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Abstract

Given an n-vertex m-edge graph G of clique-width at most k, and a corresponding k-expression, we
present algorithms for computing some well-known centrality indices (eccentricity and closeness) that run
in O(2O(k)(n+m)1+ϵ) time for any ϵ > 0. Doing so, we can solve various distance problems within the
same amount of time, including: the diameter, the center, the Wiener index and the median set. Our run-
times match conditional lower bounds of Coudert et al. (SODA’18) under the Strong Exponential-Time
Hypothesis. On our way, we get a distance-labeling scheme for n-vertex m-edge graphs of clique-width at
most k, using O(k log2 n) bits per vertex and constructible in Õ(k(n+m)) time from a given k-expression.
Doing so, we match the label size obtained by Courcelle and Vanicat (DAM 2016), while we considerably
improve the dependency on k in their scheme. As a corollary, we get an Õ(kn2)-time algorithm for
computing All-Pairs Shortest-Paths on n-vertex graphs of clique-width at most k, being given a k-
expression. This partially answers an open question of Kratsch and Nelles (STACS’20). Our algorithms
work for graphs with non-negative vertex-weights, under two different types of distances studied in the
literature. For that, we introduce a new type of orthogonal range query as a side contribution of this
work, that might be of independent interest.

∗This work was supported by project PN-19-37-04-01 “New solutions for complex problems in current ICT research fields
based on modelling and optimization”, funded by the Romanian Core Program of the Ministry of Research and Innovation
(MCI) 2019-2022. It was also supported by Grant TC ICUB-SSE 15109-26.07.2021, “The complexity landscape of Maximum
Matching”. Results of this paper were partially presented at the IPEC’21 conference [27].
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1 Introduction

For any undefined graph terminology, see [2, 25]. Unless stated otherwise, all graphs considered in this
work are simple and connected. We here consider clique-width, which is one of the most studied parameters
in Graph Theory, superseded only by treewidth. Roughly, clique-width is a measure of the closeness of
a graph to a cograph (a.k.a., P4-free graph). We postpone its formal definition until Sec. 2. The clique-
width was shown to be bounded on many important subclasses of perfect graphs [4, 5, 22, 44, 53], and
beyond [9, 6, 10, 7, 8, 23, 54, 58, 60]. For instance, distance-hereditary graphs, and so, trees, have clique-width
at most three [44]. Every graph of bounded treewidth also has bounded clique-width, but the converse is not
true [15]. Indeed, unlike for treewidth, there are dense graphs of bounded clique-width (e.g., the complete
graphs). This generality comes at some cost: whereas the celebrated Courcelle’s theorem asserts that any
problem expressible in MSO2 logic can be solved in FPT linear time on bounded treewidth graphs [17], the
same is true for bounded clique-width graphs only for the problems expressible in the more restricted MSO1

logic [19]. Fomin et al. showed this to be unavoidable, in the sense that there are problems expressible
in MSO2 logic that are W [1]-hard in the clique-width [33, 34, 35]. We refer to [30] for other algorithmic
applications of clique-width in parameterized complexity.

Our focus is about the so-called “FPT in P” program. Here the goal is, for some problem solvable
in O(mq+o(1)) time on arbitrary m-edge graphs, to design an O(f(k)mp+o(1))-time algorithm, for some
p < q, within the class of graphs where some fixed parameter is at most k (one usually seeks for p = 1
and f(k) = kO(1)). The idea of using tools and methods from parameterized complexity in order to solve
faster certain polynomial-time solvable problems has been here and there in the literature for a while (e.g.,
see [47]). Nevertheless it was only recently that such idea was better formalized [42], in part motivated by
some surprising results obtained for treewidth [1]. Indeed, on the positive side, the treewidth does help in
solving faster many important problems in P, that is, in Õ(kO(1)n) time on graphs and matrices of treewidth
at most k [36, 49]. But for other such problems, any truly subquadratic-time parameterized algorithm
requires exponential dependency on the treewidth. For example, given a graph G with a non-negative weight
function on its edge-set (resp., on its vertex-set), the weight of a path equals the sum of the weights of all
its edges (resp., of all its vertices). For unweighted graphs, this is exactly the number of edges (resp, the
number of edges plus one). The distance dG(u, v) between two vertices u and v is equal to the least weight of
a uv-path. Finally, the diameter of G is defined as diam(G) = maxu,v∈V (G) dG(u, v). Abboud et al. proved

that under the Strong Exponential-Time Hypothesis (SETH), for any ϵ > 0, there is no O(2o(k)n2−ϵ)-time
algorithm for computing the diameter of n-vertex unweighted graphs of treewidth at most k [1]. An algorithm
for this problem on weighted graphs, running in O(2O(k)n1+ϵ) time for any ϵ > 0, was proved recently in [11]
by using the orthogonal range query framework of Cabello and Knauer [13].

Insofar, clique-width has received less attention than treewidth in the nascent field of FPT in P. Perhaps
one good reason for that is that, for most problems on edge-weighted graphs, clique-width provably does not
help [51]. This is because we may regard any graph as a weighted clique, where each non-edge got replaced
by an edge of sufficiently large weight. Note however that most conditional lower bounds in the literature
hold even for unweighted graphs (this is the case for the diameter and the other distance problems that we
here study). Furthermore, in a recent paper Kratsch and Nelles [52] have evidenced that some applications
of clique-width to unweighted graphs could be extended to vertex-weighted graphs. We give further evidence
for that in our work. One other well-known drawback of clique-width is that, unlike for treewidth, the
parameterized complexity of computing it is a wide open problem [14]. Until very recently, the best-known
approximation algorithms for clique-width were running in O(n3)-time [55]. However, this has now been
improved to O(n2) for constant clique-width graphs [32]. Furthermore, on many subclasses of bounded
clique-width graphs, there exist linear-time algorithms in order to compute a so called “k-expression”, for
some k = O(1), with the latter certifying the clique-width of the graph to be at most k [44, 54]. Therefore,
the study of graph problems in P parameterized by clique-width may be regarded as a unifying framework
for all such subclasses. In this respect, Coudert et al. obtained Õ(kO(1)(n+m))-time algorithms for triangle
and cycle problems on n-vertex m-edge graphs of clique-width at most k [16]. However, they also observed
that assuming SETH, even on n-vertex cubic graphs of clique-width at most k, for any ϵ > 0, there is
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no O(2o(k)n2−ϵ)-time algorithm for computing the diameter. Unlike for treewidth, it was open until this
paper whether there does exist a parameterized quasi-linear-time algorithm for this problem on bounded
clique-width graphs that matches their conditional lower bound. Indeed, we are only aware of a linear-time
algorithm for computing the diameter of bounded clique-width graphs in [20], but with a super-exponential
dependency on the clique-width in the runtime, due to the use of Courcelle’s theorem. The work of Coudert et
al. has also been continued in [29, 28, 51] and especially in [52], where the authors obtained an O((kn)2)-time
algorithm for All-Pairs Shortest Paths (APSP) on n-vertex graphs of clique-width at most k.

Results. We provide new insights on the fine-grained complexity of polynomial-time solvable distance
problems within bounded clique-width graphs. As in all previous works in this area, all our algorithmic
results require a k-expression to be given in the input. Specifically, let G = (V,E,w) be such that |V | = n,
|E| = m, and w : V → N is a vertex-weight function. The eccentricity of a vertex u, denoted eG(u), is
its largest distance to any other vertex; its inverse is sometimes called the graph centrality of u [46]. The
closeness centrality of u, denoted CG(u), equals 1/

∑
v dG(u, v) [57]. For a discussion about these centrality

measures, and others, and their role in social network analysis, we refer to [24]. Our main contribution is
an algorithm for computing all eccentricities, and closeness centralities within the n-vertex m-edge graphs
of clique-width at most k, being given a k-expression, that runs in O(2O(k)(n +m)1+ϵ) time for any ϵ > 0
(Theorem 4.1).

We point out that the diameter of a graph is its largest eccentricity. The radius of a graph is its least
eccentricity, and its center is the set of all vertices whose eccentricity equals the radius. Therefore, our result
for computing all eccentricities implies, for any ϵ > 0, an O(2O(k)(n+m)1+ϵ)-time algorithm for computing
the diameter, the radius, and the center of a graph of clique-width at most k, if a k-expression is given. To
the best of our knowledge, it is the first algorithm to match the conditional lower bound of Coudert et al.
Previously, the only known algorithms for these problems were applications of Courcelle’s theorem [19]. The
Wiener index W (G) of a graph G is the sum of all its distances, while its median set contains all the vertices
of maximal closeness centrality. In the same way, our result for computing the closeness centrality implies,
for any ϵ > 0, an O(2O(k)(n+m)1+ϵ)-time algorithm for computing both the Wiener index and the median
set of a graph of clique-width at most k, if a k-expression is given. Our runtimes are also optimal under
SETH for the Wiener index, and so, for the closeness centrality (the conditional lower bound is the same as
for the diameter problem, see the discussion in Sec. 4).

Recall that our results hold for vertex-weighted graphs. A related problem, studied in location theory,
is given an unweighted graph G = (V,E) and a cost function p : V → N, to compute for every vertex u its
p-eccentricity (resp., its total p-distance sum), defined as ep(u) := maxv p(v)dG(u, v) (resp., as TDp(u) :=∑

v p(v)dG(u, v)). Note that the total distance for unweighted graphs is nothing but the inverse of closeness
centrality. Our approach can also be applied to that case (Theorem 5.1).

Finally, as a byproduct of our techniques, we obtain a new distance labeling scheme for bounded clique-
width graph classes which outperforms the state of the art [20]1. See our Theorem 3.2 for details. In doing so,
we get an Õ(kn2)-time algorithm in order to solve All-Pairs Shortest-Paths within n-vertex vertex-weighted
graphs of clique-width at most k (Corollary 3.5). This improves on the previously best-known O((kn)2)-time
algorithm, and it almost completely solves an open problem from Kratsch and Nelles [52] who asked whether
there exists an O(kn2)-time algorithm for this problem.

Overview of our techniques. Roughly, the standard approach for bounded clique-width graphs is to
process a k-expression sequentially. It is possible to transform a k-expression into a so called partition tree, a
purely combinatorial object that has been used in [18] in order to derive a new characterization of the clique-
width. – We formally define clique-width and partition trees in Sec. 2. – Doing so, it becomes easier and more
transparent to apply standard algorithmic approaches, for trees, to the k-expressions. In particular, it is
known that every bounded clique-width graph has a balanced edge-cut of bounded neighbourhood diversity
(i.e., whose edges can be partitioned in a bounded number of complete bipartite graphs) [3, 26]. As a side
contribution of this work, we show how to compute such balanced cuts in parameterized linear time in the

1In all fairness, the labeling scheme of Courcelle and Vanicat can be applied to many more problems than just the computation
of the distances in the graph.
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clique-width from a given partition tree. – Note that the original runtime from [3] is unknown to us as we
were unable to find this reference. – This procedure of recursively finding such an edge-cut produces a special
type of centroid decomposition of a partition tree, with algorithmic applications to several distance problems
on bounded clique-width graphs. While such a divide-and-conquer approach can hardly be considered as
‘new’, its usefulness in the fine-grained complexity study of polynomial-time solvable problems on bounded
clique-width graphs has remained to be demonstrated until our work. We expect several other results to be
found with this approach, in a similar way to what has been done for bounded treewidth graphs in [49].

The distance-labeling scheme of Theorem 3.2 follows almost directly from our centroid decomposition of
a partition tree, that is why we chose to present it first in the paper. In order to compute the centrality
indices, we combine this centroid decomposition with two other tools. One is the range query framework
of Cabello and Knauer [13] that we use to compute some distance information (depending on the centrality
index) between the vertices that are on different sides of an edge-cut of small neighbourhood diversity. To
our best knowledge, our work is the first (but admittedly, simple) application of this framework to edge-cuts.
We also augment this framework with a new type of orthogonal range query, with applications to the fast
computation of all p-eccentricities and total p-distances, see Sec. 5. Our second tool is inspired from prior
works on bounded treewidth graphs [1, 11] and Cunningham’s split decomposition [21]. Specifically, we design
some edge-weighted gadgets in order to preserve the distances of the original graph in the two subgraphs
resulting from the removal of an edge-cut of bounded neighbourhood diversity. Adding weighted edges is
problematic because the diameter problem cannot even be solved in truly subquadratic time within edge-
weighted graphs of bounded clique-width. To address this issue, we restrict our addition of weighted edges
to ensure that when we further partition the graph via more edge-cuts, the weighted edges are not included
in these edge-cuts. To do this, we partition the vertices of our gadgets into at most O(log n) clusters of only
O(k2) vertices each, so that weighted edges are only added between pairs of vertices in the same cluster.
Then, we ensure that no cluster is ever separated by an edge-cut computed from the partition tree. Doing
so, we are still able to ensure that we can find unweighted edge-cuts that satisfy the requirement of being
both balanced and of small neighborhood diversity. We stress that to prove correctness of our construction,
we had to carefully analyze the structure of a partition tree, which is arguably the most technical part of
our analysis. While it is tempting to make our gadgets vertex-weighted (e.g., by properly subdividing the
weighted edges), we did not find a satisfying way to do that without increasing the neighbourhood diversity
of some of the cuts.

Notations. Throughout the remainder of the paper, we shall write G = (V,E) for an unweighted graph,
and G = (V,E,w) for a vertex-weighted graph, where w : V → N. The neighbour set of a vertex v ∈ V , resp.
of a subset S ⊆ V , is defined as NG(v) = {u ∈ V | uv ∈ E}, resp. as NG(S) =

⋃
v∈S NG(v)\S. We may also

define the distance between a vertex v ∈ V and a subset S ⊆ V as dG(v, S) = dG(S, v) = minu∈S dG(u, v),
and the distance between two subsets S, S′ as dG(S, S

′) = minu∈S,v∈S′ dG(u, v). Note that if S = ∅ then,
dG(v, S) = dG(S, S

′) = +∞ for any v and S′. Recall that for every fixed vertex s, we can compute in
O((n +m) log n) time all the distances dG(s, v), for v ∈ V , using Dijkstra algorithm. It is folklore that for
every fixed subset S, we can adapt Dijkstra algorithm in order to compute in O((n+m) log n) time all the
distances dG(S, v), for v ∈ V (that consists, roughly, in replacing S by a single new vertex s). Throughout
the paper, we call it a modified Dijkstra algorithm. We shall introduce additional terminology wherever
needed in the paper.

Results of this paper were partially presented at the IPEC’21 conference [27].

2 Clique-width and partition trees

First, we recall two equivalent definitions of clique-width [18]. The following definitions can be extended to
weighted graphs simply by ignoring all the weights.

Clique-width expressions. A k-labeled graph is a triple G = (V,E, ℓ) where ℓ : V → {1, 2, . . . , k} is
called a labeling function. A clique-width k-expression (for short, a k-expression) is an algebraic expression
where the four allowed operations are: i(v): we add a new isolated vertex with label ℓ(v) = i; G1 ⊕ G2:
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we make the disjoint union of two k-labeled graphs; η(i, j): we add a join (complete bipartite subgraph)
between all vertices with label i and all vertices with label j; ρ(i, j): for all vertices v s.t. ℓ(v) = i, we set
ℓ(v) = j. The generated graph is the one obtained from the k-expression by deleting all the labels. We say
that a graph G = (V,E) has clique-width at most k if it is the graph generated by some k-expression. For
instance, 1(a)2(b)η(1, 2)ρ(1, 3)1(c)η(1, 2)ρ(2, 3)2(d)η(1, 2) is a 3-expression generating the four-node path P4

with nodes a, b, c, d. In particular, the clique-width of P4 is at most three. This is in fact an equality, as
the graphs of clique-width at most two are exactly the cographs [44]. We denote by cw(G) the clique-width
of the graph G. The size of a k-expression is its number of operations. If the generated graph has order n
and m edges, and there is no unnecessary operation ρ(i, j) nor η(i, j) – which we will assume to be the case
throughout the remainder of this paper –, then the k-expression has size in O(n+m) (e.g., see [38], where
Fürer proved this result in a more general setting).

Partition tree. It is useful to represent a k-expression as a parse tree. We stress that the subtree rooted
at any node in the parse tree represents the k-expression of some labelled subgraph of G. By iteratively
contracting the edges incident to non-branching nodes of a parse tree, we get a so-called partition tree, whose
nodes are mapped to the partition in at most k label classes of the vertices in the corresponding labelled
subgraph of G. Formally, given a graph G = (V,E), a partition tree is a pair (T, f) where T is a rooted
tree whose inner nodes have at least two children, and f is a function mapping every node of T to a partial
partition of V , such that:

• for every node a ∈ V (T ), f(a) is a partition of some vertex-subset A ⊆ V ;

• for every vertex v ∈ V , there is a leaf node av ∈ V (T ) s.t. f(av) = {{v}};

• for every inner node a ∈ V (T ), let b1, b2, . . . , bd be its children. If f(a) is a partition of A, and in the
same way for every 1 ≤ i ≤ d, f(bi) is a partition of Bi, then the vertex-subsets B1, B2, . . . , Bd are

pairwise disjoint and A =
⋃d

i=1 Bi. Furthermore, for every 1 ≤ i ≤ d, for every subset Xi ∈ f(bi),

there is X ∈ f(a) s.t. Xi ⊆ X (we say that
⋃d

i=1 f(bi) refines f(a)). Finally, for every 1 ≤ i < j ≤ d,
for every adjacent vertices vi ∈ Bi and vj ∈ Bj , if vi ∈ X and vj ∈ Y , for some X,Y ∈ f(a), then we
have X ̸= Y and X × Y ⊆ E (we say that the partition is compatible with the edge-incidence relation
in the graph G).

The width of a partition tree is equal to maxa∈V (T ) |f(a)|. A graph has clique-width at most k if and only
if it admits a partition tree of width at most k [18].

Note that if we naively store a partition tree (T, f), then storing explicitly all the labels f(a), for a ∈ V (T ),
would require O(n2) space. Instead, for every a ∈ V (T ), for every X ∈ f(a), we may create a new vertex
(a,X); then if bi is a child of a, for every Xi ∈ f(bi) s.t. Xi ⊆ X, we add an arc between (a,X) and (bi, Xi).
This is called in [18] the representation graph of (T, f) and it only requires O(kn) space if the width is at
most k.

Lemma 2.1 ([18]). There is an algorithm that transforms a k-expression of size L into the representation
graph of a width-k partition tree in O(kL) time.

In particular, given a k-expression for an n-vertex m-edge graph G, we can construct the representation
graph of a width-k partition tree in O(k(n+m)) time.

Relation with k-modules. For a graph G = (V,E), a subset M ⊆ V is a module if we have NG(u) \M =
NG(v) \ M for every vertices u, v ∈ M . A k-module is some M ⊆ V that can be partitioned into k
subsets, denoted M1,M2, . . . ,Mk, in such a way that for every 1 ≤ i ≤ k, Mi is a module in the subgraph
G[(V \M) ∪Mi]. Some relations between clique-width and k-modules were explored in [56]. We make the
following useful observation, whose proof is inspired by [56, Theorem 7].

Lemma 2.2. The following two properties hold for every partition tree (T, f) of a graph G = (V,E):

1. For every node a ∈ V (T ), let A =
⋃
f(a) be the vertex-subset of which f(a) is a partition. Then, A is

a |f(a)|-module of G, with a corresponding partition of A being f(a).
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2. Let a1, a2, . . . , ap be some children nodes of some a′ ∈ V (T ) and, for each 1 ≤ i ≤ p, let Ai =
⋃
f(ai)

be the vertex-subset of which f(ai) is a partition. Then, A =
⋃p

i=1 Ai is a |f(a′)|-module of G, with a
corresponding partition of A being {X ′ ∩A | X ′ ∈ f(a′)}.

Proof. We prove these two above statements simultaneously, by induction on the depth of the nodes. For
the base case, let us assume a ∈ V (T ) to be the root of T . In particular, A = V . In this situation, every
X ∈ f(a) is a trivial module of G \ (V \X) = G[X]. Hence, A = V is a k-module of G with a corresponding
partition being f(a). Then, let a1, a2, . . . , ap be children nodes of some a′ ∈ V (T ), and let us assume by
induction that A′ =

⋃
f(a′) is a |f(a′)|-module of G, with a corresponding partition being f(a′). Recall

that A =
⋃p

i=1 Ai is the union of all the subsets partitioned by the f(ai)’s. By the refinement property we
have A ⊆ A′, and therefore Φ(A) = {X ′ ∩ A | X ′ ∈ f(a′)} is a partition of A. Let us prove that A is a
|Φ(A)|-module of G, with a corresponding partition being Φ(A) (Property 2 of the lemma). Equivalently,
we are left proving that for every X ∈ Φ(A), for every u, v ∈ X we have NG(u) \ A = NG(v) \ A. For that,
recall that there is a X ′ ∈ f(a′) s.t. X ⊆ X ′. By our induction hypothesis, X ′ is a module of G \ (A′ \X ′).
Therefore, NG(u) \A′ = NG(v) \A′. In order to prove that X is a module of G \ (A \X), it now suffices to
prove that we have NG(u) ∩ (A′ \ A) = NG(v) ∩ (A′ \ A). Let w ∈ A′ \ A be s.t. uw ∈ E. The refinement
property implies the existence of some node b /∈ {a1, a2, . . . , ap} s.t. b is another child of a′, f(b) is a partition
of some vertex-subset B that is disjoint from A, and w ∈ B. Then, since uw ∈ E, the compatibility property
implies the existence of some Y ′ ∈ f(a′) s.t. Y ′ ̸= X ′, w ∈ Y ′ and X ′ × Y ′ ⊆ E. In particular, every vertex
of X ′, and so, of X, is adjacent to w. This implies NG(u) ∩ (A′ \ A) = NG(v) ∩ (A′ \ A). Finally, let us
prove that for every child a of a′, A =

⋃
f(a) is also a |f(a)|-module of G, with a corresponding partition

being f(a) (Property 1 of the lemma). By setting p = 1, we first get that A is a |f(a′)|-module, with a
corresponding partition being Φ(A) = {X ′ ∩A | X ′ ∈ f(a′)}. Then, we are done by the refinement property
because every X ∈ f(a) must be contained into some subset X ′ ∩A ∈ Φ(A).

Finally, recall that a cut of G = (V,E) is a bipartition (A, V \ A) of its vertex-set. The neighbourhood
diversity of a cut is the least k s.t. A is a k-module of G. By Lemma 2.2, each node of a width-k partition
tree defines a cut of neighbourhood diversity at most k.

3 Distance-labeling scheme

We describe our distance oracle for bounded clique-width graph classes. For technical reasons, we need to
make it work also for unconnected graphs. While it is likely that we could process each connected component
separately, we did not explore this possibility since it was leading to more complicated updates of the partition
trees (see the proof of Theorem 3.2 below).

Given a possibly unconnected graph G, the distance dG(u, v) between u, v ∈ V is equal to: +∞ if u and
v are on different connected components of G, and to the smallest weight of a uv-path in G otherwise. A
distance-labeling scheme consists in some encoding function CG : V → {0, 1}∗ and some decoding function
DG : {0, 1}∗ × {0, 1}∗ → N ∪ {+∞} s.t. dG(u, v) = DG(CG(u), CG(v)) for every vertices u and v. We are
interested in minimizing the total pre-processing time in order to compute the labels CG(v), for all vertices
v, and the query time in order to compute the distance given two labels. It is often the case that DG runs
in time polynomial in the size of the labels. Then, the objective is to minimize maxv∈V |CG(v)|.

The following result is due to Courcelle and Vanicat:

Theorem 3.1 ([20]). The family of n-vertex bounded clique-width unweighted graphs enjoys an exact distance
labeling scheme using labels of length O(log2 n) bits. Moreover, the distance between two vertices can be
computed in O(log2 n) time.

The hidden dependency in the clique-width is a stack of exponentials [40]. We improve the latter while
keeping optimal bit size and improved query time, namely:

Theorem 3.2. For a vertex-weighted graph, let W denote the maximum weight. The family of n-vertex
m-edge vertex-weighted graphs of clique-width at most k enjoys an exact distance labeling scheme using labels
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of length O(k log n log (nW )) bits (resp., O(k log2 n) bits if the graph is unweighted). Moreover, all the labels
can be pre-computed in O(k(n+m) log2 n) time if a k-expression is given (resp., in O(k(n+m) log n) time
if the graph is unweighted), and the distance between two vertices can be computed in O(k log n) time.

For the related problem of adjacency queries, we refer to [50] for a data structure in O(kn) space for the
n-vertex graphs of clique-width at most k.

Recall that dG(v, S) = dG(S, v) = minu∈S dG(u, v). In particular, dG(v, S) = +∞ if S is empty. We will
need the following result:

Lemma 3.3. Let G = (V,E,w) be a vertex-weighted graph (possibly not connected) and let (A, V \ A) be a
cut of neighbourhood diversity k. Furthermore, let A1, A2, . . . , Ak be a partition of A s.t. for every 1 ≤ i ≤ k,
Ai is a module of G \ (A \Ai). For 1 ≤ i ≤ k, let Bi = NG(Ai) \A. The following hold for every u, v ∈ V :

• if u ∈ A, v /∈ A then dG(u, v) = min{dG(u,Ai) + dG(Bi, v) | 1 ≤ i ≤ k};

• if u, v ∈ A then dG(u, v) = min{dG[A](u, v)} ∪ {dG(u,Ai) + dG(Bi, v) | 1 ≤ i ≤ k};

• if u, v /∈ A then dG(u, v) = min{dG[V \A](u, v)} ∪ {dG(u,Ai) + dG(Bi, v) | 1 ≤ i ≤ k}.

Proof. We may assume u and v to be in a same connected component of G. Indeed if it is not the case
then we claim that, for any 1 ≤ i ≤ k, we have dG(u,Ai) = +∞ or dG(Bi, v) = +∞; in particular, the
lemma holds true in this special case. In order to prove this claim, there are two simple cases to consider:
either Bi = ∅, and then dG(Bi, v) = +∞, or Bi ̸= ∅. In the latter case, Ai ∪ Bi is connected, and therefore
we must have dG(u,Ai) = +∞ or dG(Bi, v) = +∞. From now on, we implicitly assume the existence of a
uv-path. Then, for any u and v, for every 1 ≤ i ≤ k s.t. Bi ̸= ∅, since there is a complete join between Ai

and Bi there always exists a uv-path of length dG(u,Ai) + dG(Bi, v) (recall that if Bi = ∅, then we have
dG(u,Ai) + dG(Bi, v) = dG(Bi, v) = +∞). In particular, dG(u, v) ≤ min{dG(u,Ai) + dG(Bi, v) | 1 ≤ i ≤ k}.
Then, we consider all three cases of the lemma. If u ∈ A, v /∈ A then on any shortest uv-path, there must
be some edge u′v′ s.t. u′ ∈ A, v′ /∈ A. In particular, u′ ∈ Ai for some 1 ≤ i ≤ k, and then v′ ∈ Bi. We get
dG(u, v) ≥ dG(u,Ai) + dG(Bi, v). As a result, dG(u, v) = min{dG(u,Ai) + dG(Bi, v) | 1 ≤ i ≤ k}. If u, v ∈ A
then, either there exists a shortest uv-path which is fully contained into A, that implies dG(u, v) = dG[A](u, v),
or every shortest uv-path must intersect V \A. In the latter sub-case, we fix a shortest uv-path and we scan
it from u until we find an edge u′v′ s.t. u′ ∈ A, v′ /∈ A. We deduce as before that we have in this sub-case
dG(u, v) = min{dG(u,Ai) + dG(Bi, v) | 1 ≤ i ≤ k}. In the same way, if u, v /∈ A then either there exists
a shortest uv-path which is fully out of A, that implies dG(u, v) = dG[V \A](u, v), or every shortest uv-path
must intersect A. In the latter sub-case, we fix a shortest uv-path and we scan it from v until we find an
edge v′u′ s.t. u′ ∈ A, v′ /∈ A. We get dG(u, v) = min{dG(u,Ai) + dG(Bi, v) | 1 ≤ i ≤ k}.

Our scheme for bounded clique-width graphs mimics one very well-known for trees which is based on
the centroid decomposition [41]. Specifically, let w : V (T ) → N assign non-negative weights to the nodes of
some tree T . A w-centroid is a node c s.t. every subtree of T \ {c} has weight at most w(T )/2. Such node
always exists and a centroid can be computed in linear time by using a standard dynamic programming
approach [43] (simply orient each edge toward the heaviest subtree, then find a sink). We also need the
following easy lemma:

Lemma 3.4. Let w : V (T ) → N assign non-negative weights to the nodes of some tree T . If c is a w-
centroid of a tree T , then the components of T \ {c} can be partitioned in linear time in two forest F1, F2 s.t.
max{w(F1), w(F2)} ≤ 2w(T )/3.

Proof. If w(c) ≥ w(T )/3 then the result holds for any bipartition of the components of T \ {c}. From now
on we assume that we did not fall in this pathological case. In particular, T \ {c} is unconnected (otherwise,
w(T \ {c}) > 2w(T )/3 > w(T )/2, a contradiction). Let T1, T2, . . . , Td be the subtrees of T \ {c}. We define

i0 as the least index i s.t.
∑i

j=1 w(Tj) > 2w(T )/3. Note that i0 > 1 since we assume c to be a w-centroid.
Then, there are two cases.
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• If
∑d

j=i0
w(Tj) ≤ 2w(T )/3 then we are done by setting F1 =

⋃
j<i0

Tj , F2 =
⋃

j≥i0
Tj .

• Otherwise, we get w(T ) +w(Ti0) ≥
∑

j≤i0
w(Tj) +

∑
j≥i0

w(Tj) > 4w(T )/3, and so, w(Ti0) > w(T )/3.
We set F1 = Ti0 , F2 =

⋃
j ̸=i0

Tj .

In both cases, we get the desired partition in two forests of respective weights at most 2w(T )/3.

We are now ready to prove the main result of this section:

Proof of Theorem 3.2. We fix some width-k partition tree (T, f), that takes O(k(n +m)) time to compute
by using Lemma 2.1. Let w : V (T ) → {0, 1} be s.t. w(a) = 1 if and only if a is a leaf. Observe that w(T ) = n
since there is a one-to-one mapping between the vertices in V and the leaves of T . In order to construct
the labels CG(v), for all v ∈ V (encoding function), we next define a recursive procedure onto the weighted
partition tree.

In what follows, let us assume n > 1 (otherwise, there is nothing to be done). We compute in O(|V (T )|)
time, and so in O(n) time, a w-centroid c. Note that if n = 2, then T is composed of a root and of two
leaves; then, a good choice for the w-centroid c is to take the root. In particular, we may assume c to be an
internal node. Otherwise, n ≥ 3, and so, since w(T ) = n, we must have that c is an internal node. Then, let
a1, a2, . . . , ad be the children of c. We denote C (resp. Ai) the subset of vertices of which f(c) (resp., f(ai))
is a partition. Furthermore, let Tc (resp., let Tai

) be the subtree rooted at c (resp., at ai). By Lemma 3.4 we
can bipartition the trees T \ Tc, Ta1

, Ta2
, . . . , Tad

into two forests F1, F2 of respective total weights ≤ 2n/3.
In particular, since c is internal, and so w(c) = 0, both forests are non-empty. Up to re-ordering the children
nodes of c, we may assume one of those forests, say F1, to be equal to

⋃p
j=1 Taj , for some p ≤ d. For short,

we name A :=
⋃p

j=1 Aj . Doing so, we define the cut (A, V \A), whose two sides can be determined in O(n)
time by traversing the disjoint subtrees Ta1 , Ta2 , . . . , Tap .

By Lemma 2.2, A is a k-module of G, with a corresponding partition being Φ(A) = {X ∩A | X ∈ f(c)}
(or f(a1) if p = 1). Note that such a partition can be readily derived in O(n) time from either f(c) (if
p > 1) or f(a1) (if p = 1). In turn, being given the representation graph of (T, f), we can compute f(c)
and f(a1) in O(kn) time by traversing the subtrees rooted at nodes c and a1. Let X1, X2, . . . , Xk be a
partition of A s.t., for every 1 ≤ i ≤ k, Xi is a module of G \ (A \Xi). Furthermore, for every 1 ≤ i ≤ k,
let Yi := NG(Xi) \ A (neighbour sets in V \ A). Since the subsets Xi are pairwise disjoint we can compute
Y1, Y2, . . . , Yk in total O(m) time. Finally, for every 1 ≤ i ≤ k, for every v ∈ V , we compute dG(v,Xi) and
dG(v, Yi). It takes O((m+n) log n) time per subset, using a modified Dijkstra’s algorithm, and so total time
in O(k(m + n) log n) (resp., if the graph is unweighted, then it takes O(m + n) time per subset, using a
modified BFS, and so total time in O(k(m + n))). We end up applying recursively the same procedure as
above on the disjoint (possibly unconnected) subgraphs G[A] and G[V \ A]. For that, we need to build a
partition tree for each subgraph.

• For G[A], we take TA = Ta1
if p = 1, otherwise we take TA = Tc\(

⋃
j>p Tj). Then, for every b ∈ V (TA),

we set fA(b) = {X ∩A | X ∈ f(b)}. Observe that if b ̸= c then fA(b) = f(b). Hence, the representation
graph of (TA, fA) can be computed from the representation graph of (T, f) in O(kn) time.

• For G[V \ A], a natural choice would be to take the subtree TV \A = T \ (
⋃p

j=1 Taj
). Then, for every

b ∈ V (TV \A), we set fV \A(b) = {X \ A | X ∈ f(b)}. Again, we observe that the representation
graph of (TV \A, fV \A) can be computed from the representation graph of (T, f) in O(kn) time (i.e.,
by dynamic programming on the path from c to the root of T , removing on the way all groups fully
into A). However, doing so, we may not respect all properties of a partition tree. Specifically, if d = p
then c has become a leaf-node and it must be removed. But then, its father node c′ may have only
one child b left. If that is the case, then either c′ is the root of T and then we choose TV \A = Tb, or
we choose the father node of c′ as the new father node of b, removing on our way the node c′. Note
that we do not modify fV \A(b) during this procedure. Finally, if d = p + 1 then c only has one child
ad left. We proceed similarly as in the previous case. That is, either c was the root of T and then we
set TV \A = Tad

, or we choose the father node of c as the new father node of ad, removing on our way
the node c. Note that doing so, we do not modify the partition fV \A(ad).
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The above procedure recursively defines a so called w-centroid decomposition T (w). The latter is a
binary rooted tree, whose root is labeled by the cut (A, V \ A). Its left and right subtrees are w-centroid
decompositions of G[A] and G[V \A] respectively. Note that by construction, the depth of T (w) is in O(log n).
Furthermore, there is a one-to-one mapping between the leaves of T (w) and the vertices of G. For every
vertex v ∈ V , its label CG(v) contains each cut on its path until the root of T (w), and the 2k distances
computed for each cut. – Infinite distances may be encoded as some special character. – Here, we stress
that all these distances are computed in some induced subgraphs of G, and not in G itself (unless it is for
the first cut, at the root). Since the depth of T (w) is in O(log n), each CG(v) stores O(k log n) distances, and
so it has a bit size in O(k log n log (Wn)) (resp, in O(k log2 n) if the graph is unweighted). Furthermore, as
G[A] and G[V \ A] are disjoint, every recursive stage of the procedure takes O(k(n+m) log n) time (resp.,
O(k(n + m)) time). Hence, the total pre-processing time in order to compute CG(v), for all v ∈ V , is in
O(k(n+m) log2 n) (resp., in O(k(n+m) log n) if G is unweighted).

We are left describing DG (decoding). Let u, v ∈ V be arbitrary. Their least common ancestor in T (w)

corresponds to some cut (Aj , Aj−1\Aj) s.t. u ∈ Aj , v ∈ Aj−1\Aj . Consider all the cuts on the path between
their least common ancestor and the root of T (w). We call the latter (A0, V \A0), (A1, A0\A1), . . . , (Aj , Aj−1\
Aj). Since up to reverting their two sides, all these cuts have neighbourhood diversity at most k, then we
may apply Lemma 3.3 j+1 times in order to compute dG(u, v) (i.e., in G,G[A0], G[A1], . . . , G[Aj−1]). Note
that j = O(log n). Finally, since for each cut considered, the 2k distances that are required in order to apply
this lemma are stored in CG(u) and CG(v), it takes O(k) time per cut, and so, the final query time is in
O(k log n).

Recall that All-Pairs Shortest-Paths in an n-vertex graph of clique-width at most k can be solved in
O((kn)2) time [52]. As a by-product of our Theorem 3.2, we observe below that we can improve the
dependency on k, but at the price of a poly-logarithmic overhead in the running time.

Corollary 3.5. For every n-vertex vertex-weighted graph G = (V,E,w), if cw(G) ≤ k and a k-expression is
given, then we can solve All-Pairs Shortest-Paths for G in O(k(n log n)2) time (resp., in O(kn2 log n) time
if G is unweighted).

Proof. We start applying Theorem 3.2 in order to compute a distance-labeling scheme with O(k log n) query
time. Then, we consider all pairs u, v ∈ V (there are O(n2) such pairs) and we compute dG(u, v) in O(k log n)
time.

4 Centrality indices and beyond

We refine our strategy for Theorem 3.2 in order to prove the main result of this paper:

Theorem 4.1. For every connected n-vertex m-edge vertex-weighted graph G = (V,E,w), if cw(G) ≤ k and
a k-expression is given, then we can compute in O(2O(k)(n+m)1+ϵ) time, for any ϵ > 0: all the eccentricities,
and all the closeness centralities.

Corollary 4.2. For every connected n-vertex m-edge vertex-weighted graph G = (V,E,w), if cw(G) ≤ k
and a k-expression is given, then we can compute the diameter, radius, center, Wiener index and median
set of G in O(2O(k)(n+m)1+ϵ) time, for any ϵ > 0.

Recall that Coudert et al. proved that assuming SETH, for any ϵ > 0, there is no O(2o(k)(n+m)2−ϵ)-time
algorithm for computing the diameter within cubic graphs of clique-width at most k [16]. Therefore, our
results for the diameter (and so, for the eccentricities) are optimal under SETH. Our results for the Wiener
index (and so, for the closeness centrality) are also optimal under SETH. Indeed, since the pathwidth of a
graph is an upper bound for its clique-width [31], then it follows from [1] that it is already “SETH-hard”, in
the unweighted case, to decide in O(2o(k)(n+m)2−ϵ) time whether the diameter is either two or three. It is
well-known that diam(G) ≤ 2 if and only if for every v ∈ V of degree δG(v), TD(v) = 2(n− 1)− δG(v) [11].
In particular, diam(G) ≤ 2 if and only if W (G) = 2n(n− 1)− 2m.
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Additional notations. In Sec. 4.2, 4.3 and 4.4 we need to also allow edge-weights, due to some technicalities
in our final proof of Theorem 4.1. Such a graph is denoted by G = (V,E,w, α), where α : E → N. Then, the
weight of a path is the sum of the weights of all its vertices and edges. The special case of vertex-weighted
graphs is retrieved by setting α(e) = 0 for every e ∈ E. Finally, we call a cut (A, V \ A) unweighted if all
edges between A and V \A have a zero weight. The neighbourhood diversity of a cut is the same in G as in
the underlying unweighted graph obtained from G by removing all the weights.

4.1 Minimal partition of k-modules

First, it is not hard to show that every k-module has a partition in a least number of subsets. In what
follows, we will often use a few simple properties of this minimal partitioning.

Lemma 4.3. Every vertex-subset A in a vertex-weighted graph G = (V,E,w) admits a unique partition
A1, A2, . . . , Ak with the following two properties:

1. For every 1 ≤ i ≤ k, for every ui, vi ∈ Ai, we have NG(ui) \ A = NG(vi) \ A. In particular, A is a
k-module of G.

2. For every k′ < k, A is not a k′-module of G.

We call it the minimal partition of A, and it can be computed in linear time.

Proof. Let G′ = G\E(A) be the graph obtained from G by removing all edges with their two ends in A. Two
vertices are called false twins if they have exactly the same neighbours in G′. This is an equivalence relation
over V , whose equivalence classes are sometimes called “twin classes”. We claim that if A is a k′-module, with
a corresponding partition being A1, A2, . . . , Ak′ , then for every 1 ≤ i ≤ k′, all the vertices of Ai must belong
to the same twin class. Indeed, for every ui, vi ∈ Ai we get NG′(ui) = NG(ui) \ A = NG(vi) \ A = NG′(vi).
Then, the minimal partition of A is composed of all the non-empty intersections of A with the twin classes
of G′. The twin classes of a graph can be computed in linear time by using classic partition refinement
techniques [45].

4.2 Orthogonal range queries

We then need to recall some basics about the framework introduced in [13] by Cabello and Knauer. Let
P ⊆ Rk be a static set of k-dimensional points. We assume each point −→p ∈ P to be assigned a value g(−→p ).
A box is the Cartesian product of k intervals. Note that we allow each interval to be unbounded and/or
open or partially open. Roughly, given a box R, a range query on P asks for either reporting or counting
all points in P ∩R, or for some specific point(s) in this intersection maximizing a given objective function.
Here, we consider the following types of range queries:

• (Maximum range query) Given some box R, find some −→p ∈ P ∩R maximizing g(−→p );

• (Sum range query) Given some box R, compute
∑

−→p ∈P∩R g(−→p ).

• (Count range query) Given some box R, compute |P ∩R|.

Lemma 4.4 ([11]). For every k-dimensional point set P of size n, for any ϵ > 0, we can construct in
O(2O(k)n1+ϵ) time, a data structure, sometimes called a k-dimensional range tree, that allows to answer any
maximum range query, sum range query or count range query in O(2O(k)nϵ) time.

In the following Lemma 4.5 we give a new simple application of Lemma 4.4 to distance problems in
graphs, namely:

Lemma 4.5. Let G = (V,E,w, α) be a connected n-vertex m-edge graph with respective vertex- and edge-
weight functions w and α, let (A, V \A) be an unweighted cut of neighbourhood diversity at most k, and let
A′ ⊆ A, B′ ⊆ V \ A. For any ϵ > 0, after a pre-processing in O(km + 2O(k)n1+ϵ) time, for every vertex
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u ∈ A′ we can compute the values maxv∈B′ dG(u, v) and
∑

v∈B′ dG(u, v) in Õ(2O(k)nϵ) time; in the same

way, for every vertex v ∈ B′ we can compute the values maxu∈A′ dG(v, u) and
∑

u∈A′ dG(v, u) in O(2O(k)nϵ)
time.

Proof. Let A1, A2, . . . , Ak be the minimal partition of A. By Lemma 4.3, we can compute it in O(m) time.
For 1 ≤ i ≤ k, let Bi = NG(Ai) \ A. Note that since the subsets Ai are pairwise disjoint, we can compute
B1, B2, . . . , Bk in total O(m) time. Observe that there is at most one index i s.t. Bi = ∅ (otherwise, we can
merge all groups Aj s.t. Bj = ∅ into one, thus contradicting the minimality of the partition of A). W.l.o.g.,
if such index exists then it must be i = k. We want to exclude this index, if it exists, in order to avoid
handling with arithmetic over infinite values. So, let k′ = k if Bk ̸= ∅, otherwise let k′ = k − 1. For every
1 ≤ i ≤ k′, for every u ∈ A′, we compute dG(u,Ai). In the same way, for every 1 ≤ i ≤ k′, for every v ∈ B′,
we compute dG(Bi, v). It takes O(k′m log n) = O(km log n) time in total if we use Dijkstra’s single-source
shortest-path algorithm. Then, for every v ∈ B′ and for every 1 ≤ i ≤ k′, we create a k′-dimensional point
−→p (v, i): whose first coordinate is the index i, followed by the values dG(Bi, v)−dG(Bj , v), 1 ≤ j ≤ k′, j ̸= i.
Set g(−→p (v, i)) = dG(Bi, v). Finally, let P contain all these k′|B′| points. We add all points in P into some
k′-dimensional range tree, that takes O(2O(k)n1+ϵ) time for any ϵ > 0 by Lemma 4.4.

Now, let u ∈ A′ be fixed, and assume that we want to compute the values maxv∈B′ dG(u, v) and∑
v∈B′ dG(u, v). Note that if we subdivide each edge e with positive weight and we assign weight α(e) to the

resulting vertex then, A∪E(A) is a (k′+1)-module in the resulting graph, with E(A) representing the edges
in G with their both ends in A (no such vertex has a neighbour in the other side of the cut). By Lemma 3.3
(applied to the resulting graph), for every v ∈ B′, we have dG(u, v) = min{dG(u,Ai)+dG(Bi, v) | 1 ≤ i ≤ k}.
Since dG(Bk, v) = +∞ if Bk = ∅, we also have dG(u, v) = min{dG(u,Ai) + dG(Bi, v) | 1 ≤ i ≤ k′}. We
(virtually) partition B′ into C1, C2, . . . Ck′ so that, for every 1 ≤ i ≤ k′, v ∈ Ci if and only if the least index
j s.t. dG(u, v) = dG(u,Aj) + dG(Bj , v) is equal to i. Specifically, we design boxes R1,R2, . . . ,Rk′ so that
p(v, j) ∈ Ri ⇐⇒ j = i and v ∈ Ci. Note that if we can do so, then:

max
v∈B′

dG(u, v) = max
1≤i≤k′

max
v∈Ci

dG(u, v)

= max
1≤i≤k′

(dG(u,Ai) + max{dG(Bi, v) | v ∈ Ci})

= max
1≤i≤k′

(dG(u,Ai) + max{g(−→p (v, j)) | −→p (v, j) ∈ Ri}) .

In particular, we are left doing k′ maximum range queries. In the same way:

∑
v∈B′

dG(u, v) =

k′∑
i=1

∑
v∈Ci

dG(u, v)

=

k′∑
i=1

∑
v∈Ci

(dG(u,Ai) + dG(Bi, v))

=

k′∑
i=1

[
dG(u,Ai) · |Ci|+

∑
v∈Ci

dG(Bi, v)

]

=

k′∑
i=1

[
dG(u,Ai) · |P ∩Ri|+

∑
{g(−→p (v, j)) | −→p (v, j) ∈ Ri}

]
.

In particular, we are left doing k′ sum range queries and k′ count range queries. Hence, being given
R1,R2, . . . ,Rk′ , we are done in O(2O(k)nϵ) time for any ϵ > 0 by Lemma 4.4.

For every 1 ≤ i ≤ k′, the box Ri is defined as follows. Let −→p = (p1, p2, . . . , pk′) be a k′-dimensional point
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of P . We have −→p ∈ Ri if and only if:
p1 = i

∀1 ≤ j ≤ i− 1, pj+1 < (dG(u,Aj)− dG(u,Ai))

∀i+ 1 ≤ j ≤ k′, pj ≤ (dG(u,Aj)− dG(u,Ai)) .

Indeed, we have: dG(u,Ai) + dG(Bi, v) ≤ dG(u,Aj) + dG(Bj , v) if and only if dG(Bi, v) − dG(Bj , v) ≤
(dG(u,Aj)− dG(u,Ai)). Furthermore, by construction, if j < i then dG(Bi, v) − dG(Bj , v) is exactly the
(j + 1)th coordinate of −→p (v, i) (in which case we want the inequality to be strict by the definition of Ci),
and if j > i then dG(Bi, v) − dG(Bj , v) is exactly the jth coordinate of this point. For the vertices v ∈ B′,
we proceed similarly as above, that is, we create a point-set P ′ from A′ and we put them in some separate
k′-dimensional range tree.

4.3 Distance-preservers with weighted edges

Our next objective consists in adding some weighted subsets to the two sides of a cut in order to pre-
serve the distances from the original graph. Recall that for every two subsets X and Y , dG(X,Y ) =
minx∈X,y∈Y dG(x, y). Our construction below is inspired by Cunningham’s split decomposition [21].

Definition 4.1. Given G = (V,E,w, α) connected, with respective vertex- and edge-weight functions w
and α, let (A, V \ A) be an unweighted cut of neighbourhood diversity at most k. Let A1, A2, . . . , Ak be
the minimal partition of A and, for every 1 ≤ i ≤ k, let Bi = NG(Ai) \ A. W.l.o.g., either all the Bi’s
are nonempty, or Bk is the unique empty set amongst the Bi’s. We set k′ = k if Bk ̸= ∅, and k′ = k − 1
otherwise.

• For every 1 ≤ i ≤ k′, let bii ∈ Bi be of minimum weight. For every 1 ≤ i < j ≤ k′, let also
bij ∈ Bi, bji ∈ Bj be the ends of a shortest BiBj-path (possibly, bij = bji). The graph HA is obtained
from G[A ∪ {bij | 1 ≤ i, j ≤ k′}] by adding, for every 1 ≤ i < j ≤ k′ s.t. bij ̸= bji, an edge bijbji of
weight dG(Bi, Bj)− w(bij)− w(bji).

• For every 1 ≤ i ≤ k′, let aii ∈ Ai be of minimum weight. For every 1 ≤ i < j ≤ k′, let also
aij ∈ Ai, aji ∈ Aj be the ends of a shortest AiAj-path. The graphHB is obtained fromG[(V \A)∪{aij |
1 ≤ i, j ≤ k′}] by adding, for every 1 ≤ i < j ≤ k′, an edge aijaji of weight dG(Ai, Aj)−w(aij)−w(aji).

Below, we observe that it is rather straightforward to compute these two above subgraphs HA and HB

in parameterized almost linear time:

Lemma 4.6. Given G = (V,E,w, α) connected, with respective vertex- and edge-weight functions w and α,
let (A, V \A) be an unweighted cut of neighbourhood diversity at most k. The gadget subgraphs HA and HB

(see Definition 4.1) can be constructed in Õ(k2n+ km) time.

Proof. Consider all the subsets Ai, Bi, as they were defined in Definition 4.1. As we already observed in the
proof of Lemma 4.5, these 2k subsets can be created in O(m) time by using partition refinement techniques.
Then, it suffices to compute the vertices aij , bij , and the distances dG(Ai, Aj), dG(Bi, Bj). For every fixed i,
we choose for bii any vertex of minimum weight in Bi. Then, we execute a modified Dijkstra’s single-source
shortest-path algorithm in order to compute dG(v,Bi) for every v ∈ V . It takes Õ(m) time. For every j > i,
let bji be a vertex of Bj minimizing its distance to Bi. We choose for bij a closest vertex to bji in Bi. It can
be done in total O(kn) time (for all j > i) by dynamic programming on the shortest-path forest output by
our modified Dijkstra’s algorithm. We do the same in order to compute the vertices aij , aji.

The following two properties are crucial in our proofs of Theorem 4.1.

Lemma 4.7. Given G = (V,E,w, α) connected, with respective vertex- and edge-weight functions w and
α, let (A, V \ A) be an unweighted cut of neighbourhood diversity at most k. Let HA, HB and k be as in
Definition 4.1. Then, for every u, v ∈ A we have dG(u, v) = dHA

(u, v). Similarly, for every u, v /∈ A we have
dG(u, v) = dHB

(u, v).
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Proof. We only detail the proof for u, v ∈ A. First, we prove that dHA
(u, v) ≤ dG(u, v). Indeed, if there

exists a uv-path of weight dG(u, v) which is fully into A, then this path also exists in HA. Otherwise, every
shortest uv-path in G must intersect V \ A. Let us fix a shortest uv-path P in G. We scan P from u until
we find the first edge xy s.t. x ∈ A, y /∈ A. Similarly, we scan P from v until we find the first edge st s.t.
s ∈ A, t /∈ A. There exist i, j s.t. x ∈ Ai, s ∈ Aj , and so, y ∈ Bi, t ∈ Bj . We have dG(y, t) ≥ dG(Bi, Bj),
and this is in fact an equality because P is a shortest uv-path and there are complete joins between Ai and
Bi, respectively between Aj and Bj . Then, we may replace all the yt-subpath in P by either the edge bijbji
or (if bij = bji, in particular if i = j) simply by bij . Doing so, we obtain a uv-path of HA of weight equal to
dG(u, v). Conversely, we prove that dHA

(u, v) ≥ dG(u, v). Indeed, consider any uv-path P ′ of HA. We can
replace every edge bijbji ∈ E(P ′) by a shortest bijbji-path in G. Doing so, we transform P ′ into a uv-path
of G without changing the weight. The proof for u, v /∈ A is similar as what we did above.

Our approach only works for unweighted cuts or more generally for cuts such that all the edge-weights
are equal. Indeed, let us consider a cut (A, V \A) of neighbourhood diversity at most k such that, for some
1 ≤ i ≤ k, there exist edges of different weights between Ai and Bi. Then, it is no more true that for every
shortest uv-path, with u, v ∈ A arbitrary, for any two consecutive edges xy, ts of the cut, with x ∈ Ai and
s ∈ Aj for some 1 ≤ j ≤ k, we must always have d(y, t) = d(Bi, Bj). It implies that Lemma 4.7 does not hold
for arbitrary cuts. In particular, if we want to apply the procedure of Definition 4.1 recursively, for some
cuts in the gadget subgraphs HA and HB , then we must have both ends of each weighted edge on a same
side of the cut. The next lemma shows that restricting ourselves to such cuts does not cause an explosion of
their neighbourhood diversity.

Lemma 4.8. Given G = (V,E,w, α) connected, with respective vertex- and edge-weight functions w and
α, let (A, V \ A) be an unweighted cut of neighbourhood diversity at most k. Let HA, HB and k be as in
Definition 4.1.

1. For any A′ ⊆ A, if A′ is a k-module of G then it is a k-module of HA.

2. For any B′ ⊆ V \A, if B′ is a k-module of G then it is a k-module of HB; if A ∪B′ is a k-module of
G then B′ ∪ {aij | 1 ≤ i, j ≤ k′} is a k-module of HB.

Proof. Let A1, A2, . . . , Ak and B1, B2, . . . , Bk be as in Definition 4.1. By minimality of the partition of A,
there are no two indices i and j s.t. Ai ∪ Aj is a module of G \ (A \ (Ai ∪ Aj)) (otherwise, we could have
merged these two groups into one). We prove the properties of the lemma separately.

• Let us first assume that A′ ⊆ A is a k-module of G. Clearly, A′ is also a k-module of G[A ∪ {bi,j |
1 ≤ i, j ≤ k′}]. Furthermore, the only edges of E(HA) \ E(G) are those bijbji, and we always have
bij , bji ∈ V (HA) \ A′. As a result, we obtain NHA

(u) \ A′ = (NG(u) ∩ V (HA)) \ A′, and so, A′ keeps
the property of being a k-module in HA.

• In the same way, let us now assume that B′ ⊆ V \ A is a k-module of G. The subset B′ is also a k-
module of the subgraph G[(V \A)∪{aij | 1 ≤ i, j ≤ k′}]. Furthermore, the only edges of E(HB)\E(G)
are those aijaji, and we always have aij , aji ∈ V (HB) \ B′. Hence, the same as before, B′ keeps the
property of being a k-module in HB .

• Finally, let B′ ⊆ V \A be s.t. B′∪A is a k-module of G. In particular, B′∪{aij | 1 ≤ i, j ≤ k′} ⊆ B′∪A
is a k-module of G[(V \ A) ∪ {aij | 1 ≤ i, j ≤ k′}]. We already mentioned that the only edges of
E(HB) \ E(G) are those aijaji. Since we always have aij , aji ∈ B′ ∪ {aij | 1 ≤ i, j ≤ k′}, the subset
B′ ∪ {aij | 1 ≤ i, j ≤ k′} keeps the property to be a k-module in HB .
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4.4 Proofs of the main results

Proof of Theorem 4.1. We revisit the scheme of Theorem 3.2. That is, we fix some width-k partition tree
(T, f), that takes O(k(n +m)) time by using Lemma 2.1. Furthermore, we pre-process the tree T in order
to compute in O(1) time, for any two nodes a, a′ ∈ V (T ), their least common ancestor; it can be done in
O(n) time [48]. Finally, let w : V (T ) → {0, 1} be s.t. w(a) = 1 if and only if a is a leaf. In what follows, we
mimic the recursive construction of a w-centroid decomposition T (w) of T , as it was defined in the proof of
Theorem 3.2.

The algorithm. We consider a more general problem for which we are given some tuple ⟨r,H,U, TU , fU ,L⟩.
Let us detail each of the components of this input:

1. Here, H is a weighted graph with non-negative real vertex-weights and with non-negative real edge-
weights (initially, H = G). Roughly, H is a supergraph of some induced subgraph of G which is
augmented with additional vertices and weighted edges in order to preserve the distances in G.

2. The value r represents the recursion level of the algorithm (initially, r = 0), that is roughly the number
of cuts of G traversed by the algorithm. Note that the order of the graphs H considered is decreasing
exponentially with r (see the complexity analysis at the end of the proof).

3. The vertex-subset U is such that U ⊆ V ∩ V (H) (initially, U = V ). We further impose to have
H[U ] = G[U ], and that for every u, v ∈ U we have dG(u, v) = dH(u, v). In particular, all the edges of
H[U ] are unweighted. The objective of the algorithm is to compute, for every vertex of U , its maximum
distance in G to a vertex of U , respectively the sum of all its distances in G to the vertices of U . For
that, intuitively, we embed U in the vertex- and edge-weighted graph H.

4. The rooted tree (TU , fU ) is a width-k-partition tree of G[U ] (initially, TU = T and fU = f). We
further assume that TU was constructed from a rooted subtree of T by repeatedly contracting internal
nodes with only one child. Roughly, (TU , fU ) is just a compression of (T, f) where we iteratively
removed useless branches and contracted degree-one nodes so that the resulting tree stays of order
linear in the size of the input subset U . In particular, all the ancestor-descendant relations in TU

are also ancestor-descendant relations in T . Furthermore, for every node b ∈ V (TU ) we impose
fU (b) = {X ∩ U | X ∈ f(b) and X ∩ U ̸= ∅}. Note that in lieu of (TU , fU ), we are given the
representation graph of this partition tree (as defined in Sec. 2). Throughout the algorithm, we use
partition trees in order to compute edge-cuts, from which we recursively partition the vertex-set of
G. Roughly, since we compute all these cuts indirectly from the same fixed partition tree (T, f) of G,
we ensure that all these cuts are pairwise non-crossing (two cuts are crossing if any side of one cut
intersects any side of the other cut). This non-crossing property allows us to reinterpret every cut of
G considered as an unweighted balanced cut of some vertex- and edge-weighted graph H.

5. Finally, H \ U is a disjoint union of r′ ≤ r subgraphs of order O(k2), that we shall name “clusters”
in what follows. Roughly, each cluster is a substitution gadget for one side of some cut of G that was
already considered at some earlier recursion level. To each cluster Wi, we associate some node ci of the
original tree T . Roughly, ci corresponds to some balanced cut, computed at an earlier recursive stage,
and the cluster Wi resulted from the procedure of Definition 4.1 applied to this cut. So, in particular,
we impose that any edge between two vertices that are on different clusters (resp., between a vertex in
a cluster and a vertex of U) must be unweighted. All the pairs (Wi, ci) are stored in the list L (initially,
L is the empty list).

The output of the algorithm is, for every u ∈ U , the values maxv∈U dH(u, v) and
∑

v∈U dH(u, v).

For that, let nr := |V (H)| and mr := |E(H)|. We may assume that |U | ≥ λk2 log n, for some sufficiently
large constant λ. Indeed, if it not the case then we may compute by brute-force all the desired values. Our
algorithm has at most O(log n) recursive stages, and therefore, in this case we have nr = |U |+O(k2 log n) =
O(k2 log n). In particular, we can perform the brute-force computation in O(k6 log3 n) time (base case of
the recursion).
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Thus from now on, let us assume |U | = Ω(k2 log n). We compute a w-centroid c in TU . This can be done
in O(|V (TU )|) = O(nr) time. Since w(TU ) = |U | > 3, this node c cannot be a leaf. Let a1, a2, . . . , ad be the
children of c. As before, we denote by C (resp. Ai) the subset of vertices of which fU (c) (resp., fU (ai)) is a
partition, and by TU

c (resp., TU
ai
) the subtree rooted at c (resp., at ai). Here, we stress that C ⊆ U (resp.,

Ai ⊆ U). By using Lemma 3.4, we may partition TU \ {c} in two non-empty forests of respective weights
≤ 2|U |/3. Furthermore, we may assume one of our two forests to contain exactly TU

a1
, TU

a2
, . . . , TU

ap
for some

p ≤ d. Then, let A =
⋃p

j=1 Aj (computable in O(|U |) = O(nr) time by traversal of TU ). We compute the
following cut of H:

• The subsets A and U \A are on separate sides of the cut.

• For every (Wj , cj) ∈ L, there are two cases. If there exists some index i s.t. the least common ancestor
of cj and ai in T is a strict descendant of c (a child of c in T , or a descendant of one of these children),
then we put Wj on the same side of the cut as A. Otherwise, we put Wj on the same side of the cut
as U \A.

Let us give some intuition for both cases above. Roughly, we mimic the computation of some cut of G which
disconnects A from U \A. Both sides of this cut correspond to some subtrees T1, T2 of T . Note in particular
that T1 is the smallest subtree of T containing c and Ta1

, Ta2
. . . . , Tap

. Similarly, each cluster of H is a
substitution gadget for one side of some cut of G, already considered at an earlier recursion level, and as a
result it can also be mapped to some subtree of T . We put a cluster on the same side as A (resp., as U \A) if
and only if its corresponding subtree in T is a subtree of T1 (resp., of T2). Note that, for each (Wj , cj) ∈ L,
we can decide in which case we are as follows. For every 1 ≤ i ≤ p, we compute the least common ancestor
si of cj and ai in T . Then, for every 1 ≤ i ≤ p, we compute the least common ancestor of si and c in T .
Given the pre-computed least-common ancestor data structure for T , this can be done in total O(p) time,
and so in O(|U |) = O(nr) time per cluster. Overall, since we have |L| = r′ = O(log n), we can compute
this above cut in O(nr log n) time. Let (A′, V (H) \ A′) be this cut, where A ⊆ A′. By construction, it is
unweighted. We prove below (see the Correctness part of the proof) that A′ is a k-module of H. Then, we
apply Lemma 4.5 in order to compute, for every u ∈ A, the values maxv∈U\A dH(u, v) and

∑
v∈U\A dH(u, v)

(resp., for every v ∈ U \A, the values maxu∈A dH(v, u) and
∑

u∈A dH(v, u)). It takes O(2O(k)(nr +mr)
1+ϵ)

time for any ϵ > 0.

We are left computing for every u ∈ A, the values maxu′∈A dH(u, u′) and
∑

u′∈A dH(u, u′) (resp., for
every v ∈ U \A, the values maxv′∈U\A dH(v, v′) and

∑
v′∈U\A dH(v, v′)). For that, we construct the gadget

subgraphs HA and HB , as in Definition 4.1. By Lemma 4.6, it can be done in Õ(k2nr + kmr) time. Let
(TA, fA) and (TB , fB) be width-k partition trees of G[A] and G[U ]\A. Recall (see the proof of Theorem 3.2)

that the trees TA and TB can be computed in O(|U |) time from TU as follows: we start with TU
c \

(⋃
i>p T

U
ai

)
and TU \

(⋃p
i=1 T

U
ai

)
, then we remove useless leaves and/or we repeatedly contract internal nodes with only

one child. The corresponding partition function fA, resp. fB , is obtained from fU by removal in the
partition at each node of all the vertices out of A, resp. by removal of all the vertices in A. Hence, being
given the representation graph of (TU , fU ), the representation graphs of (TA, fA) and (TB , fB) can be
computed in O(k|U |) time. Let LA contain every (Wj , cj) ∈ L s.t. Wj ⊆ A′; we also add in LA a new cluster
(V (HA) \ A′, c). In the same way, let LB contain every (Wj , cj) ∈ L s.t. Wj ⊆ V (H) \ A′; we also add in
LB a new cluster (V (HB) \ B′, c), where B′ = V (H) \ A′. We end up calling our algorithm recursively for
the inputs ⟨r + 1, HA, A, TA, fA,LA⟩ and ⟨r + 1, HB , U \A, TB , fB ,LB⟩.

Correctness. There are two properties to check in order to prove the validity of our approach. The first
such property is that, being given the two gadget subgraphs HA and HB resulting from H, the distances in
H (and so, in G) are preserved. This follows from Lemma 4.7. The second property to be checked is that
we always compute a cut (A′, V (H) \ A′) of neighbourhood diversity at most k. We prove it by induction
on r. Specifically, we prove the following slightly stronger property.

Property 1. For every ⟨r,H,U, TU , fU ,L⟩, let s1, s2, . . . , sq be children of some node s in TU . Let Si be
the subset of U of which fU (si) is a partition, and set S =

⋃q
i=1 Si. Finally, let S′ be the union of S with
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all subsets Wj, for (Wj , cj) ∈ L, s.t. the least common ancestor in T of cj and some node si is a strict
descendant of s. Then, S′ is a k-module of H.

If r = 0, then since L = ∅ this directly follows from Lemma 2.2. Let us assume the property to be true
for ⟨r,H,U, TU , fU ,L⟩. In what follows, we analyse the cuts in HA and HB , respectively.

(Gadget subgraph HA). Let s1, s2, . . . , sq be children nodes of some s in TA. Observe that TA is a subtree of

TU (equal to either TU
c \

(⋃
i>p T

U
ai

)
, or TU

a1
if p = 1). In particular, s1, s2, . . . , sq are also children nodes of

s in TU . Let Wr′+1 := V (HA) \ A′ be the only cluster of LA that is not contained in L (constructed using
the procedure of Definition 4.1 in order to create HA). We define S′

0 as the union of S with all the clusters
Wj , for (Wj , cj) ∈ L, s.t. the least common ancestor in T of cj and some node si is a strict descendant of s.
By the induction hypothesis, S′

0 is a k-module of H.

Claim 4.9. For every (Wj , cj) ∈ L, we have Wj ⊆ S′
0 =⇒ (Wj , cj) ∈ LA.

Proof. Since s is a node of TA it is a descendant of c. There are two cases, depending on whether s = c.

• If s ̸= c (see Fig. 1), then s is a descendant of some ai, for 1 ≤ i ≤ p (possibly, s = ai). In this
situation, cj is a strict descendant of s, and so of ai.

c

ai

s

si cj

Figure 1: To the proof of Claim 4.9. Case s ̸= c.

• Otherwise, s = c (see Fig. 2). Then, the nodes s1, s2, . . . , sq must be a subset of the nodes a1, a2, . . . , ap.
This implies that the least common ancestor of cj and some ai is a strict descendant of s = c.

s = c

ai = si cj

Figure 2: To the proof of Claim 4.9. Case s = c.

Therefore, in both cases, there exists an i s.t. cj and ai have a least common ancestor in T which is a
strict descendant of c. ⋄

Then, by Claim 4.9, S′
0 ⊆ A′. By Lemma 4.8, S′

0 is a k-module of HA. Finally, since (Wr′+1, c) ∈ LA

and all nodes of TA are descendants of c, we get Wr′+1 ̸⊆ S′, and so, S′ = S′
0.

(Gadget subgraph HB). Let s1, s2, . . . , sq be children nodes of some s in TB . By construction, in TU , the
node s is a common ancestor of all the nodes s1, s2, . . . , sq (it may not be their father node since we possibly
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contracted internal nodes in order to create TB). Let Wr′+1 := V (HB) \B′ be the only cluster of LB that is
not contained in L (constructed using the procedure of Definition 4.1 in order to create HB). In our analysis
below, we will often use the following observation: when creating TB from TU \

(⋃p
i=1 T

U
ai

)
only two nodes

may be removed, namely, c (if it has at most one child left) or its father node in TU (if c becomes a leaf and
it has exactly one sibling in TU ). There are now two cases to be considered.

• We first assume that, for every 1 ≤ i ≤ q, the least common ancestor of c and si is an ancestor of s
(possibly, s itself). In particular, fB(si) = fU (si).

Claim 4.10. s1, s2, . . . , sq are also children nodes of s in TU .

s

ti = c

si

s

ti

si c

Figure 3: The two cases of Claim 4.10.

Proof. Suppose for the sake of contradiction that s is not the father of si, for some 1 ≤ i ≤ q. In
particular, the original father node of si, let us call it ti, got removed when we created TB (see Fig. 3
for an illustration). But then, ti should be either c, or the father node of c in TU . As a result, si and
c would have a least common ancestor in T which is a strict descendant of s, a contradiction. ⋄

The remainder of the proof is now essentially the same as what we did above for the gadget subgraph
HA. Specifically, let S′

0 be the union of S with all the clusters Wj , for (Wj , cj) ∈ L, s.t. the least
common ancestor in T of cj and some node si is a strict descendant of s. By the induction hypothesis,
S′
0 is a k-module of H. Furthermore, the following result (similar to Claim 4.9) is true:

Claim 4.11. If (Wj , cj) ∈ L is s.t. Wj ⊆ S′
0, then (Wj , cj) ∈ LB.

Proof. Suppose for the sake of contradiction (Wj , cj) ∈ LA. In particular, for some 1 ≤ i′ ≤ p, cj and
ai′ have a common ancestor in T which is a strict descendant of c. There also exists an 1 ≤ i ≤ q s.t.
cj and si have a common ancestor which is a strict descendant of s. Since both s and c are ancestors of
cj , one of these two nodes is an ancestor of the other. But s cannot be a strict ancestor of c (otherwise,
the least common ancestor of si and c would be a strict descendant of s). Therefore, c is an ancestor
of s. Then, we consider two sub-cases.

s = c

ai′ si

ti

cj

s = c

ai′ si

ti

cj

s = c

ai′ si

ti

cj

Figure 4: To the proof of Claim 4.11. Case s = c.
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– First, let us assume s = c (see Fig. 4). Observe that si ̸= ai′ (otherwise, si /∈ V (TB)). Then,
by Claim 4.10, si and ai′ are sibling nodes in TU . Recall that the least common ancestor of cj
and si in T , resp. of cj and ai′ in T , must be a strict descendant of s = c. As a result, the least
common ancestor of si and ai′ in T , call it ti, must be also a strict descendant of c in T . This
implies that ti got removed at some earlier recursive stage. But this is impossible, because at the
stage when ti got removed, this node still had at least two children (being ancestors of si and ai′ ,
respectively). A contradiction.

c

ai′

s

si cj

Figure 5: To the proof of Claim 4.11. Case s ̸= c.

– From now on, we assume s ̸= c (see Fig. 5). We further observe that ai′ cannot be a descendant
of s (i.e., because s ∈ V (TU ) and ai′ is a child of c in TU ). Therefore, the least common ancestor
of ai′ and cj should be on the sc-path in T . In fact, this least common ancestor must be ai′ itself
(otherwise, the least common ancestor of s and ai′ would be a strict descendant of c, that still
exists in TU because it has at least two children, thus contradicting again that ai′ is a child of c
in TU ). In particular, since ai′ is onto the sc-path in T , s ∈ TU

ai′
. But then, it contradicts our

assumption that s ∈ TB .

Summarizing, in both sub-cases we derive a contradiction. ⋄

By the above Claim 4.11, S′
0 ⊆ V (H)\A′. Hence, by Lemma 4.8, S′

0 is also a k-module of HB . Observe
that S′

0 ⊆ S′ ⊆ S′
0 ∪Wr′+1. Finally, since we have (Wr′+1, c) ∈ LB and by the hypothesis, no si has

a least common ancestor with c which is a strict descendant of s, we cannot have Wr′+1 ⊆ S′. As a
result, S′ = S′

0.

• Otherwise, let us assume w.l.o.g. that the least common ancestor of c and s1 in T is a strict descendant
of s. Let us call it t1.

Claim 4.12. t1 is a child of s in TU .

Proof. There are two sub-cases (see Fig. 6). First, let us assume s1 = t1. If s1 is not a child of s in
TU then its former father node, call it s′1, got removed when we created TB . Then, either s′1 = c, or
s′1 is the father of c in TU . In both cases, this contradicts our assumption that s1 is an ancestor of c
in T . Thus, from now on, let us assume t1 ̸= s1. Since the father of s1 in TB is s, t1 got removed at
some earlier recursive stage. In fact, this must be when we created TB because we have s1, c ∈ V (TU )
(otherwise, if it were done earlier, we could have not removed t1 since it still had at least two children).
Then again, either t1 = c, or t1 is the father of c in TU . Suppose for the sake of contradiction that s
is not the father of t1 in TU . Then, at least two nodes got removed from TU

c \
(⋃p

i=1 T
U
ai

)
in order to

create TB . This can happen only if c became a leaf, and then the two nodes removed must be c and
its father in TU . But then, we should have t1 = c, that contradicts the fact that c became a leaf. ⋄
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s

s′1 = c

s1 = t1

s

s′1

s1 = t1 c

s

t1

s1 c

Figure 6: The different sub-cases in the proof of Claim 4.12.

We can also prove, as another intermediate claim (similar to the above Claim 4.12), that every node
si, i > 1, is a child of s in TU . Indeed, if it were not the case for some si then its father node ti in TU

got removed when we created TB . We either have ti = c or ti is the father of c in TU . In particular,
t1 is an ancestor of ti because it is also an ancestor of c and (by Claim 4.12) a child of s in TU (recall
that si, and so, ti is a descendant of s). However, since s1, si ∈ V (TB), this would contradict the
removal of t1 from TB . Overall, we proved as claimed that t1 and s2, s3, . . . , sq are children of s in
TU . In particular, fU (t1) = A ∪ S1, while for every 2 ≤ i ≤ q, fU (si) = fB(si) = Si. Let S′

0 be the
union of A ∪ S with all the clusters Wj , for (Wj , cj) ∈ L, s.t. the least common ancestor in T of cj
and some node si is a strict descendant of s. Note that the least common ancestor of cj and s1 is a
strict descendant of s if and only if the least common ancestor of t1 and cj also is. Therefore, by the
induction hypothesis, S′

0 is a k-module of H. Furthermore,

Claim 4.13. Every (Wj , cj) ∈ L ∩ LA satisfies Wj ⊆ S′
0.

Proof. We refer to Fig. 7 for an illustration. If (Wj , cj) ∈ L ∩ LA, then there is an 1 ≤ i′ ≤ p s.t.
the least common ancestor of cj and ai′ is a strict descendant of c. In particular, the least common
ancestor of s1 and cj is a strict descendant of s. ⋄

We get by Claim 4.13 that A′ ⊆ S′
0. Let B

′ = S′
0 \A′. Since A′∪B′ is a k-module of H, by Lemma 4.8,

Wr′+1 ∪B′ is a k-module of HB . Finally, we observe that S′ = Wr′+1 ∪B′.

s

t1

s1

c

ai′ cj

Figure 7: To the proof of Claim 4.13.

Complexity analysis. By induction, for every r ≥ 0, for every ⟨r,H,U, TU , fU ,L⟩, we have |U | ≤
(2/3)rn. In particular, the depth of the recursion tree is O(log n) (as it was anticipated when we pre-
sented above the algorithm). Furthermore, for any fixed r, if we consider the sets U of all the inputs
⟨r,H,U, TU , fU ,L⟩, then we get a (possibly partial) partition of V . In particular, the sum of all the val-
ues nr = |V (H)|, over all the inputs ⟨r,H,U, TU , fU ,L⟩ that are at the same recursion level r, is at most
n+ n×O(rk2) = O(k2n log n). In the same way, the sum of all the values mr = |E(H)|, over all the inputs
⟨r,H,U, TU , fU ,L⟩ that are at the same recursion level r, is at most m + n × O(k2r) = O(k2n log n +m).
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Processing ⟨r,H,U, TU , fU ,L⟩ takes O(2O(k)(nr + mr)
1+ϵ) time for any ϵ > 0 if we exclude the recursive

calls. Therefore, the total running time at any fixed recursive stage, and so also for the whole algorithm, is
in O(2O(k)(n+m)1+ϵ) for any ϵ > 0.

5 Facility location problems on bounded clique-width graphs

In this section we consider unweighted graphs, where the distance between two vertices u and v is classically
defined as the minimum number of edges on a uv-path. Our last result in the paper is as follows:

Theorem 5.1. For every connected n-vertex m-edge graph G = (V,E), if cw(G) ≤ k and a k-expression is
given, then for any ϵ > 0, we can compute in O(2O(k)(n +m)1+ϵ) time: all the p-eccentricities and all the
total p-distances, for every cost function p : V → N.

Despite its apparent similarity with Theorem 4.1, Theorem 5.1 has some special features. To see why,
let us assume that two vertices u, v are disconnected by a join with respective sides X,Y . Then, d(u, v) =
d(u,X) + 1 + d(Y, v),2 and therefore for any fixed u, in order to maximize d(u, v) it suffices to find such a
v maximizing d(v, Y ). However, this is no more true if we have a cost function p; indeed, we now want to
maximize p(v) · (d(u,X) + 1) + p(v)d(v, Y ).

For that, we first prove that:

Lemma 5.2. Let F be a set of n linear functions fi : t → ai · t + bi, where ai, bi ≥ 0. Then after an
O(n log n)-time pre-processing, for any x ≥ 0 we can compute max1≤i≤n{ai · x+ bi} in O(log n) time.

Proof. Let fi, fj satisfy ai ≤ aj and bi ≤ bj . Since we have fi(t) ≤ fj(t) for every t ≥ 0, we can safely
discard fi from F . In particular, we may assume all coefficients ai (resp., bi) to be pairwise different. To
perform all such removals in total O(n log n) time, let F = (f1, f2, . . . , fn) be lexicographically ordered by
non-decreasing values of (ai, bi). Doing so, we can remove all duplicates. Then, we consider the functions
fi in order and we put them in some min-heap with as for key the value bi. At any step j, the functions
fi that are already in the min-heap are those for which either ai < aj or ai = aj and bi < bj . In order to
detect and remove all such functions for which we have bi ≤ bj , it suffices (since they all satisfy ai ≤ aj) to
repeatedly looking at the minimum-key element into the heap.

Define t1 = 0 and, for every i > 1, ti =
bi−1−bi
ai−ai−1

. Note that for i > 1, we have fi−1(t) > fi(t) for every

0 ≤ t < ti while we have fi−1(t) ≤ fi(t) for every t ≥ ti. In particular, if ti ≥ ti+1 then, we claim that we can
safely discard fi from F . Indeed, for 0 ≤ t < ti we have fi−1(t) > fi(t) while for every t ≥ ti ≥ ti+1 we have
fi+1(t) ≥ fi(t). Consider the following algorithm. All functions of F are put in a doubly-linked list, where
they are kept ordered by increasing values of ai. We start from the head of the list and we proceed as follows
until we reach the bottom of it. Let fi be the function considered at a given step of the algorithm (initially,
fi = f1 is the function minimizing a1 or, equivalently, the one maximizing b1). If fi is the current head of the
list, then we go to its successor function fi+1 in the list. Otherwise, let fi−1 be its predecessor function into
the list. If ti > ti−1, then we also go to fi+1. Otherwise, we discard fi−1, and we still consider fi at the next

step. In this latter case, note that we need to reset ti :=
bi−2−bi
ai−ai−2

, where fi−2 is the new predecessor function

of fi into the list (formerly, the predecessor function of fi−1). This algorithm is correct by our previous
claim and it runs in O(n) time. Therefore, from now on we may assume to have t1 = 0 < t2 < . . . < tn.

Finally, let x ≥ 0 be arbitrary. Let i be the largest index such that x ≥ ti (computed in O(log n) time
by binary search). We claim to have ai · x + bi = maxj{aj · x + bj}. Indeed, suppose by contradiction
there exists a j s.t. aj · x + bj > ai · x + bi. If j < i then, assume j to be maximum with this property.
Since we have tj+1 ≤ x, we obtain fj+1(x) ≥ fj(x), that contradicts either the maximality of j or that
aj · x+ bj > ai · x+ bi. Otherwise, j > i and we assume this index to be minimized. Since we have x < tj ,
we obtain fj−1(x) > fj(x), thus contradicting either the minimality of j or that aj · x+ bj > ai · x+ bi.

We combine this lemma with some insights of Cabello about range trees [12]:

2This is a slightly different formula than in Lemma 3.3, which is for vertex-weighted graphs.
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Lemma 5.3 ([12]). Given a set P of n points in Rd, there is a family of sets P = {Pi | i ∈ I} and a data
structure with the following properties for any ϵ > 0:

• Pi ⊂ P for each Pi ∈ P;

• all the sets of P together have O(2O(d)n1+ϵ) points, counting with multiplicity; that is,
∑

Pi∈P |Pi| =
O(2O(d)n1+ϵ);

• for each box R ⊂ Rd, the data structure finds in O(2O(d)nϵ) time indices IR ⊂ I s.t. |IR| = O(2O(d)nϵ)

and P ∩R =
⋃̇

i∈IR
Pi;

• the family P and the data structure can be computed in O(2O(d)n1+ϵ) time.

Doing so, we get:

Corollary 5.4. Let P be a set of n points in Rd where each point p ∈ P is associated an ordered pair
(a(p), b(p)) of nonnegative real numbers. We can construct a data structure in O(2O(d)n1+ϵ) time, for any
ϵ > 0, such that, for any box R and nonnegative x ≥ 0, a point p ∈ P ∩R maximizing a(p) · x+ b(p) can be
output in O(2O(d)nϵ) time.

Proof. We construct the family P and the data structure of Lemma 5.3, then we apply Lemma 5.2 to each
set Pi ∈ P.

We propose a new version of Lemma 4.5 where, roughly, we use Corollary 5.4 instead of Lemma 4.4.

Lemma 5.5. Let G = (V,E, α) be a connected n-vertex m-edge graph, where α : E → N, and let p ≥ 0 be
some vertex-weight function. Let also (A, V \A) be an unweighted cut of neighbourhood diversity at most k,
and let A′ ⊆ A, B′ ⊆ V \ A. For any ϵ > 0, after a pre-processing in O(km + 2O(k)n1+ϵ) time, for every
vertex u ∈ A′ we can compute the values maxv∈B′ p(v) · dG(u, v) and

∑
v∈B′ p(v) · dG(u, v) in O(2O(k)nϵ)

time; in the same way, for every vertex v ∈ B′ we can compute the values maxu∈A′ p(u) · dG(v, u) and∑
u∈A′ p(u) · dG(v, u) in O(2O(k)nϵ) time.

Proof. Let A1, A2, . . . , Ak be the minimal partition of A. By Lemma 4.3, we can compute it in O(m) time.
For 1 ≤ i ≤ k, let Bi = NG(Ai) \ A. Note that since the subsets Ai are pairwise disjoint, we can compute
B1, B2, . . . , Bk in total O(m) time. Observe that there is at most one index i s.t. Bi = ∅ (otherwise, we can
merge all groups Aj s.t. Bj = ∅ into one, thus contradicting the minimality of the partition of A). W.l.o.g.,
if such index exists then it must be i = k. We want to exclude this index, if it exists, in order to avoid
handling with arithmetic over infinite values. So, let k′ = k if Bk ̸= ∅, otherwise let k′ = k − 1. For every
1 ≤ i ≤ k′, for every u ∈ A′, we compute dG(u,Ai). In the same way, for every 1 ≤ i ≤ k′, for every v ∈ B′,
we compute dG(Bi, v). It takes O(k′m) = O(km) time in total if we use the single-source shortest-path
algorithm of Thorup [59]. Then, for every v ∈ B′ and for every 1 ≤ i ≤ k′, we create a k′-dimensional point
−→p (v, i): whose first coordinate is the index i, followed by the values dG(Bi, v)−dG(Bj , v), 1 ≤ j ≤ k′, j ̸= i.
Let P contain all these k′|B′| points.

We add all points in P into three different k′-dimensional range trees, namely: we set a(−→p (v, i)) = p(v),
b(−→p (v, i)) = p(v)dG(Bi, v) and then we apply Corollary 5.4; we set g1(

−→p (v, i)) = p(v)dG(Bi, v) and then we
apply Lemma 4.4; we set g2(

−→p (v, i)) = p(v) and then we apply Lemma 4.4. It takes O(2O(k)n1+ϵ) time for
any ϵ > 0. Now, let u ∈ A′ be fixed, and assume that we want to compute the values maxv∈B′ p(v)dG(u, v)
and

∑
v∈B′ p(v)dG(u, v). Note that if we replace each edge e by a path of length α(e) then, A ∪ E(A) is a

(k′ +1)-module in the resulting graph, with E(A) representing the edges in G with their both ends in A (no
such vertex has a neighbour in the other side of the cut). By Lemma 3.3 (applied to the resulting graph, and
slightly modified for unweighted graphs), for every v ∈ B′, we have dG(u, v) = min{dG(u,Ai)+1+dG(Bi, v) |
1 ≤ i ≤ k}. Since dG(Bk, v) = +∞ if Bk = ∅, we also have dG(u, v) = min{dG(u,Ai) + 1 + dG(Bi, v) |
1 ≤ i ≤ k′}. We (virtually) partition B′ into C1, C2, . . . Ck′ so that, for every 1 ≤ i ≤ k′, v ∈ Ci if and
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only if the least index j s.t. dG(u, v) = dG(u,Aj) + 1 + dG(Bj , v) is equal to i. Specifically, we design boxes
R1,R2, . . . ,Rk′ so that p(v, j) ∈ Ri ⇐⇒ j = i and v ∈ Ci. Note that if we can do so, then:

max
v∈B′

p(v)dG(u, v) = max
1≤i≤k′

max
v∈Ci

p(v)dG(u, v)

= max
1≤i≤k′

max{p(v) · (dG(u,Ai) + 1) + p(v)dG(Bi, v) | v ∈ Ci}

= max
1≤i≤k′

max{a(−→p (v, j)) · (dG(u,Ai) + 1) + b(−→p (v, j)) | −→p (v, j) ∈ Ri}.

In particular, we are left applying Corollary 5.4 for k′ range queries. In the same way:

∑
v∈B′

p(v)dG(u, v) =

k′∑
i=1

∑
v∈Ci

p(v)dG(u, v)

=

k′∑
i=1

∑
v∈Ci

(p(v)(dG(u,Ai) + 1) + p(v)dG(Bi, v))

=

k′∑
i=1

[
(dG(u,Ai) + 1) ·

∑
v∈Ci

p(v) +
∑
v∈Ci

p(v)dG(Bi, v)

]

=

k′∑
i=1

[
(dG(u,Ai) + 1) ·

∑
{g1(−→p (v, j)) | −→p (v, j) ∈ Ri}

+
∑

{g2(−→p (v, j)) | −→p (v, j) ∈ Ri}
]
.

In particular, we are left doing k′ sum range queries, but on two separate range trees. Hence, being given
R1,R2, . . . ,Rk′ , we are done in O(2O(k)nϵ) time for any ϵ > 0 by Lemma 4.4.

For every 1 ≤ i ≤ k′, the box Ri is defined as follows. Let −→p = (p1, p2, . . . , pk′) be a k′-dimensional point
of P . We have −→p ∈ Ri if and only if:

p1 = i

∀1 ≤ j ≤ i− 1, pj+1 < (dG(u,Aj)− dG(u,Ai))

∀i+ 1 ≤ j ≤ k′, pj ≤ (dG(u,Aj)− dG(u,Ai)) .

Indeed, we have: dG(u,Ai)+1+dG(Bi, v) ≤ dG(u,Aj)+1+dG(Bj , v) if and only if dG(u,Ai)+dG(Bi, v) ≤
dG(u,Aj) + dG(Bj , v), if and only if dG(Bi, v) − dG(Bj , v) ≤ (dG(u,Aj)− dG(u,Ai)). Furthermore, by
construction, if j < i then dG(Bi, v)− dG(Bj , v) is exactly the (j +1)th coordinate of −→p (v, i) (in which case
we want the inequality to be strict by the definition of Ci), and if j > i then dG(Bi, v)− dG(Bj , v) is exactly
the jth coordinate of this point. For the vertices v ∈ B′, we proceed similarly as above, that is, we create a
point-set P ′ from A′ and we put them in some separate k′-dimensional range trees.

Theorem 5.1 now follows from the exact same proof as for Theorem 4.1, but where we use Lemma 5.5
rather than Lemma 4.5.

6 Open problems

We would find it interesting to extend our framework to other centrality indices, such as the computation of
betweenness centrality [37]. To our best knowledge, this problem is open also for bounded treewidth graphs.

Shrub-depth is a well-studied “low-depth” variation of clique-width [39]. We observe that its algorithmic
applications to polynomial-time solvable problems have yet to be explored. In particular, given a (d,m)-tree
model for a graph G = (V,E), can we compute its diameter diam(G) in O(poly(d,m) · (|V |+ |E|)2−ϵ) time,
for some ϵ > 0?
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