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of new potential transcriptional 
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targets
Catherine Cerutti1, Ling Zhang1, Violaine Tribollet1, Jing‑Ru Shi1,2, Riwan Brillet1, 
Benjamin Gillet1, Sandrine Hughes1, Christelle Forcet1, Tie‑Liu Shi2 & Jean‑Marc Vanacker1*

Estrogen related receptors are orphan members of the nuclear receptor superfamily acting as 
transcription factors (TFs). In contrast to classical nuclear receptors, the activities of the ERRs are not 
controlled by a natural ligand. Regulation of their activities thus relies on availability of transcriptional 
co‑regulators. In this paper, we focus on ERRα, whose involvement in cancer progression has been 
broadly demonstrated. We propose a new approach to identify potential co‑activators, starting from 
previously identified ERRα‑activated genes in a breast cancer (BC) cell line. Considering mRNA gene 
expression from two sets of human BC cells as major endpoint, we used sparse partial least squares 
modeling to uncover new transcriptional regulators associated with ERRα. Among them, DDX21, 
MYBBP1A, NFKB1, and SETD7 are functionally relevant in MDA‑MB‑231 cells, specifically activating 
the expression of subsets of ERRα‑activated genes. We studied SET7 in more details and showed its 
co‑localization with ERRα and its ERRα‑dependent transcriptional and phenotypic effects. Our results 
thus demonstrate the ability of a modeling approach to identify new transcriptional partners from 
gene expression. Finally, experimental results show that ERRα cooperates with distinct co‑regulators 
to control the expression of distinct sets of target genes, thus reinforcing the combinatorial specificity 
of transcription.

In eukaryotes, regulation of gene expression relies on a combinatorial interplay between transcriptional regulators 
(TRs) including DNA-binding transcription factors (TFs) and non-DNA binding co-activators or co-repressors. 
Among non-DNA-binding co-regulators, those involved in histone modifications are of importance to control 
chromatin accessibility and the dynamics of the transcriptional  process1. The coordinated activity of all these 
cooperating factors results in specific spatio-temporal effects on target gene  expression2.

Searching potential TFs by identifying TF-binding sites in pre-defined regions from the transcription start 
site (TSS) has often been used to unveil cooperative binding of  TFs3–5. However, presence of binding sites is not 
sufficient to predict actual binding of TFs necessary for cooperation. Chromatin immunoprecipitation sequencing 
(ChIP-seq) studies provide actual genomic locations of TF DNA-binding. It however still remains challenging to 
determine whether these binding events are functional or incidental and whether they function in conjunction 
with other TFs nearby or at a distance. Several experimental approaches can demonstrate pairwise interactions 
at the protein level between TFs or between TF and non-DNA binding co-activator6–8. However simultaneous 
cooperative recruitment of more than two transcriptional partners may occur and is difficult to demonstrate 
experimentally. Various in silico methods have been proposed to infer either gene regulatory networks using 
dynamic or static mRNA gene  expression9–12 or transcriptional regulatory networks using mRNA and protein 
data to suggest direct relationships between regulators and target  genes13–15. Such methods were developed in 
various biological contexts including breast cancer (BC) for subtypes  identification16,17. Moreover, uncovering 
combinations of regulators that could be simultaneously or sequentially recruited remains to be achieved.

OPEN

1Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR5242, Ecole 
Normale Supérieure de Lyon, 32-34 Avenue Tony Garnier, 69007 Lyon, France. 2The Center for Bioinformatics and 
Computational Biology, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and 
School of Life Sciences, East China Normal University, Shanghai, China. *email: jean-marc.vanacker@ens-lyon.fr

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-07744-w&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2022) 12:3826  | https://doi.org/10.1038/s41598-022-07744-w

www.nature.com/scientificreports/

The estrogen-related receptors (ERRα, β and γ in mammals) are a family of orphan nuclear receptors acting 
as TFs. They are expressed in several tissues and display various physiological and pathological  functions18–21. 
In particular, ERRα is involved in energy metabolism, osteogenesis and  tumorigenesis22–24. In cancer, ERRα has 
been shown to control several parameters, including proliferation and cell  migration20,25,26. All ERRs include a 
DNA-binding domain responsible for the specific binding to TCA AGG TCA sequence (ERR response element, 
ERRE). They activate target genes in a ligand-independent manner in the presence of co-activators. Several co-
regulators of ERRα have been identified in the frame of its involvement in energy metabolism, such as PGC-1α27. 
In contrast, RIP140 can act as an ERRα corepressor, depending on the regulatory elements in target  promoters28. 
ERRα regulation of oxidative metabolism is also repressed by NCoR1 in skeletal muscle therefore competing 
with PGC-1α29. The regulation of cell migration by ERRα does not depend on PGC-1α26 indicating that ERRα 
modulates different gene repertoires, depending on the co-regulator with which it interacts. In this line, our team 
previously identified the histone lysine specific demethylase 1 (LSD1) as an important co-regulator of ERRα in 
BC cell  migration30. In addition, NRF1 was found associated with the ERRα-LSD1 complex and recruited at the 
TSS of positive ERRα-LSD1 targets related to cell  invasion31. However, all these factors were identified one at a 
time in various cell or animal models either in a molecular or a gene approach, and we are still lacking a more 
global view.

In this work, we focused on the functional cooperation of ERRα with both TFs and non-DNA binding co-
activators in BC cells. Taking mRNA gene expression as major endpoint, quantitative statistical modeling of 
ERRα target gene expression from TR expression was performed to uncover new transcriptional co-activators 
of ERRα. Our results highlighted specific TRs associated with the ERRα-encoding gene ESRRA  in the expres-
sion models of ERRα-activated genes across various BC cells. Among them, DDX21, MYBBP1A, NFKB1, and 
SETD7 were validated in MDA-MB-231 cells as modulators of distinct sets of ERRα-activated genes. These results 
demonstrate the ability of the modeling approach to identify new transcriptional partners. Each combination of 
ERRα and co-activators regulates specific sets of ERRα target genes, thus reinforcing the combinatorial specific-
ity of transcription.

Results
Genes submitted to the modeling process. To determine TRs that would be associated to ERRα activ-
ity, we focused on ERRα direct positive target genes. To establish this gene list, we first performed a ChIP-seq 
analysis in MDA-MB-231 cells (Figure S1). This revealed 5205 significant reproducible peaks associated to 4846 
distinct genes identified by nearest TSS (data available in Table S1). We next compared this list to the 307 genes 
previously identified by RNA-seq in MDA-MB-231 cells as positively modulated by ERRα30. 74 genes (24.1%) 
were found associated to a ChIP-seq peak for ERRα among which 69 altogether displayed a consensus ERRE 
motif at the peak summit (Fig. 1a, b). Using two public expression datasets obtained in BC cells including MDA-
MB-231 cells for both, we found that these genes showed variable expression levels and variable dispersion of 
expression across cell lines (Fig. 1c). These 69 genes, hereafter referred to as ERRα-activated genes, were used for 
further modeling of their expression.

We next establish a list of TRs expressed in BC cells taken as explanatory variables in the modeling approach. 
To this end, using expression-based criteria and principal component analysis, we identified relevant TRs from 
a comprehensive set of 2175 TRs collected from several public databases. Among the 1308 TRs that passed 
expression-based criteria in the two studied datasets, those best correlated with each of the first five principal 
components, i.e. the most expression-varying TRs across cells, were identified for each dataset. As a result, 318 
TRs common to the two datasets were pre-selected for model computation (Fig. 2a, b and Table S2). Most of these 
TRs exhibited moderate expression but sufficient expression variability across BC cells as shown by variation 
coefficient higher than 23% and 35% for more than half of them in CCLE and GEO-GSE58135 data respectively 
(Fig. 2c). Among them, ESRRA  showed quite suitable expression and expression variability across cells in both 
datasets for use in the modeling approach (Fig. 2d).

Identification of TRs associated to ESRRA by statistical modeling of gene expression. Char-
acteristics of computed models. Sparse PLS (sPLS) models were computed for individual ERRα-activated genes 
that passed the expression criteria in the dataset: 68/69 genes for the CCLE data in 51 BC cells and 63/69 genes 
for the GEO-GSE58135 data in 28 BC cells (Fig. 1c, Table S3). The removed genes displayed either median ex-
pression value at 0 or some missing values. Models used the 318 short-listed TRs that all passed the expression 
criteria. Model computation was replicated 10 times for each gene according to the flowchart shown in Fig. 3a. 
Half of the sPLS models gave R-squared values > 0.68 in both datasets and included a reduced number of TRs 
(median at 30 for CCLE and 45 for GSE58135) (Fig. 3b). Only about 30% of the models included ESRRA  as 
significant TR (non-0 coefficient) (Fig. 3b). The latter result may be a simple consequence of some redundancy 
between TRs that regulate each other’s expression. Other characteristics of the computed models (lambda value, 
number of latent components, and residual variance) are given in Figure S2-a.

Computed models fulfilling quality criteria  (R2 > 0.6, number of TRs < 159, and ESRRA coefficient > 0) were 
further examined. Figure 3c gives an example of such models obtained for one ERRα-activated gene using the 
two datasets. It shows the quality of the prediction of gene expression and it can be observed that the ESRRA  
coefficient is one the highest ones among the 318 TRs.

The ERRα-activated genes that gave suitable models including ESRRA  as a positive variable in at least one 
replicate were identified. For the GSE58135 dataset, only 10 ERRα-activated genes fulfilled this criterion. For 
the CCLE dataset, 17 ERRα-activated genes were uncovered including 9 of the 10 ones stated above (Fig. 3d). 
For these 17 genes, the computed models exhibited some variation across replicates (Fig. 3e). They included 
mostly less than 50 selected TRs, and  R2 ranged between 0.6 and 0.85. The ESRRA coefficient was clearly different 
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between genes but quite stable across replicates. In addition, it consistently varied inversely to the number of 
selected TRs but independently of  R2, and  R2 was not related to the number of selected TRs (Figure S2-b).

Best TRs associated to ESRRA . Significant TRs were identified in each dataset from suitable expression mod-
els. They were sorted according to the proportion of ERRα-activated genes including them in their models. As 
shown in Fig. 4a, among the TRs identified in both datasets, 24 ones detected for > 20% of the genes as a mean 
were selected. All of these 24 selected TRs had high expression levels in both datasets (mean expression over BC 
cells > 75th genome percentile) (Fig. 4b).

Interestingly, these TRs included a majority of non-DNA-binding factors and only three DNA-binding TFs, 
notably NFKB1 encoding a subunit of the NF-κB protein complex. MYBBP1A and DDX21 as well as NFKB1 
were selected for further investigation in MDA-MB-231 cells. The 17 ERRα-activated genes with suitable models 
were then filtered according to the presence of these TRs in their models leading to 14 genes (Fig. 4c). Detailed 
features of suitable computed models for the 17 ERRα-activated genes are in Table S4.
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Figure 1.  Direct ERRα-activated genes in MDA-MB-231 cells. (a) Venn diagram showing the amount of genes 
displaying reduced expression upon siERRα treatment and associated with a ChIP-seq peak for ERRα. The ERR 
response element (ERRE, JASPAR motif MA0592.3) was detected at ChIP-seq peak (± 250 bp around peak) by 
the FIMO tool of the MEME-Suite for 93% of the identified ERRα-activated genes, which were taken as direct 
ERRα-activated targets. (b) Graphs obtained from the UCSC browser showing the two replicates of ERRα ChIP-
seq and input signals for two genes displayed as examples. (c) Expression of the 69 identified ERRα-activated 
genes in the BC cells of CCLE and GSE58135 datasets. Expression is log2 of upper-quartile normalized TPM 
(for CCLE) or FPKM (for GSE58135) values. In each dataset, genes are ordered according to decreasing mean 
expression value. Color rectangles indicate removed genes due to low expression (colored line) or not expressed 
in at least one cell line of the dataset.
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Figure 2.  Identification of a reduced set of TRs. (a) PCA (FactoMineR R package) on TR log2-expression 
across cell lines in each dataset. In the upper panels the scree plots show the selection of the 5 first principal 
components (37 to 44% of the total variance). The lower panels show the projection of the 50 best TRs 
taken as variables on the 2 first principal axes in each dataset. For each dataset, absolute value of correlation 
coefficient > 0.5 with each of the axes was taken as meaningful. (b) Venn diagram showing the selected TRs 
common to the 2 datasets. (c) Distributions of mean expression and of expression variation coefficient of the 
318 selected TRs across cells in each dataset associated with boxplots. They show moderate expression of the 
majority of TRs with variation coefficient across cells mostly between 20 and 50% (inter-quartile range). (d) 
Boxplots showing ESRRA expression and variability in the BC cells of CCLE and GSE58135 datasets. (c, d) 
Expression is log2 of upper-quartile normalized TPM (for CCLE) or FPKM (for GSE58135) values.
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Figure 3.  Model features across all ERRα-activated genes and all replicated analyses using two expression 
datasets. (a) Flowchart of the modeling procedure used to select TRs. (b) Boxplots showing individual model 
R-squared values and the number of TRs selected by the model, i.e. with non-0 coefficient, among 318 ones 
in each model computed 10 times for 68 and 63 genes with the CCLE and GSE58135 dataset respectively. Red 
lines indicate the thresholds used for further selection (R2 > 0.6 and number of selected TRs > 159). The lower 
panel shows histograms of ESRRA coefficient values in models. Most of the values are in the interval ]−0.05, 0] 
leading to 206/680 (30%) and 177/630 (28%) models including ESRRA with a positive coefficient for CCLE and 
GSE58135 data respectively. The green rectangles indicate positive ESRRA coefficients. (c) Example of model 
results for one gene with the two datasets: scatterplots of predicted vs true gene expression and values of TR 
coefficients given by the model. Data are log2-transformed and the identity line is shown. The TRs selected in 
one model have non-0 coefficient values and include ESRRA with a positive coefficient. (d) ERRα-activated 
genes with suitable expression model in CCLE dataset: number of model replicates giving suitable results and 
expression of these 17 genes given as boxplot across the 51 breast cancer cells. (e) Model characteristics across 
the 10 replicates for the 17 ERRα-activated genes with at least one suitable expression model in CCLE dataset.
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Candidate TRs modulate expression of ERRα‑activated genes. Among the 14 ERRα-activated 
genes, we picked two genes associated to one of the three candidate TRs or to the only TR pair, resulting in seven 
genes that were submitted to experimental validation in MDA-MB-231 cells. As negative controls, we used four 
genes regulated by ERR (as evidenced by our previous RNA-seq analysis) but not associated to any of the selected 
TRs. All of these 11 genes had RPKM expression > 5 in MDA-MB-231 cells (Figure S3).

ERRα binding to the genomic sequences at ChIP-seq peak was first confirmed in MDA-MB-231 cells by 
independent ChIP-qPCR experiments (Figure S4-a). We next analyzed by RT-qPCR the effect of efficient siRNA-
mediated inactivation of ERRα or of each of the three TRs (Fig. 5a, b). As expected, depletion of ERRα reduced 
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the expression of all 7 ERRα-TR associated genes. In agreement with our approach, inactivation of NFKB1, 
MYBBP1A or DDX21 also decreased the expression of their corresponding associated genes, suggesting that 
our approach did not produce any false positive association. The expression of all four negative controls was 
also decreased by ERRα depletion but not by those of the candidate TRs with the exception of BDH1, reduced 
upon NFKB1 inactivation. Together with the unpredicted effect of MYBBP1A on NDUFAF4, this suggests the 
existence of false negative target genes within a given ERRα-TR association. The stringent criteria we used in 
our approach may account for the fact that false negative genes escaped our model TR selection. Similar results 
were observed in SKBr3 and MCF7 BC cells contrary to HeLa cells, a cervical cancer cell line (Figure S4-b).

SET7 as an ERRα‑dependent transcriptional co‑activator. To further validate our approach, we 
chose to study more thoroughly the association of ERRα with SET7, which was selected in our sPLS modeling 
and has been shown to be associated with cancer  progression32–36. The effect of ERRα in BC progression might 
thus be partly explained by its combined transcriptional activity with SET7. To this end, we first performed an 
RNA-seq analysis after siRNA-mediated SET7 inactivation in MDA-MB-231 cells. This identified 503 genes 
whose expression was decreased upon by SET7 depletion. Comparison with our previous ERRα RNA-seq data 
revealed a reduced expression after ERRα inactivation for 48 of them (Fig. 6a), out of which 14 were associated 
with one or more ERRα ChIP-seq peak(s) (Fig. 6b). Only one of these genes (CELF1) belonged to the above-
mentioned 17 ERRα-activated genes with suitable models (Fig.  3d, e). This low number may be due to the 
presence of false negatives in sPLS models. In order to overcome this limitation, we analyzed all of the 14 ERRα-
activated genes activated by SET7.

ERRα binding at ChIP-seq peaks was first confirmed in MDA-MB-231 cells by independent ChIP-qPCR 
experiments (Figure S5-a). The effect of ERRα and SET7 on target genes expression was next analyzed by RT-
qPCR. With the exception of PPM1E and SNCAIP, the expression of all these genes was decreased upon siRNA-
mediated inactivation of ERRα or SET7 (Fig. 6c), confirming our RNA-seq analyses. Interestingly, simultaneous 
ERRα and SET7 silencing did not further decrease target gene expression relative to single factor inactivation, 
suggesting that both factors act in the same pathway. Similar results were observed for siRNA experiments in 
SKBr3 and HeLa cells, but surprisingly not in MCF7 cells (Figure S5-b).
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We further tackled the question of ERRα and SET7 functional interactions by performing rescue experi-
ments. To this end, we generated MDA-MB-231 cell populations overexpressing HA-SET7 in a mutant version 
that escapes our siRNA (Fig. 6d). In these cells, the expression of the 14 ERRα-SET7 targets is still reduced upon 
ERRα depletion. As expected, siRNA-mediated depletion of the endogenous SET7 moiety did not result in 
any reduction of target gene expression, in contrast to the situation in wild-type cells. Strikingly, the HA-SET7 
transgene is completely unable to rescue target gene expression when ERRα is depleted together with endogenous 
SET7 (Fig. 6d). As controls, we used BRCA1 and USP16, identified by RNA-seq as SET7-, but not ERRα-, targets. 
Expression of these two genes was sensitive to SET7-depletion in wild type-, but not in HA-SET7 overexpressing 
cells, whatever the ERRα status (Fig. 6c, d). In addition, we generated MDA-MB-231 cells that overexpress wild 
type or methyltransferase-dead SET7 mutant (Fig. 6e). Nearly all ERRα-SET7 targets were down-regulated in 
the presence of mutated SET7, but not in the presence of wild type SET7.

Altogether, this shows that SET7 requires ERRα to transactivate ERRα-SET7 common target genes. Consist-
ently, a physical interaction between the two factors was identified by co-immunoprecipitation, which occurs 
in the nucleus as indicated by proximity ligation assays (Fig. 7a, b). In addition, in vitro immunoprecipitation 
identified the D domain in ERRαas responsible for the SET7 interaction (Fig. 7c). The genes commonly regu-
lated by ERRα and SET7 were submitted to Gene Ontology (GO) analysis, which showed their involvement in 
various processes including cell proliferation and cell migration (Fig. 7d and Figure S6-a). We thus evaluated 
the contribution of SET7 and ERRα in these two processes. We found that cell proliferation was not influenced 
by these factors (Figure S6-b  and26). In contrast, using wound healing experiments in MDA-MB-231 cells, we 
noted that cell migration highly depended on ERRα and SET7 with no additive effect (Fig. 7e).

Discussion
Our approach identified twenty-four TRs as robust quantitative predictors of the expression of ERRα-activated 
target genes in association with ESRRA . The selected TRs include specific DNA-binding TFs, histone modifiers, 
RNA modifiers as well as TF-binding co-regulators. Although detected across a set of various BC cells, activa-
tion of the expression of ERRα targets by four TRs was confirmed in different cell models such as MDA-MB-231 
cells. Moreover we showed that SET7, encoded by the SETD7 gene, physically interacts with ERRα, and that the 
transcriptional effects of SET7 depend on the presence of ERRα specifically on their common target genes. At 
the cellular level, these two factors favor cell migration in a non-additive way further supporting their coordi-
nated activity.

Performances of the sPLS modeling method. The PLS regression approaches the problem of multi-
collinearity between predictors by feature extraction. In PLS regression an orthogonal basis of latent variables 
(linear combinations of predictors), not directly observed or measured, is constructed in such a way that they 
are maximally correlated with the response variable. PLS regression is therefore mostly a compression approach. 
Modeling in genomics always faces the problem of a high number of predictors (genes) collected for a small 
number of samples. Sparsity-based approaches are then necessary to propose biologically usable results. Sparse 
PLS methods have already shown good performance for regression with a continuous quantitative  response37,38. 
In this work we used an adaptive sPLS approach including the choice of parameters by cross-validation and an 
improvement of the feature selection  process39.

Although we analyzed only genes identified as ERRα–activated targets, only 25% of them included ESRRA 
with a positive coefficient in good quality models. This result may arise from the lack of robustness of these genes 
as ERRα–activated targets in all BC cell types. Indeed, they were first identified in MDA-MB-231 cells but only 
partially confirmed as ERRα–activated in other BC cells such as MCF-7 or SKBr3 cells (Figure S4–S5). Another 
reason could come from the fact that the expression data of several of the 318 TRs may contain redundant 
information with ESRRA . The main limit of this study aiming at uncovering actors of transcriptional regulation 
is the unique use of static mRNA expression data, taking into account neither the post-translational modifica-
tions of TRs nor the dynamics of gene expression regulation. In addition, the modeling approach hypothesized 
multiplicative contributions of TRs on gene expression (sum of logs), which is classically used for DNA-binding 
TF  cooperation40,41. The establishment of expression models across several cell types analyzed in a population 
approach is also a limit. Indeed, it makes emerge features from the variability of expression across cell popula-
tions, but we cannot prove that the models are valid for each of the cell types.

Figure 6.  Common transcriptional targets of SET7 and ERRα. (a) Heatmap of the 1407 genes over- or under-
expressed upon siSET7 or siERRα using mean log2 fold change (FC) over 2 distinct siRNAs (scale indicated). 
Mean FC is set to 1 for genes with no significant expression change. (b) Pie chart summarizing the number 
of genes with reduced expression upon siSET7 and siERRα that were associated with a ChIP-seq peak for 
ERRα. The 14 ERRα-SET7 activated genes present an ERRE motif at ChIP-seq peak summit. (c) Wild-type 
MDA-MB-231 cells transfected with siRNAs directed against SET7 and/or ERRα were analyzed for expression 
of the indicated genes by RT-qPCR. Expression of SET7 and ERRα proteins was also analyzed by Western blot 
(marker size is indicated) using hsp90 as a loading control. RT-qPCR results are presented relative to control 
conditions with bars representing mean + /- sem of three independent experiments performed in triplicate. 
(d) Same experiments performed in HA-SET7-overexpressing MDA-MB-231 cells (MDA-MB231 + SET7). (e) 
Same experiment performed in HA-SET7 (mutant or wild type) overexpressing SET7. As evaluated by t-test, 
variations are not significant unless indicated by ***p < 0.001, **p < 0.01, *p < 0.05. Uncropped Western blot 
images are presented on Figure S9.
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Our in vivo analysis in MDA-MB-231 cells confirmed the involvement of the three selected TRs in expression 
activation of ERRα-activated genes. It did not highlight any false positive genes from sPLS models but identi-
fied some false negatives. Several reasons may account for this. First, as stated above our results emerging from 
various BC cells may be not relevant for all of BC cell types. Some ERRα-activated genes may thus involve an 
ERRα partner TR in MDA-MB-231 cells but not in other BC cells so their expression model across cells does 
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Figure 7.  SET7 and ERRα are involved in cell invasion. (a) Co-immunoprecipitation of endogenous 
proteins in MDA-MB-231 cells with anti-SET7 or anti-ERRα antibodies and rabbit IgG used as a control. 
IP: immunoprecipitation, IB: immunoblotting. Proximity ligation assay (PLA) used to detect interaction of 
endogenous SET7 and ERRα in MDA-MB231 cells. Cells were counterstained with DAPI. See also Figure S5-c 
for PLA controls. (c) Indicated ERRα moiety were produced in vitro and identified on the left panel. Same ERRα 
moiety were hybridized on GST-SET7. (d) ERRα/SET7 regulated genes were analyzed by Gene Ontology (GO). 
After elimination of redundant terms, network of enriched GO terms obtained by REVIGO software (grouped 
according to semantic similarity) is shown. Colors indicate p-value. GO terms are coded by number (see Figure 
S6-a for correspondence with GO terms). (e) Confluent layers of MDA-MB-231 cells transfected with the 
indicated siRNA were scratch-wounded, phase contrast microphotographs were taken at the indicated times 
after wounding (left panels). Quantification (right panel) is displayed as percentage of remaining cell-free space 
at 12 h. Data are means of three independent experiments (3 fields per experiment) + /- sem. Significance was 
evaluated by t-test, with ***p < 0.005, *p < 0.05. Uncropped Western blot images are presented on Figure S9.
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not include this TR. Second, some TRs may be actual ERRα partners for some genes undetected by our method 
due to information redundancy across TRs in the expression data.

Nevertheless, this statistical modeling approach is particularly suited to investigate the combinatorial control 
of gene expression due to its variable selection feature. Although we could not reveal the dynamic complexity of 
the transcription process, we could identify TR combinations as determinants of the expression of ERRα–acti-
vated target genes.

DDX21, MYBBP1A, and NFKB1 as ERRα potential partners. Our bio-computing approach allowed 
to identify a number of novel ERRα-associated TRs as potential coactivators. ERRα is involved into several 
pathophysiological processes such as the regulation of energy metabolism, including in breast  cancers20,22,42,43. 
These regulations are exerted through the activation of “metabolic” target genes and highly depend on interac-
tion with members of the PGC-1 (PPARGC1A and PPARGC1B) family of transcriptional co-activators. Our cur-
rent approach did not identify members of this family as potential ERRα partners. Indeed, PGC-1 factors were 
not among the most informative TRs used for modeling, due to their low expression in the studied BC cells (0.14 
and 0.60 q75-normalized TPM in CCLE data, and 0.73 and 0.84 q75-normalized FPKM in GSE58135 data). 
Similarly, other described ERRα co-activators such as those of the SRC  family44,45 could not be identified because 
the NCOA1, NCOA2, and NCOA3 genes encoding them were not part of our short list of TRs due to insuffi-
ciently informative expression content across BC cells compared to the other TRs. Nevertheless, we performed 
an additional computation after adding all these factors to our previous TR list (Figure S7). With the exception 
of PPARGC1B (again, weakly expressed in the studied BC cells), none of these factors were suggested as potential 
ERRα partner. This suggests that regulation of gene expression by ERRα in MDA-MB-231 cells involves different 
TRs than those already identified. Furthermore, the above-mentioned metabolic genes were not found as ERRα-
activated targets in MDA-MB-231  cells30 on which the current study is based, although binding of the ERRα 
protein is clearly detected on the promoters of these genes by ChIP-seq approach (Figure S1). Altogether, this 
suggests that at least two transcriptional programs can be regulated by ERRα: a “metabolic” one which requires 
PGC-1s and a “migratory” one, involving other TRs.

The identified TRs were predicted to display a number of target genes in common with ERRα, and our inde-
pendent RT-qPCR experiments verified this hypothesis for three of them. However, the exact mechanism through 
which these common effects are exerted is currently unknown. The RNA helicase DDX21 is a key regulator of 
ribosome  biogenesis46, participates in transcription regulation as a  cofactor47,48 and is involved in the progression 
of various cancers including breast  cancers47,49. The MYB-binding protein 1A, first identified for its binding to 
c-MYB, is a nucleolar protein that may translocate to the nucleoplasm and enhances p53  activation50,51. Together 
with DDX21, MYBBP1A is part of the B-WICH complex that remodels chromatin and recruits histone acetyl-
transferases for transcription activation of rRNA  genes52. The NF-κB complex associates five proteins: p50 and 
p52 from their precursor p105 and p100, RelA/p65, RelB and c-Rel encoded by NFKB1, NFKB2, RELA, RELB, 
and REL genes respectively. They form homo- or hetero-dimers among which p50/RelA is part of the canonical 
NF-κB signaling pathway. Its involvement in innate and adaptive immunity is well known as well as in cancer 
progression due to constitutive activation by multiple oncogenic signaling  pathways53,54. Only NFKB1 was present 
in our shortlist of 318 TRs making it the unique component of the NF-κB complex in our analysis.

SET7 as an ERRα co‑activator involved in BC cell migration.. GO analysis performed on targets 
regulated by ERRα in MDA-MB-231 cells showed a strong enrichment in terms related to cellular migration, 
but not to those related to energy  metabolism26, altogether indicating that the repertoire of targets activated by 
ERRα is dictated by the action of co-regulators rather than by direct DNA binding. Consistently, we identified 
SET7 as a TR involved in the co-regulation of cell migration by ERRα. We found that these proteins interact 
together and co-localize in cell nucleus. Unbiased RNA-seq showed that SET7 activates the expression of a small 
number of ERRα-activated target genes in MDA-MB-231 cells. Our results of siRNA experiments showed that 
there was no synergic effect of ERRα and SET7 on gene expression, suggesting that both factors act in the same 
pathway. Furthermore, rescue experiments indicated that the effects of SET7 were dependent on the presence 
of ERRα, specifically on SET7- ERRα co-targets, but not on SET7-specific targets (i.e. not regulated by ERRα). 
Although the precise molecular mechanism through which ERRα and SET7 co-activate target genes is currently 
undetermined, our GO analysis strongly suggests that these targets are mainly involved in the regulation of cell 
migration. Functional analysis shows that this phenomenon indeed requires both ERRα and SET7 in a non-
additive manner. Interestingly, transcriptional co-regulation by ERRα and SET7 was confirmed in the migratory 
SKBr3 and HeLa cells, but not in the non-migratory MCF7 cells. Consistent with our data, high SET7 expression 
correlates with cancer  aggressiveness35,36, in a similar manner to that observed for ERRα20,22. These results are in 
line with studies showing SET7 as an activator of other nuclear receptors such as AR or  FXR55,56.

In summary, we here described an in silico method that allows to propose co-regulators driving a transcrip-
tional program dedicated to a particular phenotype. This approach was here operated using publicly available 
expression datasets from cells in culture. While our current conclusions may be limited to these in vitro systems, 
the use of expression datasets from in vivo tissues may be envisioned to question numerous phenotypes.

Materials and methods
All the experiments were performed in accordance with the relevant regulations or guidelines.

Identification of direct ERRα‑activated genes. Genes regulated by ERRα in MDA-MB-231 cells 
have been previously identified by RNA-seq in a previous study of our  team26,30 with data retrievable in GEO 
(GSE49110). ChIP-seq data were specifically generated for this study and performed by the NGS IGFL platform. 
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Two ChIP replicates using an ERRα antibody along with two input samples were obtained (see below) and 
libraries prepared with the ACCEL-NGS 2S Plus DNA Library Kit (Swift Biosciences) following manufacturer’s 
instructions. ChIP DNA libraries were then sequenced in paired-ended mode (2 × 81 bp) using the Illumina 
Next Seq 500 sequencer yielding to 29 M and 10 M reads for ERRα and input samples, respectively. The analy-
sis pipeline included adapter trimming and quality control with TrimGalore! (v0.6.4) based on Cutadapt and 
FastQC, hg38 genome alignment with Bowtie2 and identification of peaks with MACS2 (v2.2.6) (Figure S1-a-b). 
Identified peaks were further annotated using the ChIPseeker R package for their genomic location and their 
biological function (Figure S1-c-d). The presence of a consensus ERR-response element (ERRE) was checked 
in the ± 250 bp region around the peak summit using the FIMO tool of the MEME suite and the Jaspar matrix 
MA0592.3. Sequences showing motif score with p-value <  10–4 were taken as positive for ERRE. Direct ERRα-
activated targets were those genes with reduced expression upon siERRα and that showed a ChIP-seq peak in 
the ± 100 kb region from TSS containing an ERRE.

Public expression datasets. Public RNA-seq data from BC cell lines were used to find potential TRs 
cooperating with or activating ERRα in this cancer context. One dataset derived from the Cancer Cell Line Ency-
clopedia of the Broad Institute (CCLE)57. We selected data obtained in 51 BC cell lines. A second dataset came 
from the Gene Expression Omnibus (GEO) database (accession number GSE58135). In this study, RNA-seq data 
were obtained in 28 BC cell  lines58. For each dataset, expression data in TPM or FPKM were further submitted 
to upper quartile normalization between samples after removal of genes not expressed in all of the samples. For 
the GSE58135 dataset, only expression values with status OK were taken into account, other ones (LOWDATA 
or FAIL status) were replaced by NA. Details of cells and expression data are given in Figure S7.

TR collection for modeling. The human TRs were collected in 02/2019 from several public databases con-
taining both DNA-binding TFs and non-DNA-binding TRs: HumanTFDB3.0 (http:// bioin fo. life. hust. edu. cn/ 
Human TFDB#!/), as well as dbEM (https:// webs. iiitd. edu. in/ ragha va/ dbem/) and Epifactors (http:// epifa ctors. 
autos ome. ru/) for epigenetic modifiers. Merging all of the collected identifiers led to 2175 unique human TRs. A 
pre-selection of these TRs was based on 1-expression values (mean and SD > 0.1 after upper quartile normaliza-
tion), and 2-principal component analysis (FactoMineR R package) across cell lines using log2 expression values 
of TRs taken as variables. For each TR, scores giving correlation with each of the first five principal axes were 
analyzed. TRs with absolute value of score (= correlation with the principal axis) higher than 0.5 for at least one 
axis were considered as those best explaining the variability of TR expression across samples. Then after inclu-
sion of a few other TRs of potential interest, the TRs identified in both datasets were pre-selected for model 
computation.

Sparse PLS models. Using the expression of several hundred genes as explicative variables in a regression 
model has major limits related to the number and the collinearity of these variables. To tackle these limits, we 
used an adaptive sparse partial least squares (sPLS) regression method for univariate  responses39. The procedure 
combines compression, building a limited number of orthogonal latent components (1 to 5), and variable selec-
tion. It is implemented in the plsgenomics R package.

Univariate sPLS models were computed for one gene at a time (Figure S8-a). The contribution of each TR to 
gene expression was taken as the number of genes including the TR in the computed model, allowing identifica-
tion of the most frequent ones (Figure S8-b). Gene selection for expression modeling was based on expression 
level (median value > 0 and no missing value) and expression variability across samples (SD > 0.01). For each 
gene, sPLS modeling was applied on log2 expression data previously upper-quartile normalized in each sample. 
Expression data were further standardized in the model computation steps. The optimal number of latent com-
ponents and the optimal lambda parameter were first determined using the spls.cv function that implemented 
a K-fold cross-validation method: 1 to 5 PLS components and K = 10 or 7 according to the number of samples 
in the dataset. Then the model was computed with the spls function and these optimal parameter values. The 
residual variance and the R-squared determination coefficient were used to estimate the quality of the model. 
For the ERRα-activated genes, the computation was replicated 10 times. In addition, 100 sets of random genes 
were generated. For each dataset and each set of random genes, the same number of adequately expressed genes 
as ERRα targets was submitted to modeling. Models were computed one time for each random gene set.

Computational strategy for TR selection. In each dataset, TRs were selected over the whole set of 
ERRα-activated genes. The TR selection procedure comprised two main steps: 1. select genes showing a suitable 
model (R-squared > 0.6) that includes less than half the total number of TRs and shows a positive coefficient for 
ESRRA ; and 2. for each TR, compute the proportion of these genes with sPLS regression coefficient > 0, then 
the mean proportion over ten replicates for ERRα-activated genes; then compute the fraction of random gene 
sets for which the proportion of genes with reliable sPLS model and positive coefficient (but no criterion on the 
ESRRA  coefficient value) is greater than the proportion obtained for ERRα-activated genes. This fraction value 
gives the p-value of non-specificity of the TR, taken as the significance value of the TR for the genes of interest. 
Lastly, only significant TRs (p-value < 0.05) identified for > 20% of ERRα-activated genes with a positive model 
coefficient for the TR were selected.

Identification of ERRα‑ and SET7‑activated genes. Genes activated by SET7 were identified from a 
RNA-seq experiment performed in MDA-MB-231 cells treated by a siRNA targeting SET7. Two siRNAs target-
ing SET7 (Table S5) were compared to a control siRNA. RNA-seq was done on triplicate samples and libraries 
build using the mRNA-Seq Library Prep kit of Lexogen following the instructions for 5500 SOLiD and including 

http://bioinfo.life.hust.edu.cn/HumanTFDB#
http://bioinfo.life.hust.edu.cn/HumanTFDB#
https://webs.iiitd.edu.in/raghava/dbem/
http://epifactors.autosome.ru/
http://epifactors.autosome.ru/
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a conversion step to SOLiD 5500 W. Sequencing was performed by NGS IGFL platform with SOLiD 5500 W 
System (Life Technologies). Sequences were aligned on the human genome (hg19 version) in color-space using 
the Lifescope dedicated software. Read counts were determined using HTSeq v0.6.1. Differentially expressed 
genes were identified with DESeq2 R package, using an adjusted p-value < 0.05 and fold change threshold of 1.5 
and 0.75 for over- and under-expressed genes respectively. Genes showing significantly modified expression 
with both siSET7 were considered as SET7-modulated genes.

These genes were gathered together with the previously identified ERRα-modulated genes for hierarchical 
clustering (Cluster 3.0) and heatmap representation (Java TreeView 1.1.6r4). Clustering used the euclidian dis-
tance and the average linkage method applied to log2 mean fold changes over two siRNAs for ERRα or SET7. 
Genes repressed by siERRα and siSET7 were selected and further tested for their association to an ERRα ChIP-seq 
peak showing an ERRE at summit location.

Cell culture. All cells originated from ATCC and were cultured in DMEM supplemented with 10% FCS, 10 
U/ml penicillin and 10 µg/ml streptomycin. For siRNA transient transfection, 3.105 cells per ml were seeded in 
6-well plate and 25 pmol/ml of siRNAs (Eurogentec) were transfected with INTERFERin (Polyplus Transfec-
tion) according to the manufacturer’s instructions. Plasmid pCDNA-HA3-SET7 (a generous gift of I. Talianidis) 
was used to introduce mutations in the siRNA recognition site. This construct was then transferred into pSG-
Puro plasmid. Stable MDA-MB231 transfectants were selected for their puromycin resistance and maintained as 
populations. For proliferation assays,  104 siRNA-transfected cells were seeded in 96 well plates. Cell viability was 
determined 48 h after transfection using CellTiterGlo kit (Promega) under the manufacturer’s recommenda-
tions. For migration analysis, cells (5 ×  105) were seeded on 6-well plates (Falcon) and grown to 100% confluency 
for 48 h. Cell layers were scratched with a plastic pipette and washed twice with PBS. Images of wounded mon-
olayers were acquired for 0 to 12 h using a Timelapse Axiovert100M microscope. Individual cell tracking was 
analysed (in terms of velocity, total distance, Euclidian distance). Cell-free spaces were quantified with ImageJ 
software.

RNA expression analysis. Total RNAs were extracted by the guanidinium thiocyanate/phenol/chloro-
form method. 1 µg of RNA was converted to first strand cDNA using the RevertAid kit (ThermoScientific). Real 
time PCRs were performed in 96 well plates using the IQ SYBR Green Supermix (BioRad). Data were quantified 
by ΔΔ-Ct method and normalized to 36b4 expression. Significance was evaluated using t-test comparing specific 
siRNA to control ones. Primer sequences used for these experiments are shown on Table S5.

Protein analysis. For Western blot analyses, cells were lysed in RIPA buffer supplemented with protease 
inhibitor cocktail (Sigma-Aldrich). Proteins (25–50 µg) were resolved in 8% SDS-PAGE, blotted onto PVDF 
membrane (GE-Healthcare) and probed with specific antibodies after saturation. The antibodies used in this 
study were: hsp90 (API-SPA-830, Enzo Life Sciences), ERRα (GTX108166, Gentex), Set7 (#2813, Cell Signaling 
Technology). For co-immunoprecipitation assays, cells were harvested in Phosphate Buffered Saline (PBS) and 
pellets were resuspended in lysis buffer (50 mM Tris pH7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 8% 
glycerol) supplemented with protease inhibitor cocktail (Sigma-Aldrich). 800 µg to 1 mg of proteins were pre-
cleared for 1 h on Sepharose-protein A (GE-Healthcare) with binding buffer (20 mM Tris pH7.5, 150 mM NaCl, 
1 mM EDTA, 8% glycerol) and 2 µg of antibodies were added for 3–4 h at 4 °C with rotation (ERRα, PP-H5844-
00, R&D; SET7, #2813, Cell Signaling Technologies). Beads were then added to the extract and incubated for 
1 h, washed 3 times with wash buffer (20 mM Tris pH7.4, 150 mM NaCl, 0.1% Triton X-100, 1 mM EDTA) and 
finally resuspended in Laemmli buffer for immunoblotting analysis. 10% of whole cell lysate were analysed as 
input fraction.

For proximity ligation assays cells cultured on coverslips were fixed with 2% paraformaldehyde (Merck) for 
10–20 min at room temperature, washed with PBS, and analyzed with the Duolink PLA kit (O-link; Bioscience) 
according to the recommendations provided by the manufacturer using anti-SET7 or anti-ERRα antibodies. 
Samples were Dapi-counterstained. Images were acquired using a Zeiss AxioImager microscope.

Chromatin immunoprecipitation. 10 ×  106 cells were cross-linked with 1% formaldehyde and quenched 
for 5 min in 1 M Glycine. After centrifugation, cell pellets were resuspended in lysis buffer (1% SDS, 50 mM Tris–
HCl pH8, 10 mM EDTA). Sonication was performed with Ultrasonicator (Covaris). Lysates from 2.5 ×  106 cells 
were processed with the iDEAL ChIP kit (Diagenode) according to the manufacturer’s recommendations using 
5 μg of antibody (ERRα: GTX108166, Genetex; IgG provided in the Diagenode kit). Quantitative PCRs were 
performed using 2 μl of DNA in duplicate and enrichment was calculated related to input. Primer sequences and 
siRNAs used for these experiments are shown on Table S5.

Data availability
RNA-seq and ChIP-seq data obtained in MDA-MB-231 cells can be retrieved from the Gene Expression Omnibus 
portal, accession number GSE49110 for RNA-seq data using siRNA against ERRα, GSE163017 for RNA-seq data 
using siRNA against SET7, and GSE163166 for ChIP-seq data targeting ERRα. ChIP-seq data can be visualized 
using http:// genome. ucsc. edu/s/ cerut ti/ ERRA_ ChIPs eq_ hg38_ public.
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