhood diversity at most k. Let H A , H B and k be as in Definition 4.1. Then, for every u, v

∈ A we have d G (u, v) = d H A (u, v). Similarly, for every u, v / ∈ A we have d G (u, v) = d H B (u, v).
Proof. We only detail the proof for u, v ∈ A. First, we prove that d H A (u, v) ≤ d G (u, v). Indeed, if there exists a uv-path of weight d G (u, v) which is fully into A, then this path also exists in H A . Otherwise, every shortest uv-path in G must intersect V \ A. Let us fix a shortest uv-path P in G. We scan P from u until we find the first edge xy s.t. x ∈ A, y / ∈ A. Similarly, we scan P from v until we find the first edge st s.t. s ∈ A, t / ∈ A. There exist i, j s.t. x ∈ A i , s ∈ A j , and so, y ∈ B i , t ∈ B j . We have d G (y, t) ≥ d G (B i , B j), and this is in fact an equality because P is a shortest uv-path and there are complete joins between A i and B i , respectively between A j and B j . Then, we may replace all the yt-subpath in P by either the edge b ij b ji or (if b ij = b ji , in particular if i = j) simply by b ij . Doing so, we obtain a uv-path of H A of weight equal to d G (u, v). Conversely, we prove that d H A (u, v) ≥ d G (u, v). Indeed, consider any uv-path P ′ of H A . We can replace every edge b ij b ji ∈ E(P ′) by a shortest b ij b ji -path in G. Doing so, we transform P ′ into a uv-path of G without changing the weight. The proof for u, v / ∈ A is similar as what we did above.

Our approach only works for unweighted cuts or more generally for cuts such that all the edge-weights are equal. Indeed, let us consider a cut (A, V \ A) of neighbourhood diversity at most k such that, for some 1 ≤ i ≤ k, there exist edges of different weights between A i and B i . Then, it is no more true that for every shortest uv-path, with u, v ∈ A arbitrary, for any two consecutive edges xy, ts of the cut, with x ∈ A i and s ∈ A j for some 1 ≤ j ≤ k, we must always have d(y, t) = d(B i , B j). It implies that Lemma 4.7 does not hold for arbitrary cuts. In particular, if we want to apply the procedure of Definition 4.1 recursively, for some cuts in the gadget subgraphs H A and H B , then we must have both ends of each weighted edge on a same side of the cut. The next lemma shows that restricting ourselves to such cuts does not cause an explosion of their neighbourhood diversity. Lemma 4.8. Given G = (V, E, w, α) connected, with respective vertex-and edge-weight functions w and α, let (A, V \ A) be an unweighted cut of neighbourhood diversity at most k. Let H A , H B and k be as in Definition 4.1.

For any A

′ ⊆ A, if A ′ is a k-module of G then it is a k-module of H A . 2. For any B ′ ⊆ V \ A, if B ′ is a k-module of G then it is a k-module of H B ; if A ∪ B ′ is a k-module of G then B ′ ∪ {a ij | 1 ≤ i, j ≤ k ′ } is a k-module of H B .
Proof. Let A 1 , A 2 , . . . , A k and B 1 , B 2 , . . . , B k be as in Definition 4.1. By minimality of the partition of A, there are no two indices i and j s.t. A i ∪ A j is a module of G \ (A \ (A i ∪ A j)) (otherwise, we could have merged these two groups into one). We prove the properties of the lemma separately.

• Let us first assume that

A ′ ⊆ A is a k-module of G. Clearly, A ′ is also a k-module of G[A ∪ {b i,j | 1 ≤ i, j ≤ k ′ }]. Furthermore, the only edges of E(H A) \ E(G) are those b ij b ji , and we always have b ij , b ji ∈ V (H A) \ A ′ . As a result, we obtain N H A (u) \ A ′ = (N G (u) ∩ V (H A)) \ A ′ ,
and so, A ′ keeps the property of being a k-module in H A .

• In the same way, let us now assume that

B ′ ⊆ V \ A is a k-module of G. The subset B ′ is also a k- module of the subgraph G[(V \ A) ∪ {a ij | 1 ≤ i, j ≤ k ′ }]. Furthermore, the only edges of E(H B) \ E(G)
are those a ij a ji , and we always have a ij , a ji ∈ V (H B) \ B ′ . Hence, the same as before, B ′ keeps the property of being a k-module in H B .

• Finally, let

B ′ ⊆ V \A be s.t. B ′ ∪A is a k-module of G. In particular, B ′ ∪{a ij | 1 ≤ i, j ≤ k ′ } ⊆ B ′ ∪A is a k-module of G[(V \ A) ∪ {a ij | 1 ≤ i, j ≤ k ′ }].
We already mentioned that the only edges of

E(H B) \ E(G) are those a ij a ji . Since we always have a ij , a ji ∈ B ′ ∪ {a ij | 1 ≤ i, j ≤ k ′ }, the subset B ′ ∪ {a ij | 1 ≤ i, j ≤ k ′ } keeps the property to be a k-module in H B .

Proofs of the main results

Proof of Theorem 4.1. We revisit the scheme of Theorem 3.2. That is, we fix some width-k partition tree (T, f), that takes O(k(n + m)) time by using Lemma 2.1. Furthermore, we pre-process the tree T in order to compute in O(1) time, for any two nodes a, a ′ ∈ V (T), their least common ancestor; it can be done in O(n) time [START_REF] Harel | Fast algorithms for finding nearest common ancestors[END_REF]. Finally, let w : V (T) → {0, 1} be s.t. w(a) = 1 if and only if a is a leaf. In what follows, we mimic the recursive construction of a w-centroid decomposition T (w) of T , as it was defined in the proof of Theorem 3.2. The algorithm. We consider a more general problem for which we are given some tuple ⟨r, H, U, T U , f U , L⟩. Let us detail each of the components of this input:

1. Here, H is a weighted graph with non-negative real vertex-weights and with non-negative real edgeweights (initially, H = G). Roughly, H is a supergraph of some induced subgraph of G which is augmented with additional vertices and weighted edges in order to preserve the distances in G.

2. The value r represents the recursion level of the algorithm (initially, r = 0), that is roughly the number of cuts of G traversed by the algorithm. Note that the order of the graphs H considered is decreasing exponentially with r (see the complexity analysis at the end of the proof).

The vertex-subset

U is such that U ⊆ V ∩ V (H) (initially, U = V).
We further impose to have

H[U] = G[U],
and that for every

u, v ∈ U we have d G (u, v) = d H (u, v).
In particular, all the edges of H[U] are unweighted. The objective of the algorithm is to compute, for every vertex of U , its maximum distance in G to a vertex of U , respectively the sum of all its distances in G to the vertices of U . For that, intuitively, we embed U in the vertex-and edge-weighted graph H.

The rooted tree (T

U , f U) is a width-k-partition tree of G[U] (initially, T U = T and f U = f).
We further assume that T U was constructed from a rooted subtree of T by repeatedly contracting internal nodes with only one child. Roughly, (T U , f U) is just a compression of (T, f) where we iteratively removed useless branches and contracted degree-one nodes so that the resulting tree stays of order linear in the size of the input subset U . In particular, all the ancestor-descendant relations in T U are also ancestor-descendant relations in T . Furthermore, for every node b ∈ V (T U) we impose

f U (b) = {X ∩ U | X ∈ f (b) and X ∩ U ̸ = ∅}.
Note that in lieu of (T U , f U), we are given the representation graph of this partition tree (as defined in Sec. 2). Throughout the algorithm, we use partition trees in order to compute edge-cuts, from which we recursively partition the vertex-set of G. Roughly, since we compute all these cuts indirectly from the same fixed partition tree (T, f) of G, we ensure that all these cuts are pairwise non-crossing (two cuts are crossing if any side of one cut intersects any side of the other cut). This non-crossing property allows us to reinterpret every cut of G considered as an unweighted balanced cut of some vertex-and edge-weighted graph H.

5.

Finally, H \ U is a disjoint union of r ′ ≤ r subgraphs of order O(k 2), that we shall name "clusters" in what follows. Roughly, each cluster is a substitution gadget for one side of some cut of G that was already considered at some earlier recursion level. To each cluster W i , we associate some node c i of the original tree T . Roughly, c i corresponds to some balanced cut, computed at an earlier recursive stage, and the cluster W i resulted from the procedure of Definition 4.1 applied to this cut. So, in particular, we impose that any edge between two vertices that are on different clusters (resp., between a vertex in a cluster and a vertex of U) must be unweighted. All the pairs (W i , c i) are stored in the list L (initially, L is the empty list).

The output of the algorithm is, for every u ∈ U , the values max v∈U d H (u, v) and v∈U d H (u, v).

For that, let n r := |V (H)| and m r := |E(H)|. We may assume that |U | ≥ λk 2 log n, for some sufficiently large constant λ. Indeed, if it not the case then we may compute by brute-force all the desired values. Our algorithm has at most O(log n) recursive stages, and therefore, in this case we have

n r = |U | + O(k 2 log n) = O(k 2 log n).
In particular, we can perform the brute-force computation in O(k 6 log 3 n) time (base case of the recursion).

Thus from now on, let us assume |U | = Ω(k 2 log n). We compute a w-centroid c in T U . This can be done in O(|V (T U)|) = O(n r) time. Since w(T U) = |U | > 3, this node c cannot be a leaf. Let a 1 , a 2 , . . . , a d be the children of c. As before, we denote by C (resp. A i) the subset of vertices of which f U (c) (resp., f U (a i)) is a partition, and by T U c (resp., T U ai) the subtree rooted at c (resp., at a i). Here, we stress that C ⊆ U (resp., A i ⊆ U). By using Lemma 3.4, we may partition T U \ {c} in two non-empty forests of respective weights ≤ 2|U |/3. Furthermore, we may assume one of our two forests to contain exactly T U a1 , T U a2 , . . . , T U ap for some p ≤ d. Then, let A = p j=1 A j (computable in O(|U |) = O(n r) time by traversal of T U). We compute the following cut of H:

• The subsets A and U \ A are on separate sides of the cut.

• For every (W j , c j) ∈ L, there are two cases. If there exists some index i s.t. the least common ancestor of c j and a i in T is a strict descendant of c (a child of c in T , or a descendant of one of these children), then we put W j on the same side of the cut as A. Otherwise, we put W j on the same side of the cut as U \ A.

Let us give some intuition for both cases above. Roughly, we mimic the computation of some cut of G which disconnects A from U \ A. Both sides of this cut correspond to some subtrees T 1 , T 2 of T . Note in particular that T 1 is the smallest subtree of T containing c and T a1 , T a2 , T ap . Similarly, each cluster of H is a substitution gadget for one side of some cut of G, already considered at an earlier recursion level, and as a result it can also be mapped to some subtree of T . We put a cluster on the same side as A (resp., as U \ A) if and only if its corresponding subtree in T is a subtree of T 1 (resp., of T 2). Note that, for each (W j , c j) ∈ L, we can decide in which case we are as follows. For every 1 ≤ i ≤ p, we compute the least common ancestor s i of c j and a i in T . Then, for every 1 ≤ i ≤ p, we compute the least common ancestor of s i and c in T . Given the pre-computed least-common ancestor data structure for T , this can be done in total O(p) time, and so in O(|U |) = O(n r) time per cluster. Overall, since we have T U ai , then we remove useless leaves and/or we repeatedly contract internal nodes with only one child. The corresponding partition function f A , resp. f B , is obtained from f U by removal in the partition at each node of all the vertices out of A, resp. by removal of all the vertices in A. Hence, being given the representation graph of (T U , f U), the representation graphs of (T A , f A) and (T B , f B) can be computed in O(k|U |) time. Let L A contain every (W j , c j) ∈ L s.t. W j ⊆ A ′ ; we also add in L A a new cluster (V (H A) \ A ′ , c). In the same way, let L B contain every (W j , c j) ∈ L s.t. W j ⊆ V (H) \ A ′ ; we also add in L B a new cluster (V (H B) \ B ′ , c), where B ′ = V (H) \ A ′ . We end up calling our algorithm recursively for the inputs ⟨r + 1,

|L| = r ′ = O(log n), we can compute this above cut in O(n r log n) time. Let (A ′ , V (H) \ A ′) be
H A , A, T A , f A , L A ⟩ and ⟨r + 1, H B , U \ A, T B , f B , L B ⟩.
Correctness. There are two properties to check in order to prove the validity of our approach. The first such property is that, being given the two gadget subgraphs H A and H B resulting from H, the distances in H (and so, in G) are preserved. This follows from Lemma 4.7. The second property to be checked is that we always compute a cut (A ′ , V (H) \ A ′) of neighbourhood diversity at most k. We prove it by induction on r. Specifically, we prove the following slightly stronger property.

Property 1. For every ⟨r, H, U, T U , f U , L⟩, let s 1 , s 2 , . . . , s q be children of some node s in T U . Let S i be the subset of U of which f U (s i) is a partition, and set S = q i=1 S i . Finally, let S ′ be the union of S with all subsets W j , for (W j , c j) ∈ L, s.t. the least common ancestor in T of c j and some node s i is a strict descendant of s. Then, S ′ is a k-module of H.

If r = 0, then since L = ∅ this directly follows from Lemma 2.2. Let us assume the property to be true for ⟨r, H, U, T U , f U , L⟩. In what follows, we analyse the cuts in H A and H B , respectively.

(Gadget subgraph H A). Let s 1 , s 2 , . . . , s q be children nodes of some s in T A . Observe that T A is a subtree of T U (equal to either T U c \ i>p T U ai , or T U a1 if p = 1). In particular, s 1 , s 2 , . . . , s q are also children nodes of s in T U . Let W r ′ +1 := V (H A) \ A ′ be the only cluster of L A that is not contained in L (constructed using the procedure of Definition 4.1 in order to create H A). We define S ′ 0 as the union of S with all the clusters W j , for (W j , c j) ∈ L, s.t. the least common ancestor in T of c j and some node s i is a strict descendant of s. By the induction hypothesis, S ′ 0 is a k-module of H. Claim 4.9. For every (W j , c j) ∈ L, we have W j ⊆ S ′ 0 =⇒ (W j , c j) ∈ L A . Proof. Since s is a node of T A it is a descendant of c. There are two cases, depending on whether s = c.

• If s ̸ = c (see Fig. 1), then s is a descendant of some a i , for 1 ≤ i ≤ p (possibly, s = a i). In this situation, c j is a strict descendant of s, and so of a i . • Otherwise, s = c (see Fig. 2). Then, the nodes s 1 , s 2 , . . . , s q must be a subset of the nodes a 1 , a 2 , . . . , a p . This implies that the least common ancestor of c j and some a i is a strict descendant of s = c. Therefore, in both cases, there exists an i s.t. c j and a i have a least common ancestor in T which is a strict descendant of c. ⋄ Then, by Claim 4.9, S ′ 0 ⊆ A ′ . By Lemma 4.8, S ′ 0 is a k-module of H A . Finally, since (W r ′ +1 , c) ∈ L A and all nodes of T A are descendants of c, we get W r ′ +1 ̸ ⊆ S ′ , and so, S ′ = S ′ 0 . (Gadget subgraph H B). Let s 1 , s 2 , . . . , s q be children nodes of some s in T B . By construction, in T U , the node s is a common ancestor of all the nodes s 1 , s 2 , . . . , s q (it may not be their father node since we possibly contracted internal nodes in order to create T B). Let W r ′ +1 := V (H B) \ B ′ be the only cluster of L B that is not contained in L (constructed using the procedure of Definition 4.1 in order to create H B). In our analysis below, we will often use the following observation: when creating T B from T U \ p i=1 T U ai only two nodes may be removed, namely, c (if it has at most one child left) or its father node in T U (if c becomes a leaf and it has exactly one sibling in T U). There are now two cases to be considered.

s = c a i = s i c j
• We first assume that, for every 1 ≤ i ≤ q, the least common ancestor of c and s i is an ancestor of s (possibly, s itself). In particular, f B (s i) = f U (s i).

Claim 4.10. s 1 , s 2 , . . . , s q are also children nodes of s in T U . Proof. Suppose for the sake of contradiction that s is not the father of s i , for some 1 ≤ i ≤ q. In particular, the original father node of s i , let us call it t i , got removed when we created T B (see Fig. 3 for an illustration). But then, t i should be either c, or the father node of c in T U . As a result, s i and c would have a least common ancestor in T which is a strict descendant of s, a contradiction. ⋄

s t i = c s i s t i s i c
The remainder of the proof is now essentially the same as what we did above for the gadget subgraph H A . Specifically, let S ′ 0 be the union of S with all the clusters W j , for (W j , c j) ∈ L, s.t. the least common ancestor in T of c j and some node s i is a strict descendant of s. By the induction hypothesis, S ′ 0 is a k-module of H. Furthermore, the following result (similar to Claim 4.9) is true:

Claim 4.11. If (W j , c j) ∈ L is s.t. W j ⊆ S ′ 0 , then (W j , c j) ∈ L B .
Proof. Suppose for the sake of contradiction (W j , c j) ∈ L A . In particular, for some 1 ≤ i ′ ≤ p, c j and a i ′ have a common ancestor in T which is a strict descendant of c. There also exists an 1 ≤ i ≤ q s.t. c j and s i have a common ancestor which is a strict descendant of s. Since both s and c are ancestors of c j , one of these two nodes is an ancestor of the other. But s cannot be a strict ancestor of c (otherwise, the least common ancestor of s i and c would be a strict descendant of s). Therefore, c is an ancestor of s. Then, we consider two sub-cases. -First, let us assume s = c (see Fig. 4). Observe that s i ̸ = a i ′ (otherwise, s i / ∈ V (T B)). Then, by Claim 4.10, s i and a i ′ are sibling nodes in T U . Recall that the least common ancestor of c j and s i in T , resp. of c j and a i ′ in T , must be a strict descendant of s = c. As a result, the least common ancestor of s i and a i ′ in T , call it t i , must be also a strict descendant of c in T . This implies that t i got removed at some earlier recursive stage. But this is impossible, because at the stage when t i got removed, this node still had at least two children (being ancestors of s i and a i ′ , respectively). A contradiction. -From now on, we assume s ̸ = c (see Fig. 5). We further observe that a i ′ cannot be a descendant of s (i.e., because s ∈ V (T U) and a i ′ is a child of c in T U). Therefore, the least common ancestor of a i ′ and c j should be on the sc-path in T . In fact, this least common ancestor must be a i ′ itself (otherwise, the least common ancestor of s and a i ′ would be a strict descendant of c, that still exists in T U because it has at least two children, thus contradicting again that a i ′ is a child of c in T U). In particular, since a i ′ is onto the sc-path in T , s ∈ T U a i ′ . But then, it contradicts our assumption that s ∈ T B . Summarizing, in both sub-cases we derive a contradiction. ⋄ By the above Claim 4.11, S ′ 0 ⊆ V (H)\A ′ . Hence, by Lemma 4.8,

s = c a i ′ s i t i c j s = c a i ′ s i t i c j s = c a i ′ s i t i c j
S ′ 0 is also a k-module of H B . Observe that S ′ 0 ⊆ S ′ ⊆ S ′ 0 ∪ W r ′ +1 .
Finally, since we have (W r ′ +1 , c) ∈ L B and by the hypothesis, no s i has a least common ancestor with c which is a strict descendant of s, we cannot have W r ′ +1 ⊆ S ′ . As a result, S ′ = S ′ 0 . • Otherwise, let us assume w.l.o.g. that the least common ancestor of c and s 1 in T is a strict descendant of s. Let us call it t 1 .

Claim 4.12. t 1 is a child of s in T U .

Proof. There are two sub-cases (see Fig. 6). First, let us assume s 1 = t 1 . If s 1 is not a child of s in T U then its former father node, call it s ′ 1 , got removed when we created T B . Then, either s ′ 1 = c, or s ′ 1 is the father of c in T U . In both cases, this contradicts our assumption that s 1 is an ancestor of c in T . Thus, from now on, let us assume t 1 ̸ = s 1 . Since the father of s 1 in T B is s, t 1 got removed at some earlier recursive stage. In fact, this must be when we created T B because we have s 1 , c ∈ V (T U) (otherwise, if it were done earlier, we could have not removed t 1 since it still had at least two children). Then again, either t 1 = c, or t 1 is the father of c in T U . Suppose for the sake of contradiction that s is not the father of t 1 in T U . Then, at least two nodes got removed from T U c \ p i=1 T U ai in order to create T B . This can happen only if c became a leaf, and then the two nodes removed must be c and its father in T U . But then, we should have t 1 = c, that contradicts the fact that c became a leaf.

⋄ s s ′ 1 = c s 1 = t 1 s s ′ 1 s 1 = t 1 c s t 1 s 1 c
Figure 6: The different sub-cases in the proof of Claim 4.12.

We can also prove, as another intermediate claim (similar to the above Claim 4.12), that every node s i , i > 1, is a child of s in T U . Indeed, if it were not the case for some s i then its father node t i in T U got removed when we created T B . We either have t i = c or t i is the father of c in T U . In particular, t 1 is an ancestor of t i because it is also an ancestor of c and (by Claim 4.12) a child of s in T U (recall that s i , and so, t i is a descendant of s). However, since s 1 , s i ∈ V (T B), this would contradict the removal of t 1 from T B . Overall, we proved as claimed that t 1 and s 2 , s 3 , . . . , s q are children of s in T U . In particular, f U (t 1) = A ∪ S 1 , while for every 2 ≤ i ≤ q, f U (s i) = f B (s i) = S i . Let S ′ 0 be the union of A ∪ S with all the clusters W j , for (W j , c j) ∈ L, s.t. the least common ancestor in T of c j and some node s i is a strict descendant of s. Note that the least common ancestor of c j and s 1 is a strict descendant of s if and only if the least common ancestor of t 1 and c j also is. Therefore, by the induction hypothesis, S ′ 0 is a k-module of H. Furthermore, Claim 4.13. Every (W j , c j) ∈ L ∩ L A satisfies W j ⊆ S ′ 0 .

Proof. We refer to Fig. 7 for an illustration. If (W j , c j) ∈ L ∩ L A , then there is an 1 ≤ i ′ ≤ p s.t. the least common ancestor of c j and a i ′ is a strict descendant of c. In particular, the least common ancestor of s 1 and c j is a strict descendant of s. ⋄

We get by Claim 4.13 that Complexity analysis. By induction, for every r ≥ 0, for every ⟨r, H, U, T U , f U , L⟩, we have |U | ≤ (2/3) r n. In particular, the depth of the recursion tree is O(log n) (as it was anticipated when we presented above the algorithm). Furthermore, for any fixed r, if we consider the sets U of all the inputs ⟨r, H, U, T U , f U , L⟩, then we get a (possibly partial) partition of V . In particular, the sum of all the values n r = |V (H)|, over all the inputs ⟨r, H, U, T U , f U , L⟩ that are at the same recursion level r, is at most n + n × O(rk 2) = O(k 2 n log n). In the same way, the sum of all the values m r = |E(H)|, over all the inputs ⟨r, H, U, T U , f U , L⟩ that are at the same recursion level r, is at most m

A ′ ⊆ S ′ 0 . Let B ′ = S ′ 0 \ A ′ . Since A ′ ∪ B ′ is a k-module of H, by Lemma 4.8, W r ′ +1 ∪ B ′ is a k-module of H B . Finally, we observe that S ′ = W r ′ +1 ∪ B ′ . s t 1 s 1 c a i ′ c j
+ n × O(k 2 r) = O(k 2 n log n + m).
Processing ⟨r, H, U, T U , f U , L⟩ takes O(2 O(k) (n r + m r) 1+ϵ) time for any ϵ > 0 if we exclude the recursive calls. Therefore, the total running time at any fixed recursive stage, and so also for the whole algorithm, is in O(2 O(k) (n + m) 1+ϵ) for any ϵ > 0.

Facility location problems on bounded clique-width graphs

In this section we consider unweighted graphs, where the distance between two vertices u and v is classically defined as the minimum number of edges on a uv-path. Our last result in the paper is as follows:

Theorem 5.1. For every connected n-vertex m-edge graph G = (V, E), if cw(G) ≤ k and a k-expression is given, then for any ϵ > 0, we can compute in O(2 O(k) (n + m) 1+ϵ) time: all the p-eccentricities and all the total p-distances, for every cost function p : V → N.

Despite its apparent similarity with Theorem 4.1, Theorem 5.1 has some special features. To see why, let us assume that two vertices u, v are disconnected by a join with respective sides X, Y . Then, d(u, v) = d(u, X) + 1 + d(Y, v),2 and therefore for any fixed u, in order to maximize d(u, v) it suffices to find such a v maximizing d(v, Y). However, this is no more true if we have a cost function p; indeed, we now want to maximize p(v) • (d(u, X) + 1) + p(v)d(v, Y).

For that, we first prove that:

Lemma 5.2. Let F be a set of n linear functions f i : t → a i • t + b i , where a i , b i ≥ 0. Then after an O(n log n)-time pre-processing, for any x ≥ 0 we can compute max 1≤i≤n {a i • x + b i } in O(log n) time.

Proof. Let f i , f j satisfy a i ≤ a j and b i ≤ b j . Since we have f i (t) ≤ f j (t) for every t ≥ 0, we can safely discard f i from F . In particular, we may assume all coefficients a i (resp., b i) to be pairwise different. To perform all such removals in total O(n log n) time, let F = (f 1 , f 2 , . . . , f n) be lexicographically ordered by non-decreasing values of (a i , b i). Doing so, we can remove all duplicates. Then, we consider the functions f i in order and we put them in some min-heap with as for key the value b i . At any step j, the functions f i that are already in the min-heap are those for which either a i < a j or a i = a j and b i < b j . In order to detect and remove all such functions for which we have b i ≤ b j , it suffices (since they all satisfy a i ≤ a j) to repeatedly looking at the minimum-key element into the heap. Define t 1 = 0 and, for every i > 1, t i = bi-1-bi ai-ai-1 . Note that for i > 1, we have f i-1 (t) > f i (t) for every 0 ≤ t < t i while we have f i-1 (t) ≤ f i (t) for every t ≥ t i . In particular, if t i ≥ t i+1 then, we claim that we can safely discard f i from F . Indeed, for 0 ≤ t < t i we have f i-1 (t) > f i (t) while for every t ≥ t i ≥ t i+1 we have f i+1 (t) ≥ f i (t). Consider the following algorithm. All functions of F are put in a doubly-linked list, where they are kept ordered by increasing values of a i . We start from the head of the list and we proceed as follows until we reach the bottom of it. Let f i be the function considered at a given step of the algorithm (initially, f i = f 1 is the function minimizing a 1 or, equivalently, the one maximizing b 1). If f i is the current head of the list, then we go to its successor function f i+1 in the list. Otherwise, let f i-1 be its predecessor function into the list. If t i > t i-1 , then we also go to f i+1 . Otherwise, we discard f i-1 , and we still consider f i at the next step. In this latter case, note that we need to reset t i := bi-2-bi ai-ai-2 , where f i-2 is the new predecessor function of f i into the list (formerly, the predecessor function of f i-1). This algorithm is correct by our previous claim and it runs in O(n) time. Therefore, from now on we may assume to have t 1 = 0 < t 2 < . . . < t n .

Finally, let x ≥ 0 be arbitrary. Let i be the largest index such that x ≥ t i (computed in O(log n) time by binary search). We claim to have a i • x + b i = max j {a j • x + b j }. Indeed, suppose by contradiction there exists a j s.t. a j • x + b j > a i • x + b i . If j < i then, assume j to be maximum with this property. Since we have t j+1 ≤ x, we obtain f j+1 (x) ≥ f j (x), that contradicts either the maximality of j or that a j • x + b j > a i • x + b i . Otherwise, j > i and we assume this index to be minimized. Since we have x < t j , we obtain f j-1 (x) > f j (x), thus contradicting either the minimality of j or that a j • x + b j > a i • x + b i .

We combine this lemma with some insights of Cabello about range trees [START_REF] Cabello | Computing the inverse geodesic length in planar graphs and graphs of bounded treewidth[END_REF]: only if the least index j s.t. d G (u, v) = d G (u, A j) + 1 + d G (B j , v) is equal to i. Specifically, we design boxes R 1 , R 2 , . . . , R k ′ so that p(v, j) ∈ R i ⇐⇒ j = i and v ∈ C i . Note that if we can do so, then:

max v∈B ′ p(v)d G (u, v) = max 1≤i≤k ′ max v∈Ci p(v)d G (u, v) = max 1≤i≤k ′ max{p(v) • (d G (u, A i) + 1) + p(v)d G (B i , v) | v ∈ C i } = max 1≤i≤k ′ max{a(- → p (v, j)) • (d G (u, A i) + 1) + b(- → p (v, j)) | - → p (v, j) ∈ R i }.
In particular, we are left applying Corollary 5.4 for k ′ range queries. In the same way:

v∈B ′ p(v)d G (u, v) = k ′ i=1 v∈Ci p(v)d G (u, v) = k ′ i=1 v∈Ci (p(v)(d G (u, A i) + 1) + p(v)d G (B i , v)) = k ′ i=1 (d G (u, A i) + 1) • v∈Ci p(v) + v∈Ci p(v)d G (B i , v) = k ′ i=1 (d G (u, A i) + 1) • {g 1 (- → p (v, j)) | - → p (v, j) ∈ R i } + {g 2 (- → p (v, j)) | - → p (v, j) ∈ R i } .
In particular, we are left doing k ′ sum range queries, but on two separate range trees. Hence, being given R 1 , R 2 , . . . , R k ′ , we are done in O(2 O(k) n ϵ) time for any ϵ > 0 by Lemma 4.4.

For every 1 ≤ i ≤ k ′ , the box R i is defined as follows. Let -→ p = (p 1 , p 2 , . . . , p k ′) be a k ′ -dimensional point of P . We have -→ p ∈ R i if and only if:

     p 1 = i ∀1 ≤ j ≤ i -1, p j+1 < (d G (u, A j) -d G (u, A i)) ∀i + 1 ≤ j ≤ k ′ , p j ≤ (d G (u, A j) -d G (u, A i)) .
Indeed, we have:

d G (u, A i) + 1 + d G (B i , v) ≤ d G (u, A j) + 1 + d G (B j , v) if and only if d G (u, A i) + d G (B i , v) ≤ d G (u, A j) + d G (B j , v), if and only if d G (B i , v) -d G (B j , v) ≤ (d G (u, A j) -d G (u, A i))
. Furthermore, by construction, if j < i then d G (B i , v) -d G (B j , v) is exactly the (j + 1) th coordinate of -→ p (v, i) (in which case we want the inequality to be strict by the definition of C i), and if j > i then d G (B i , v) -d G (B j , v) is exactly the j th coordinate of this point. For the vertices v ∈ B ′ , we proceed similarly as above, that is, we create a point-set P ′ from A ′ and we put them in some separate k ′ -dimensional range trees.

Theorem 5.1 now follows from the exact same proof as for Theorem 4.1, but where we use Lemma 5.5 rather than Lemma 4.5.

Open problems

We would find it interesting to extend our framework to other centrality indices, such as the computation of betweenness centrality [START_REF] Freeman | A set of measures of centrality based on betweenness[END_REF]. To our best knowledge, this problem is open also for bounded treewidth graphs.

Shrub-depth is a well-studied "low-depth" variation of clique-width [START_REF] Gajarskỳ | Parameterized algorithms for modular-width[END_REF]. We observe that its algorithmic applications to polynomial-time solvable problems have yet to be explored. In particular, given a (d, m)-tree model for a graph G = (V, E), can we compute its diameter diam(G) in O(poly(d, m) • (|V | + |E|) 2-ϵ) time, for some ϵ > 0?

 and so it has a bit size in O(k log n log (W n)) (resp, in O(k log 2 n) if the graph is unweighted). Furthermore, as G[A] and G[V \ A] are disjoint, every recursive stage of the procedure takes O(k(n + m) log n) time (resp., O(k(n + m)) time). Hence, the total pre-processing time in order to compute C

Corollary 3 . 5 .

 35 For every n-vertex vertex-weighted graph G = (V, E, w), if cw(G) ≤ k and a k-expression is given, then we can solve All-Pairs Shortest-Paths for

Corollary 4 . 2 .

 42 For every connected n-vertex m-edge vertex-weighted graph G = (V, E, w), if cw(G) ≤ k and a k-expression is given, then we can compute the diameter, radius, center, Wiener index and median set of G in O(2 O(k) (n + m) 1+ϵ) time, for any ϵ > 0.

 this cut, where A ⊆ A ′ . By construction, it is unweighted. We prove below (see the Correctness part of the proof) that A ′ is a k-module of H. Then, we apply Lemma 4.5 in order to compute, for every u ∈ A, the values max v∈U \A d H (u, v) and v∈U \A d H (u, v) (resp., for every v ∈ U \ A, the values max u∈A d H (v, u) and u∈A d H (v, u)). It takes O(2 O(k) (n r + m r) 1+ϵ) time for any ϵ > 0.We are left computing for every u ∈ A, the values maxu ′ ∈A d H (u, u ′) and u ′ ∈A d H (u, u ′) (resp., for every v ∈ U \ A, the values max v ′ ∈U \A d H (v, v ′) and v ′ ∈U \A d H (v, v ′)).For that, we construct the gadget subgraphs H A and H B , as in Definition 4.1. By Lemma 4.6, it can be done in Õ(k 2 n r + km r) time. Let (T A , f A) and (T B , f B) be width-k partition trees of G[A] and G[U]\A. Recall (see the proof of Theorem 3.2) that the trees T A and T B can be computed in O(|U |) time from T U as follows: we start with T U c \ i>p T U ai and T U \ p i=1

Figure 1 :

 1 Figure 1: To the proof of Claim 4.9. Case s ̸ = c.

Figure 2 :

 2 Figure 2: To the proof of Claim 4.9. Case s = c.

Figure 3 :

 3 Figure 3: The two cases of Claim 4.10.

Figure 4 :

 4 Figure 4: To the proof of Claim 4.11. Case s = c.

Figure 5 :

 5 Figure 5: To the proof of Claim 4.11. Case s ̸ = c.

Figure 7 :

 7 Figure 7: To the proof of Claim 4.13.

In all fairness, the labeling scheme of Courcelle and Vanicat can be applied to many more problems than just the computation of the distances in the graph.

This is a slightly different formula than in Lemma

3.3, which is for vertex-weighted graphs.

* This work was supported by project PN-19-37-04-01 "New solutions for complex problems in current ICT research fields based on modelling and optimization", funded by the Romanian Core Program of the Ministry of Research and Innovation (It was also supported by Grant TC ICUB-SSE 15109-26.07.2021, "The complexity landscape of Maximum Matching". Results of this paper were partially presented at the IPEC'21 conference [27].

 Lemma 5.3 ([12]). Given a set P of n points in R d , there is a family of sets P = {P i | i ∈ I} and a data structure with the following properties for any ϵ > 0:

• P i ⊂ P for each P i ∈ P;

• all the sets of P together have O(2 O(d) n 1+ϵ) points, counting with multiplicity; that is,

• the family P and the data structure can be computed in O(2 Proof. We construct the family P and the data structure of Lemma 5.3, then we apply Lemma 5.2 to each set P i ∈ P.

We propose a new version of Lemma 4.5 where, roughly, we use Corollary 5.4 instead of Lemma 4.4.

Lemma 5.5. Let G = (V, E, α) be a connected n-vertex m-edge graph, where α : E → N, and let p ≥ 0 be some vertex-weight function. Let also (A, V \ A) be an unweighted cut of neighbourhood diversity at most k, and let

Note that since the subsets A i are pairwise disjoint, we can compute B 1 , B 2 , . . . , B k in total O(m) time. Observe that there is at most one index i s.t. B i = ∅ (otherwise, we can merge all groups A j s.t. B j = ∅ into one, thus contradicting the minimality of the partition of A). W.l.o.g., if such index exists then it must be i = k. We want to exclude this index, if it exists, in order to avoid handling with arithmetic over infinite values. So, let k

In the same way, for every 1

time in total if we use the single-source shortest-path algorithm of Thorup [START_REF] Thorup | Undirected single-source shortest paths with positive integer weights in linear time[END_REF]. Then, for every v ∈ B ′ and for every 1

We add all points in P into three different k ′ -dimensional range trees, namely: we set a(-

) and then we apply Corollary 5.4; we set