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Expressivity of Hidden Markov Chains vs.
Recurrent Neural Networks from a system theoretic

viewpoint
François Desbouvries, Senior Member, IEEE, Yohan Petetin, Member, IEEE, and Achille Salaün

Abstract—Hidden Markov Chains (HMC) and Recurrent Neu-
ral Networks (RNN) are two well known tools for predicting time
series. Even though these solutions were developed independently
in distinct communities, they share some similarities when
considered as probabilistic structures. So in this paper we first
consider HMC and RNN as generative models, and we embed
both structures in a common generative unified model (GUM).
We next address a comparative study of the expressivity of these
models. To that end we assume that the models are furthermore
linear and Gaussian. The probability distributions produced by
these models are characterized by structured covariance series,
and as a consequence expressivity reduces to comparing sets
of structured covariance series, which enables us to call for
stochastic realization theory (SRT). We finally provide conditions
under which a given covariance series can be realized by a GUM,
an HMC or an RNN.

Index Terms—Hidden Markov Chains, Recurrent Neural
Networks, Generative Models, Expressivity, Modeling Power,
Stochastic Realization Theory.

I. INTRODUCTION

Let x0:t = (x0, · · · , xt) be a sequence of random variables
(r.v.). We focus on the general problem of predicting a future
observation xt+1 from a realisation of x0:t = (x0, · · · , xt).
This problem has many applications such as speech recogni-
tion, finance or geology [1][2] and can be addressed through
Bayesian estimation in two ways. The first way consists in
estimating a generative model pθ(x0:t), for all t ∈ N, and
next computing the posterior distribution pθ(xt+1|x0:t). The
second approach aims at building directly a function fθ such
that fθ(x0:t) is close to xt+1 is a given sense. The objective
of this paper is to propose a comparison between two key
tools associated with each approach, hidden Markov Chains
(HMC) on the one hand, and recurrent neural architectures
(RNN) on the other hand. Our study is not of an experimental
nature (see e.g. [3][4] for such comparisons), but rather aims at
quantifying the modeling power of each model. Before further
comparing these two models, let us briefly review the rationale
of the two approaches by recalling the prediction problem in
the static case.
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A. Bayesian problem

Let us consider a sample (x, y) from a joint probability
density function (pdf) p(x, y). The objective is to predict y
from x, so we look for an estimator ŷ = f(x) such that ŷ is
"close" to y. In a Bayesian context, building estimator f(.) is
induced by the choice of a loss function L(., .), which depends
on the problem at hand, and quantifies the error between the
prediction f(x) = ŷ and the true variable y. Building the
associate estimator amounts to minimizing the Bayesian risk

R(f) = E [L(f(x), y)] , (1)

i.e. build f?(x) = ŷ in which f? = argmin
f

R(f). One can

show that f? depends on the posterior density p(y|x) = p(x,y)
p(x)

(also called predictive distribution in the context of prediction).
For instance, if the loss is quadratic, the Bayesian estimator
is well known to be the conditional expectation, f?(x) = ŷ =
E[y|x]. However, p(x, y) is not known in practice. To cope
with this problem one can estimate the Bayesian risk by two
different ways: by introducing a parameterized distribution
pθ(x, y), or by estimating integral (1) from Monte Carlo
samples.

1) Parameterizing the joint distribution p(x, y): The first
approach consists in proposing a model of the unknown pdf
p. We thus restrict ourselves to a parameterized set of pdfs
(pθ)θ∈Θ, in which θ can be multidimensional. If we have a
set of labelled independent samples

E =
{

(xi, yi)
i.i.d.∼ p(x, y)

}
1≤i≤n

, (2)

the relevance of pθ can be quantified via the likelihood
function [5], [6]

L(.; E) : θ 7→
n∏
i=1

pθ(xi, yi), (3)

so approximating p amounts to computing a parameter θ
which maximizes the likelihood. Note however that the choice
of the parametric family is critical: pθ should model the
data at hand, and in the same time function (3) should be
computed and optimized efficiently. In general, maximizing
the likelihood can only be done approximately. For instance
in the case of latent variables models (i.e. the model is
defined through the introduction of an unobserved random
variable h such that pθ(x, y) =

∫
pθ(h, x, y)dh), maximizing

the likelihood requires approximating schemes such as the
Expectation Maximization (EM) algorithm [7].
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2) Parameterizing the estimator f(x): The second ap-
proach does not make any assumption on p(x, y), but rather
estimates (1) from the same dataset (2) (see e.g. [8], [9]). The
problem of building an estimator becomes that of minimizing
the empirical risk

f?n = argmin
f

1

n

n∑
i=1

L(f(xi), yi). (4)

However, since the dataset is finite, in the absence of further
constraints, any function interpolating the points (xi, yi) sat-
isfies the optimisation problem (4). In such a case, the model
overfits and proves unable to generalize to new observations.
This problem is often overcome by chosing a family of
functions (fθ)θ∈Θ, and finally (4) turns into the parameter
estimation problem:

θ?n = argmin
θ

Rn(fθ), (5)

Rn(fθ) =
1

n

n∑
i=1

L(fθ(xi), yi) (6)

which eventually produces the estimator ŷ = fθ?n(x) (notation
θ?n underlines the fact that the estimator depends on the
training set E , which is of dimension n).

As above, the choice of the family (fθ)θ∈Θ should be
balanced: a poor set of functions will lead to unrealistic
predictions, while a rich set of functions can lead to overfitting.
Moreover (fθ)θ∈Θ should lead to tractable learning, i.e. it
should be possible to solve (5) efficiently. Classical solutions
include the functions belonging to a reproducing kernel Hilbert
space (RKHS) [10] [11] and the functions defined by a neural
network (NN) [12] [13]. Optimizing (5) for these families
of functions leads to well known algorithms such as (linear
or kernel based) least squares [8], Support Vector Machines
(SVM) [14] [15] [16], or deep learning algorithms [8] [17] for
regression or classification.

3) Discussion: As we have just seen, for minimizing (5) it
is not necessary to mimic the distribution p(x, y) by pθ(x, y).
In addition, under some assumptions about the family (fθ)θ∈Θ

it is possible to derive concentration inequalities such as

P
(
|Rn(fθ?n)−R(fθ?n)| > ε

)
≤ δε,n,

where δε,n → 0 when n → ∞ [18]; in other words, such a
bound ensures that fθ?n generalizes well and also provides a
rate of convergence. However, note that in some contexts, and
in particular for times series analysis, we may be interested
in predicting φ(x) from y for a large class of functions φ;
once the joint distribution has been estimated, it is possible
to comply with such a constraint without running a new
estimation algorithm for each function φ. In addition, the
knowledge of the posterior distribution enables to quantify
(even approximately) the uncertainty of the prediction.

B. Goal of this paper

The two previous approaches can be adapted to the se-
quential constraints induced by time series analysis. Let t
be the current time parameter. In order to represent the joint
distribution of x0:t, we need to choose a parametric generative

model pθ(x0:t) such that θ does not depend on t ∈ N
(otherwise, the model cannot be used with new observations).
pθ should model the time series x0:t in a realistic way, and so
take into account the dependencies between the observations;
in the same time, we should be able to compute an estimator of
θ and to approximate the posterior distribution pθ(xt+1|x0:t)
for any realization x0:t.

A popular model satisfying these requirements is the HMC,
particularly developed in the signal processing community, see
e.g. [19] [20]. In the same way, it is possible to parameterize
a function fθ(x0:t) in a such way that θ does not depend on
t. This is the principle of RNN particularly developed in the
machine learning community [21]. Even if such models were
basically proposed for point estimation, they can be easily
used for building generative models. So from now on, in order
to compare the two approaches in a common framework, we
will consider that we have at our disposal two generative
models pθ(x0:t) for all t, the HMC and the RNN. Starting
from the observation that both models actually rely on a set
of latent variables and that they share some common features
in the construction of these variables, our objective in this
paper is to quantify thoroughly (under some assumptions)
how the structural differences of these models impact on their
expressivity.

The rest of this paper is organized as follows. In Section
II we start by formalizing both models under a common
framework. Next in section III, we see that comparing both
models under the linear and Gaussian stationary assumptions
reduces to comparing the covariance series of the stochastic
process x0:t, and consequently the study calls on Stochas-
tic Realization Theory (SRT) (a branch of systems theory).
Section IV provides a brief summary of SRT. Finally the
expressivity of HMC and RNN is compared in section V.

II. LATENT DATA MODELS FOR TIME SERIES ANALYSIS

In this section we introduce our two generative models
based on a sequence of latent r.v. h0:t, and we next embed
them as two particular instances of a more general model.

A. Markovian models

When dealing with a time series x0:t one major issue
consists in modeling the dependency between the observations.
For example, a simple Markov Chain (MC)

pθ(x0:t) = pθ(x0)

t−1∏
s=0

pθ(xs+1|xs) (7)

is often unlikely to represent the distribution of x0:t in a
realistic way , since x′t, t

′ < t−1, becomes independent of xt
when xt−1 is observed. One way of enhancing expressivity
is to introduce a latent process h0:t, where each hs can be
discrete or continuous. The model is now described by the
full joint density p(h0:t, x0:t), from which p(x0:t) is obtained
by marginalizing out the latent variables. This marginalization
definitely makes pdf p(x0:t) more complex and so increases
the modeling power. A constraint is that the introduction of a
latent process should preserve some computational properties
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in order to be used in practice. In this sense, the HMC gener-
alizes (7) by adding a latent process in a rather parsimonious
way, since its joint pdf reads:

pθ(h0:t, x0:t)
HMC
= pθ(h0)

t∏
s=1

pθ(hs|hs−1)

t∏
s=0

pθ(xs|hs). (8)

So an HMC benefits of three (conditional) independence
properties: the latent process is an MC; given the latent
variables h0:t, observations x0:t are independent; and given
all latent variables h0:t, an observation only depend on the
latent variable at the same time, pθ(xs|h0:t) = pθ(xs|hs) for
all s, 0 ≤ s ≤ t. The hidden process h0:t can have a physical
meaning (in which case estimating h0:t from x0:t is relevant).
If not, the role of the latent variables h0:t is just to make the
observed process x0:t more complex, and the HMC can be
seen as a generative model. Associated inference algorithms
for approximating the Maximum Likelihood estimator and
posterior distributions have been extensively studied for these
models [22] [2] and are recalled in Appendix A.

B. RNN architectures

RNN are an adaptation of neural architectures to times
series. So let us start by briefly recalling the rationale of neural
networks.

Neural network architectures are versatile classes of func-
tions [17], which have found many applications for clas-
sification or prediction, including language [23] or image
[24] processing. A neural network (NN) is a succession of
parameterized functions called neurons. A neuron typically
computes x 7→ σ(wx + b), where wx is the dot product of
w (a vector of weights) and x (a vector of variables), b is the
bias, and σ(.) is a so-called (nonlinear) activation function,
such as the sigmoid, hyperbolic tangent or ReLu functions.
Neurons can be gathered into layers which themselves can
be cascaded, yielding increasingly complex functions. Some
universal approximation theorems have been proposed [25],
[26], [27], [28]; for instance, given any (possibly multi-
dimensionnal) continuous function f , there exists a single-
layer NN fθ arbitrarily close to f , provided the activation
function is not polynomial [27]. Similar results have been
proposed for multiple layers NNs. So any Lebesgue-integrable
function f : Rn → R can be approximated by an NN
with ReLu activation function and layers made of at least
n + 4 neurons, provided the net is deep enough [28]. The
number of layers and of neurons per layer, as well as the
activation functions, are hyperparameters which characterize
the NN architecture, and the weights and biases are the model
parameters learnt from a training set. However, the input of
an NN as described above is of fixed size, which is not well
suited to the modeling of time series in which observations
accumulate - unless we use a sliding window, but in that
case the prediction would not be based on the full set of
observations.

In order to introduce dependencies between all the observa-
tions, RNN introduce a latent variable ht which is a function of
all observations x0:t and serves as a memory of the past. After

receiving the new information xt, the new state is computed
as

ht = fθ(ht−1, xt), h−1 = 0 (9)

where θ is an NN layer. In other words, ht is a summary of
all the past observations until time t. Finally a prediction of
xt+1 is computed as x̂t+1 = gθ(ht) where gθ is an NN archi-
tecture. As we claimed before, RNN can be transformed into
generative models by replacing function gθ by a parametric
distribution pθ(xt+1|ht). In this case, we obtain a family of
models defined by

pθ(x0:t)
RNN
= pθ(x0)

t−1∏
s=0

pθ(xs+1|hs), (10)

where hs depends on θ from (9).
By construction, the posterior distribution pθ(xt+1|x0:t)

coincides with pθ(xt+1|ht) and is directly available. The
estimation of θ can be computed by a gradient backpropaga-
tion algorithm [29] [30] [31] [32] which aims at maximizing
log(pθ(x0:t)) for a given observation. Due to the time compo-
nent, there can be as many computed gradients as observations
for a given parameter.

However, in practice, the gradients computed for a given
parameter geometrically tend to infinity or to zero when we
get back into the past. These phenomena are called explod-
ing gradient and vanishing gradient. The exploding gradient
phenomenon is often due to the repeated multiplication of
high weights, a situation where learning the RNN becomes
particularly unstable. An efficient way to limit this behavior
is to bound the values taken by the gradient [17], [33]. One
can also include a regularization term to the cost function
in order to penalize weights that are too large [34]. By
contrast, the vanishing gradient phenomenon results from the
repeated multiplication or small size weights, as well as the
iterated use of activation functions which have derivatives
bounded by 1 in magnitude (e.g. the sigmoid). In that case, the
oldest observations are not taken into account in the learning
phase, so it is difficult to learn long term dependencies. In
order to mitigate the vanishing gradient phenomenon, more
sophisticated architectures have been proposed, such as the
Long Short Term Memories (LSTM) and the Gated Recurrent
Units (GRU) [35] (the only difference is that the corresponding
parameterization of fθ becomes more complex).

C. Generative unified model

As we have just seen, HMC and RNN models result from a
different paradigm but both aim at proposing a parameterized
distribution pθ(x0:t) via the introduction of latent variables
h0:t. In the RNN model, h0:t is deterministic given the
observations x0:t, and hs summarizes all the observations up
to time s into a unique variable; in the HMC model, h0:t

is stochastic given the observations, and indeed the Bayesian
estimation of h0:t is of interest in cases where h0:t is a physical
process of interest.

When we put aside the computational aspects, the natural
question that arises is to compare the set of distributions
pθ(x0:t) induced by each model. Actually, both representations
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can be reconciled as particular instances of the following
Generative Unified Model (GUM),

pθ(h0:t, x0:t)
GUM

= pθ(h0)

t∏
s=1

pθ(hs|hs−1, xs−1)

t∏
s=0

pθ(xs|hs).

(11)
Indeed, the HMC model (8) is a GUM where

pθ(ht|ht−1, xt−1)
HMC
= pθ(ht|ht−1), (12)

while the RNN (9)- (10) satisfies (up to the transformation
ht ← ht−1)

pθ(ht|ht−1, xt−1)
RNN
= δfθ(ht−1,xt−1)(ht),

pθ(x0|h0)
RNN
= pθ(x0),

h0
RNN
= 0,

(13)

where δ denotes the Dirac mass. In the rest of this paper we
will also consider deterministic GUM (D-GUM), which are
defined by the first equation of (13) only (the interest of D-
GUM over RNN will be clear in section V-B).

Let us now discuss the three models, beginning with their
similarities. First, in all three models the pair (hs, xs) is an
MC:

p(hs, xs|h0:s−1, x0:s−1)=p(hs, xs|hs−1, xs−1)

=p(hs|hs−1, xs−1)p(xs|hs), (14)

which induces p(xs|h0:s, x0:s−1) = p(xs|hs). In addition, in
all three models the marginal process h0:t is also an MC, since

pθ(hs|h0:s−1) =

∫
pθ(hs|hs−1, xs−1)pθ(xs−1|hs−1)dxs−1

= pθ(hs|hs−1).

As a result, the GUM, HMC and RNN models only differ
via the distribution pθ(x0:t|h0:t). In an HMC, hs only depends
on hs−1 given the past (h0:s−1, x0:s−1), so pθ(x0:t|h0:t) =∏t
s=0 p(xs|hs); on the other hand, ht is stochastic so pθ(x0:t)

is not available in closed form. By contrast, in a D-GUM or
an RNN, hs is deterministic given the past (h0:s−1, x0:s−1),
so pθ(x0:t) is available in closed form; but hs also depends
on hs−1 so pθ(x0:t|h0:t) is difficult to interpret. The graphical
representation of the three models is displayed in Fig. 1.

Now that we have cast the HMC and the RNN in a
common framework, we can address the comparison of their
expressivity from the GUM perspective. More precisely, our
objective is to set some assumptions which enable us to discuss
on the distribution of the observation pθ(x0:t) associated to
the GUM, and next to discuss on the restrictions on this
distribution induced by (12) and (13).

III. STRUCTURE OF THE MAPPING θ → pθ(x0:t): THE
LINEAR AND GAUSSIAN CASE

A. Linear and Gaussian GUM

We now address the expressivity of the HMC and RNN
models. In order to compare the observations pdf p(x0:t)
induced by the HMC and RNN models, we set ourselves in the
general framework of GUM, in which p(x0:t) is a marginal
of (11). Of course, p(x0:t) =

∫
h0:t

p(h0:t, x0:t)dh0:t cannot,

in most cases, be computed in closed form. In order to be
able to provide a compared analysis of the expressivity of
those models (and thus to understand, when we reduce to the
particular cases of HMC and of RNN, the role of stochastic vs.
deterministic transitions: see (12) and (13)), we consider the
simplified linear and Gaussian framework, i.e. a GUM model
in which the elementary factors in (11) read

p(h0) = N (h0; 0; η), (15)
p(ht|ht−1, xt−1) = N (ht; aht−1 + cxt−1;α), (16)

p(xt|ht) = N (xt; bht;β), (17)

in which ht is an n-dimensional vector and xt is a scalar; so
a, b and c are respectively n× n, 1× n, n× 1, η and α are
n× n covariance matrices, and β ≥ 0. θ = (a, b, c, α, β, η) is
the parameter of the model.

It is easy to see that in model (11) (15)-(17), the joint pdf
p(x0:t) is a zero-mean multivariate Gaussian density, which
is fully characterized by its covariance matrix. Let ηt be the
covariance matrix of ht (we will later see how ηt depends on
η0 and on time t). We have Var(xt) = β + bηtb

T , and, for
all t ∈ N, k ∈ N∗,

Cov(xt, xt+k) = b(a+cb)k−1(aηtb
T + c(β + bηtb

T )︸ ︷︷ ︸
Nt

). (18)

Due to ηt and factor Nt, Var(xt) and Cov(xt, xt+k) a priori
depend on time t. In order to simplify the analysis (see §V
below) we first look for simple sufficient conditions yielding
stationarity.

B. Stationnarity

First, it is easy to see that the matrix series (ηt)t∈N is defined
by

ηt+1 = (α+ cβcT ) + (a+ cb)ηt(a+ cb)T . (19)

As a consequence, for all t ∈ N, ηt+1 − ηt = (a +
cb)t [η1 − η0] (a+ cb)tT . The series (ηt) is thus constant if

η0 = η1 = η. (20)

Assumption (20) implies in turn that Var(xt) and
Cov(xt, xt+k) no longer depend on time, so that (xt)t∈N is

a wide sense stationnary process. Let us finally remark that
under assumption (20), equation (19) becomes:

η = (α+ cβcT ) + (a+ cb) η (a+ cb)T . (21)

This equation in variable η is meaningfull (recall that η is a
covariance matrix) only if it admits a semi-definite positive
(≥ 0) solution, which implies [36], [37] that

(a+ cb) has all its eigenvalues in {z ∈ C; |z| < 1}. (22)

We will now assume that (22) and (20) hold, which implies
that xt is stationary. Let us note that this stationarity assump-
tion is reasonable, because under assumption (22), the series
(ηt) converges when t tends to infinity. So (ht)t∈N as well as
(xt)t∈N are at least asymptotically stationary.

Remark 1: In the HMC case, we have the additional
constraint c = 0 since ht does not depend on xt−1 given
(ht−1, xt−1). In the case of D-GUM, α = 0; if we also
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ht−1 ht

xt−1 xt

(a) HMC

ht−1 ht

xt−1 xt

(b) RNN

ht−1 ht

xt−1 xt

(c) GUM

Fig. 1: Conditional dependencies in HMC, RNN, and GUM. The dashed (resp. solid) lines stand for deterministic (resp.
probabilistic) dependencies.

consider the full RNN case with its particular initial conditions
(see (13)), the constraint Var(h1) = η = cVar(x0)cT =
c(β + bηbT )cT has also to be satisfied.

C. The mapping θ → pθ(x0:t)

Let rk = Cov(xt, xt+k). We observe that this covariance
series has a very specific structure:

r0 = β + b η bT ; (23)
for all k ∈ N∗,
rk = b︸︷︷︸

H

(a+ cb︸ ︷︷ ︸
F

)k−1(aηbT + c(β + bηbT )︸ ︷︷ ︸
N

). (24)

Since this covariance series (rk)k∈N characterizes the distri-
bution of pθ(x0:t) for all t, we now consider function

φ : (a, b, c, α, β, η)︸ ︷︷ ︸
θ

(23)−(24)−→ φ(θ) = (rk)k∈N, (25)

in which (rk)k∈N is given by (23) (24). Since a study of the
direct range of φ under the HMC or RNN constraints seems
a difficult task, we rather consider the inverse mapping.

Let us first observe that the factorized structure of the co-
variance series (i.e., there exists (H,F,N) s.t. rk = HF k−1N
for all k ≥ 1) is remarkable, and is directly related to system
theory. More precisely, the output of any linear time invariant
(LTI) state space system has a stationary factorized covariance
series, and conversely, any such series can be realized by
an LTI system, This second point is the topic of Stochastic
realization theory (SRT), which indeed is of interest here
since we shall look for parameters θ = (a, b, c, α, β, η) s.t.
φ(θ) = (rk)k∈N for a given (rk)k∈N. Before we proceed to
the analysis we thus briefly provide a brief reminder of SRT
(the reader familiar with SRT can skip section IV and directly
jump to section V).

IV. A SHORT REVIEW OF SRT

Let us briefly review some points from SRT [38], [36], [39],
[40], [41] which we will need in section V. SRT is a part of
systems theory, which deals with modeling, controlling and
estimating dynamic systems (see e.g. [42], [43], [44]). Before
we proceed (see section IV-B) we need to recall some algebraic
facts from deterministic realization theory (DR).

A. DRT

Let us consider a linear discrete time system with state ht:{
ht+1 = Fht +Nut

xt = Hht
, (26)

where F (resp. N , H) are n×n (resp. n× 1, 1×n) matrices
(we only deal here with the case where observation xt and
input ut are one-dimensional). The mapping between input
ut and output xt is given by the convolution equation xt =∑+∞
k=1Hkut−k, where the lags Hk of the impulse response

(the so-called Markov parameters of the system) satisfy

Hk = HF k−1N (27)

for all k ≥ 1. Equivalently, the strictly causal transfer function
H(z) =

∑+∞
k=1Hkz

−k can be written as H(z) = H(zI −
F )−1N .

The DR problem consists in building three matrices
H,F,N , with Fn×n of minimal dimension, from the impulse
response of the system, i.e. move from the infinite representa-
tion (Hk)k∈N∗ to the finite representation (H,F,N), with F
of minimal dimension. The key tool for this problem is the
infinite Hankel matrix

H∞ =


H1 H2 H3 . . .
H2 H3

H3

...

 . (28)

From (27), H∞ factorizes as

H∞ =


H
HF
HF 2

...

 .[N,FN,F 2N, ...], (29)

and so has finite rank, which moreover is equal to n (the
dimension of F ) if and only if (iff.) each factor is itself full
rank n. Conversely, if H∞ has finite rank n, then it can be
factorized as a product of two factors of dimensions (∞×n)
and (n×∞), both of them being of full rank n, and due to the
Hankel structure, there exists Fn×n, Nn×1, H1×n so that (29)
(and thus (27)) is satisfied. Moreover, from the proposition
below, all minimal realizations of H(z) are isomorphic:

Proposition 1: [45, proposition 3] (H1, F1, N1) and
(H2, F2, N2) are two minimal realizations of H(z) if and
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only if there exists T invertible such that F2 = TF1T
−1,

N2 = TN1 and H2 = H1T
−1.

Finally numerically efficient DR algorithms have been pro-
posed in [46], [47].

B. SRT
Let us now consider the state space system{

ht+1 = Fht + ut

xt = Hht + vt
, (30)

where h0 is zero-mean and uncorrelated with (ut, vt), and
where (ut, vt) is a zero-mean, uncorrelated, stationary random
process with

E
[[
ut
vt

]
.
[
uTt′ vTt′

]]
=

[
Q S
ST R

]
δt,t′ (31)

and δt,t′ = 1 iff. t = t′. Let us assume that {xt}t≥0 is (wide
sense) stationary and purely non-deterministic. This together
with an observability condition on (F,H) implies that {ht}t≥0

is (wide-sense) stationary and purely non-deterministic as well.
Let P = E[hth

T
t ]; P satisfies

P = FPFT +Q, (32)

which in turn implies that F has all its eigenvalues in the open
unit disc. Finally the covariance function of xt is given by

r0 = E[x2
t ] = R+HPHT ; (33)

for all k∈N∗, rk = E[xtxt−k]=HF k−1(FPHT+ S)︸ ︷︷ ︸
N

. (34)

Starting from a covariance (rk)k∈N, the SR problem consists in
building a minimal "Markovian representation" of (xt)t∈N, i.e.
a state-space system (30)-(31), with F of minimal dimension.

Step 1: Thanks to the structure of function (rk)k∈N∗ , we
can as in section IV-A build a Hankel matrix

R∞ =


r1 r2 r3 . . .
r2 r3

r3

...

 =


H
HF
HF 2

...

 [N FN F 2N . . .
]

(35)

which should be compared to factorization (29). The first (and,
in fact, "deterministic") step of a SR algorithm consists in
building a minimal realization (H,F,N) of (rk)k∈N∗ (unique
up to an invertible matrix);

Step 2: At this point, we dispose of (H,F,N) but N
remains a function of P and S (see (34)), and it remains
to identify Q and R. This second step is more delicate for
the problem must be solved under positivity constraints: P

and
[
Q S
ST R

]
are covariance matrices and so must be semi-

definite positive (≥ 0). If these contraints were not statisfied,
the solution would be meaningless. Finally, the problem is as
follows: knowing (H,F,N, r0), we look for (P,Q,R, S) such
that [

P N
NT r0

]
−
[
F
H

]
P
[
FT HT

]
=

[
Q S
ST R

]
, (36)

P > 0, (37)[
Q S
ST R

]
≥ 0, (38)

in which > 0 stands for definite positive (the constraint on
P should be, a priori, that P is semi-definite positive, but
indeed it happens that any solution P must be definite positive
[39] (see theorem 1 below), whence (37)). Let us notice that
equation (36) gives the covariance of (ht+1, xt). Since (ut, vt)
is a white noise, this covariance satisfies a (Ricatti) equation
of the same kind as that satisfied by P (equation (32), which
in fact is a submatrix of (36)).

System (36) can be seen as a system with three equations
and four unknowns (P , Q, R and S), or rather as a system
with three equations and three unknowns (Q, R and S),
parameterized by P . Finally, P parameterizes solutions of the
constrained system (36)-(38). Let P be the set of parameters

P = {P s.t. (36)− (38) are satisfied}. (39)

Positive real lemma, positivity of (rk)k∈N, structure of P
A result known as the positive real lemma (initially proved

in the spectral domain) connects the positivity of the series
(rk)k∈N (in other words, whether (rk)k∈N is a covariance se-
ries) to the existence of at least one solution to the constrained
system (36)-(38). Let us recall that the infinite series (rk)k∈N
is a covariance series iff. the Toeplitz form

∑m
i,j=0 uiujr|j−i|

is positive or null for all m, i.e. iff. the associated Toeplitz
matrix is semi-definite positive for all m.

Lemma 1 (Positive real lemma [39]): The series (rk)k∈N is
a covariance series iff. P is non void.

We now consider the structure of P .
Theorem 1 ([39]): The set P is closed, convex, bounded

and definite positive; it admits (for the usual order relation
between symmetric matrices) a maximum P ∗ and a minimum
P∗.
Let us finally notice that there exist efficient algorithms for
building elements of P (see [39], [41]).

V. EXPRESSIVITY OF GUM, HMC AND RNN
We are now ready to come back to mapping (25) (23) (24),

and first need to study the range of φ.

A. Algebraic properties induced by the factorizability and
positivity constraints

The range of φ is strictly included into RN, since (rk)k∈N in
(25) is indeed a factorized and covariance series. As we now
see, it is possible to characterize this range, via algebraic tests
which determine whether a given real series satisfies these two
constraints.

1) Factorizability: First, factorization (24) implies that the
doubly infinite Hankel matrix built on (rk)k∈N∗ factorizes as
(35). So the rank of R∞ is finite and lower than or equal
to n (the dimension of F ), and is equal to n if and only
if each factor has itself full rank n. In this case, (H,F,N)
is a so-called minimal (deterministic) realization of (rk)k∈N?

(see section IV for more details). One can show (see [45,
proposition 3] or section IV) that all minimal realizations are
isomorphic: (H1, F1, N1) and (H2, F2, N2) are two minimal
realizations of (rk)k∈N∗ if and only if there exists T1,2

invertible such that

(H2, F2, N2) = (H1T
−1
12 , T12F1T

−1
12 , T12N1). (40)
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2) Positivity: Apart from being factorizable, any sequence
(rk)k∈N

(25)
= φ(θ) is also a covariance series, which can be

characterized either by the constraint that for all k ∈ N, the
Toeplitz matrix with first row [r0, · · · , rk] is positive semi
definite or, equivalently, that C(z)

def
= r0 + 2

∑∞
k=1 rkz

k is
a Carathéodory function, ie. has positive real part in the open
unit disk {z ∈ C; |z| < 1} (Carathéodory-Toeplitz theorem,
see e.g. [48]).

In the context of this paper, it is however more interesting
to recall the positive real lemma, which relies on the factor-
izability constraint we just evoked. So assume that rank(R∞)
is finite, which enables to build a minimal set (F,H,N)
satisfying rk = HF k−1N for all k, k ≥ 1. As we recalled
in section IV, positivity of the series (rk)k∈N is related to
whether there exists at least one matrix P > 0 satisfying[

P N
NT r0

]
−
[
F
H

]
P
[
FT HT

]
≥ 0, (41)

three unknowns (Q,R and S) parameterized by P . i.e. whether
the set P defined in (39) is non void.

B. Compared expressivity of the three models

Let us summarize section V-A.

• Starting from any real valued series (rk)k∈N, this series is
factorizable (i.e., there exists a triplet (H,F,N) such that
rk = HF k−1N for all k ∈ N∗) iff. the Hankel matrix
R∞ is finite rank; the rank n of R∞ is also the minimal
dimension of any realization of (rk)k∈N;

• Starting from a factorizable series (rk)k∈N, this series is
a covariance series if and only if there exists at least one
matrix P > 0 satisfying (41).

This discussion is summarized in Fig. 2 below, the South-West
part of which is the range of function φ in (25).

Fig. 2: This figure represents the set of all real times series.
The series (rk)k∈N which are factorizable covariance series is
the South-West quarter of the figure (orange and blue lines).
Computing R∞ enables to move from the full set to the
Southern part, whereas the positive real lemma enables to
move from the Southern part to the South-West quarter.

We now study if any point of the South-West corner (i.e.,
any factorizable covariance function) can be realized by a
GUM, an HMC and/or an RNN.

1) Expressivity of GUM: This question does not raise any
particular difficulty. Since (rk)k∈N is a factorized covariance
function, it can be realized (see section IV) by the state space
system (30)-(31) for some (F,H,Q,R, S). System (30) can
be rewritten (if R 6= 0) as{

ht+1 = aht + cxt + u′t
xt = bht + v′ − t

, (42)

E
[[
u′t
v′t

]
.
[
u
′T
t v′t

]]
=

[
α 0
0 β

]
, (43)

in which

a = F − SR−1H, b = H, c = SR−1, (44)[
α 0
0 β

]
=

[
I −SR−1

0 1

] [
Q S
ST R

]
︸ ︷︷ ︸
≥0

[
I 0

−R−1ST 1

]
; (45)

Eq. (45) ensures that
[
α 0
0 β

]
≥ 0 (and thus α ≥ 0). Equations

(42)-(43) are a state space representation of (11) (15)-(17).
In other words, any point of the South-West corner can be
realized by some linear and Gaussian GUM model.

2) Expressivity of HMC: We know that any factorizable
covariance function (rk)k∈N such that dim(R∞) = n can
be realized by a GUM of dimension n. Starting from such a
series, under which conditions does there exist an HMC of the
same degree n which produces that same covariance series?
We have the following result (see Appendix B for a proof).

Proposition 2: Let (rk)k∈N a factorizable covariance func-
tion and let (H,F,N) a triplet (with F of minimal dimension
n) produced by DR. The series (rk)k∈N can be realized by an
HMC of dimension n if and only if there exists P̃ (and thus
Q̃(P̃ ) et R̃(P̃ )) such that[

P̃ N
NT r0

]
−
[
F
H

]
P̃
[
FT HT

]
=

[
Q̃ 0

0 R̃

]
, (46)

P̃ > 0, (47)[
Q̃ 0

0 R̃

]
≥ 0. (48)

Remark 2: Finally, let P̃ the set of solutions P̃ of the
constrained problem (46)-(48). One can note that P̃ is a convex
subset of P . On the other hand, as compared to P , (46)
yields the supplementary constraint (74). This equation can be
satisfied only if N ∈ Span(F ). Moreover, if F is invertible,
(74) also implies

HTF−1N > 0. (49)

So if (74) and/or (49) is not satisfied, then the series (rk)k∈N
cannot be realized by an HMC of dimension n.

3) Expressivity of D-GUM and RNN: Similarly as the
HMC, the study can be done from any triplet (H,F,N)
provided by the DR step. We have to take into account
the D-GUM constraint α = 0 (or Q − SR−1ST = 0,
see (44)-(45)) and the RNN constraint η = cVar(x0)cT (or
P = SR−1r0R

−TST ).
Proposition 3: Let (rk)k∈N a factorizable covariance func-

tion and let (H,F,N) a triplet (with F of minimal dimension
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n) produced by DR. Let us note P the set of solutions of
system (36)-(38). Then (rk)k∈N can be realized by a D-GUM
if and only if there exists P̃ ∈ P such that

P̃−FP̃FT−(N−FP̃HT )(r0−HP̃HT )−1(N−FP̃HT )T = 0.
(50)

If in addition P̃ satisfies

P̃ = r0(r0−HP̃HT )−2(N−FP̃HT )(N−FP̃HT )T , (51)

the covariance series can be produced by a traditional RNN
initialized to h0 = 0, with a linear activation function.

Remark 3: Note that by construction P̃ in (51) is a rank 1
n × n semi-definitive positive matrix, and is positive definite
only if n = 1. In other words, a factorizable covariance
series can be realized by an RNN if the latent vector is
monodimensional and (51) holds (as we will check in the
worked example below), but can never be realized by an RNN
if n > 1.

C. A worked example (unidimensional case)
We now illustrate the preceding section in the scalar case.

We first look for conditions on the triplet (H,F,N) such that
a factorizable series (rk)k∈N is a covariance function. We next
give conditions on this triplet to determine if the covariance
series can be produced by one of the generative models of this
paper.

1) SR step: Let (rk)k∈N be a covariance series, factorizable
as HF k−1N for all k ∈ N∗ with H,F and N scalar. We
assume that such a triplet (H,F,N) has been produced by DR
of (rk)k∈N, and we search for the scalar parameters P,Q,R, S
satisfying (36)-(38). Each of these equations becomes respec-
tively 

Q = P (1− F 2)

R = r0 − PH2

S = N −HFP
, (52)

P ≥ 0, (53)
QR− S2 ≥ 0

Q ≥ 0

R ≥ 0

. (54)

In particular, (54) corresponds to the semi-definite positive
constraint (38) when Q,R and S are scalar.

Let us build the set P of positive numbers P which satisfy
this system. The second inequality of (54) is satisfied when
F 2 ≤ 1; by using (52), the first inequality of (54) reads

Ξ/H2(P )
def.
= −H2P 2+[r0(1−F 2)+2HFN ]P−N2≥0. (55)

Since polynomial Ξ/H2 is concave, one can show easily that
(55) admits a solution provided

r0(F − 1)

2
≤ HN ≤ r0(F + 1)

2
, (56)

and that P is included in [P/H2,1, P/H2,2] with

P/H2,i =
(2HFN + r0(1− F 2)) + (−1)i

√
δ

2H2
, (57)

δ = (1−F 2)(r0(1 + F )−2HN)(r0(1−F ) + 2HN).
(58)

Moreover, constraints (53) and R ≥ 0 in (54) imply that P be-
longs to [0, r0H2 ]; but it can be checked that [P/H2,1, P/H2,2] ⊆
[0, r0H2 ] so constraints P ≥ 0 and R ≥ 0 do not yield further
interval restrictions. Finally, factorizable series (rk)k∈N is a
covariance function if F 2 ≤ 1 and HN satisfies (56); P then
coincides with

P = [P/H2,1, P/H2,2] (59)

and is non void. It can also be produced by a GUM whose
parameters are deduced from (44)-(45).

Remark 4: Finally one can show easily that P/H2,1 > 0 if
N > 0 (the case P/H2,1 = 0 is possible only if Ξ/H2(0) =
−N2 ≥ 0, and so N = 0, which corresponds to the degenerate
case of a series (rk)k∈N which is null everywhere except at
k = 0 where it is equal to r0), so P is a definite positive set,
which is in concordance with Faurre’s theory [39, theorem 7].

2) HMC case: As a consequence of Proposition 2, a factor-
izable covariance series (rk)k∈N can be produced by an HMC
if there exists P̃ in P such that P̃ = N(HF )−1; equivalently,
P̃ has to satisfy P̃ = N(HF )−1 and P̃ ∈ (0, r0H

−2]. So
condition (56) for HN becomes{

0 < HN ≤ r0F , if F ≥ 0

r0F ≤ HN < 0, if F ≤ 0
.

3) D-GUM and RNN cases: Remember that for a D-GUM,
the first inequality of (54) becomes an equality. So polynomial
Ξ/H2 in (55) is equal to zero, and system (52)-(54) admits two
solutions, P/H2,1 and P/H2,2. Consequently, as the GUM, a
D-GUM can produce any covariance series, but requires less
parameters since α = 0.

Finally, the additional RNN constraint becomes P =
r0S

2R−2. In the same time P has to satisfy P = P/H2,1 or
P = P/H2,2. Using elementary calculus, these new systems
have a solution if HN = r0F , or HN = r0F (2F 2 − 1).

A graphical representation of the expressivity of each gen-
erative model in function of parameters F and HN is given in
Fig. 3 below (these 1-dimensional results coincide with those
obtained in [49] by using the Caratheodory theorem).

VI. CONCLUSION

In this paper we adressed a comparative study of HMC and
RNN, which are familiar tools for predicting time series. Even
though both tools were developed in different communities,
we first showed that they indeed share close features when
the RNN is turned into a generative model, and thus when
HMC and RNN are considered as two latent variables proba-
bilistic models with close enough (conditional) independence
structures. Under this framework, both structures can be seen
as two different particular instances of a common generative
unified model. We next compared both models from the
point of view of expressivity, i.e. the relative complexity of
the joint probability distribution of an observations sequence,
induced by the underlying latent variables. By contrast with
previous studies, which were of an experimental nature, our
approach consisted in thoroughly quantifying the modeling
power of both models. To that end we considered the linear
and Gaussian assumption, which induces that the probability
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F

HN

-1 1

−r0

r0

Fig. 3: Expressivity of RNN, HMC, D-GUM and GUM with
regards to parameters F and HN in the scalar case. The
parallelogram (blue and cyan) coincides with the factorizable
covariance series rk = F k−1HN . Such series can be produced
by a GUM or a D-GUM. The blue (resp. orange) area (resp.
curves) coincides with the value of F and HN which can be
taken by the HMC (resp. the RNN).

distributions of an observations sequence produced by each
model are characterized by structured covariance series, which
enabled us to call for SRT. Finally we provided implicit
conditions under which a given covariance series (and thus a
given probability distribution) can be realized by a GUM, an
HMC and/or a D-GUM or an RNN. These implicit conditions
turn to an explicit cartography of the models in the mono-
dimensional case.

APPENDIX

A. Inference algorithms in HMC

1) Computing the likelihood: As we recalled in section
II-A, being able to compute and maximize the likelihood
is a key factor for choosing a probabilistic model. The
likelihood can be computed from the predictive likelihoods
pθ(xs|x0:s−1). In model (8), for all s, 0 ≤ s ≤ t, we have

pθ(xs|x0:s−1) =∫
pθ(hs−1|x0:s−1)︸ ︷︷ ︸

filtering pdf

pθ(hs|hs−1)pθ(xs|hs)︸ ︷︷ ︸
HMC transition pdf

dhs−1:s, (60)

where pθ(xs|hs) and pθ(hs|hs−1) are the elementary factors
in (8). On the other hand, the filtering pdf pθ(hs−1|x0:s−1)
can be computed recursively:

pθ(hs|x0:s) =
pθ(xs|hs)

pθ(xs|x0:s−1)
×∫

pθ(hs|hs−1)pθ(hs−1|x0:s−1)dhs−1. (61)

So equations (60) and (61) enable to compute the predictive
pdf pθ(xs|x0:s−1) and the filtering pdf pθ(hs|x0:s) recursively.
Given the initial pdf pθ(h0), we first compute pθ(xs|x0:s−1)
from pθ(hs−1|x0:s−1) via (60). We next compute pθ(hs|x0:s)
from pθ(hs−1|x0:s−1), pθ(xs|x0:s−1) and the HMC transition
pdfs. Note that it is the HMC structure (8) that enables this
likelihood calculation, at least theoretically (in practice, the

integrals in equations (60) and (61) can be difficult to compute,
see section A3 for further discussion).

2) Learning: In latent variables models (as is the case
here) computing the maximum likelihood estimate is difficult,
and one generally resorts to approximations. In particular, the
EM algorithm is an iterative learning method which runs as
follows. At step i, we first compute, under parameter θi, the
expected log-likelihood given observations x0:t:

Eθi [log pθ(x0:t, h0:t)|x0:t]

=

∫
pθi(h0:t|x0:t) log pθ(x0:t, h0:t)dh0:t (62)

=

t∑
s=1

∫
[log pθ(xs|hs) + log pθ(hs|hs−1)] pθ(hs−1:s|x0:t)dhs−1:s

+

∫
log (pθ(x0|h0)pθ(h0)) dh0, (63)

next we update this parameter θi → θi+1 by maximizing

θi+1 = argmax
θ

Eθi [log pθ(h0:t, x0:t)|x0:t] . (64)

Equations (62) and (64) are respectively the E and M steps of
the EM algorithm. In particular, the E step is feasible if factors
pθi(hs−1, hs|x0:t) and pθi(h0|x0:t) can be computed. As is
well known, the algorithm ensures that the likelihood increases
with the iterations: for all i, pθi(x0:t) ≤ pθi+1(x0:t). Stronger
theoretical guarantees are available under further conditions
[50][51].

3) Practical considerations: In practice, computing the
likelihood and maximizing it via the EM algorithm depend
on the model assumptions. We can distinguish three different
cases.

Case 1: Linear and Gaussian state space systems.

Assume that x0:t and h0:t take continuous values, and
that the transition pdfs pθ(hs+1|hs) and pθ(xs|hs) are linear
and Gaussian: hs+1 = Fshs + us, xs = Gshs + vs where
Fs and Gs are matrices and h0 and (us, vs) are Gaussian
independent random vectors. Under such assumptions all pdfs
of interest are indeed Gaussian, so propagating them through
time reduces to propagating their parameters.

Computing the likelihood in this model can be done via
an iterative algorithm known as the Kalman filter (KF),
introduced in the control community in the 1960’s [52], [53],
[54] and heavily studied since then [55], [56], [57]. The KF
enables to compute efficiently the filtering pdf pθ(hs|x0:s)
for any s. Similarly, one can show that the parameters
of pθ(hs−1, hs|x0:t) (see (63)) and of the smoothing pdf
pθ(hs|x0:t) (which are also Gaussian) can be computed via
backward propagation [58], which enables an efficient imple-
mentation of the EM algorithm.

Case 2: continuous states (general case).

In the general case (non linear transition pdfs and/or non
Gaussian noise), exact computing is not available and one
needs to resort to approximations. Approximation methods
include the extended KF, i.e. a KF in a linearized model [59]
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[55], and the unscented KF, which propagates an approxima-
tion of the one- and second-order moments of the pdfs of
interest [60] [61] [62].

Particle filtering (or sequential Monte Carlo) methods
are another class of approximate solutions [63] [64] [65],
which consist in propagating a random, discrete approxima-
tion of pθ(h0:t|x0:t), via an importance sampling mecanism
with resampling [66]. Let us start from p̂θ(h0:t|x0:t) =∑N
i=1 w

(i)
t δ

h
(i)
0:t

(h0:t), where δ is the Dirac mass and w
(i)
t

are a normalized set of weights. The weighted trajectories
{h(i)

0:t, w
(i)
t }Ni=1 are propagated via three steps. For all s ∈ N,

the ith particle is sampled from a conditional importance pdf
q:

h̃
(i)
s+1 ∼ q(hs+1|h(i)

s ). (65)

Next we compute its unnormalized weight

w̃
u,(i)
s+1 = w(i)

s pθ

(
h̃

(i)
s+1|h(i)

s

)
pθ

(
xs+1|h̃(i)

s+1

)
/q
(
h̃

(i)
s+1|h(i)

s

)
,

(66)

which is normalized as w̃
(i)
s+1 = w̃

u,(i)
s+1 /

∑N
j=1 w̃

u,(j)
s+1 . Fi-

nally the trajectories can be resampled, i.e. h
(i)
0:s+1 ∼∑N

j=1 w̃
(j)
s+1δ(h(j)

0:s,h̃
(j)
s+1)

(h0:s+1), and given new weights

w
(i)
s+1 = 1

N . This optional resampling step keeps a larger
proportion of trajectories with strong weights, to the detriment
of those of low weight. If the trajectories are not resampled,
then h̃(i)

s+1 (resp. w̃(i)
s+1) reduces to h(i)

s+1 (resp. w(i)
s+1). With or

without resampling, the procedure is repeated from (65).
The unnormalized weights computed in (66) enable in turn

to compute an approximation of the predictive likelihood:
p̂θ(xt|x0:t−1) = 1

N

∑N
i=1 w̃

u,(i)
t , from which an estimate of

the likelihood is computed from (7). Finally p̂θ(h0:t|x0:t) also
provides an approximation of (62):

Êθ′ [log pθ(h0:t, x0:t)|x0:t] =

N∑
i=1

w
(i)
θ′,t log p̂θ(h

(i)
0:t, x0:t),

which still remains to be maximized (notation w(i)
θ′,t recalls that

weights are built from parameter θ′, see (66)). In practice ap-
proximation p̂ can be poor, in particular when N is very small
w.r.t. t. As a possible rescue one can use particle smoothing
algorithms [67] [68] [69] [70], which aim at improving the
approximation of p(hs−1, hs|x0:t) in (63).

Case 3 : discrete latent states.

HMC with discrete latent states were introduced in the
1960’s [71] [72] [73] and have been used in such fields as
langage processing [19] [20], bioinformatics [74] or digital
communications [75] [73].

In the discrete case, the problem is that computing the
likelihood as pθ(x0:t) =

∑
h0:t

pθ(h0:t, x0:t), i.e. via brute
force marginalization of the full joint pdf, is unfeasible due
to the exponential cost. The success of HMC comes from the
fact that the computation of the likelihood pθ(x0:t) can be

performed in linear time. Indeed the likelihood can be seen as
another marginalized pdf:

pθ(x0:t) =
∑
ht

pθ(hs, x0:s)︸ ︷︷ ︸
α(hs)

, (67)

in which pdfs α(hs) can be computed recursively in linear
cost in the forward time direction:

α(h0) = pθ(h0)pθ(x0|h0) (68)

α(hs+1) = pθ(xs+1|hs+1)
∑
hs

pθ(hs+1|hs)α(hs). (69)

Note that α(hs) is proportional to the filtering probability mass
function, and that (69) is the discrete analog of (61). As for
the predictive likelihood, it reads

p(xs+1|x0:s) =

∑
hs+1

pθ(xs+1|hs+1)
∑
hs
p(hs+1|hs)α(hs)∑

hs
α(hs)

.

From (63) (where integrals become sums), running the EM
algorithm requires calculating, for all s, 0 ≤ s ≤ t, pdf
pθ(hs−1, hs|x0:t), which is proportional to

pθ(hs−1, hs, x0:t) = pθ(xs+1:t|hs)︸ ︷︷ ︸
β(hs)

α(hs−1)pθ(hs|hs−1)pθ(xs|hs).

(70)

In particular, pdf pθ(hs−1, hs, x0:t) depends on the backward
pdfs β(hs) = pθ(xs+1:t|hs) which, similarly to pdfs α(hs),
can be computed recursively at linear cost, but in the reverse
time direction (whence the term backward):

β(ht) = 1 (71)

β(hs) =
∑
hs+1

β(hs+1)pθk(xs+1|hs+1)pθ(hs+1|hs). (72)

The recursive calculation of fonctions α(hs) and β(hs), for
all s, is the so called forward-backward algorithm [71] [72]
[20]. Finally from (70) we have

pθ(hs−1, hs|x0:t) =
β(hs)α(hs−1)pθ(hs|hs−1)pθ(xs|hs)∑

hs−1,hs
β(hs)α(hs−1)pθ(hs|hs−1)pθ(xs|hs)

.

(73)

It remains to maximize w.r.t. pθ(ht|ht−1) and pθ(xt|ht).
Computing pθ(hs−1, hs, x0:t) enables to update these pmfs
/ pdfs in the M step of the EM algorithm; this version of
the EM algorithm, applied to discrete latent states HMC, is
called the Baum-Welch algorithm [76], [20]. Finally observe
that the forward-backward algorithm enables to compute the
smoothing pmf (for a given, fixed parameter θ), since from
(73) we get pθ(hs|x0:t) = α(hs)β(hs)∑

hs
α(hs)β(hs)

.

B. Proof of Proposition 2

According to Remark 1, the problem reduces to studying
whether among the set of all solutions, there exists at least
one such that c = 0, and thus (see (44)) S = 0. So we need
to solve (41) with the additional constraint

N = FPHT , (74)
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whence (46). However, this raises the following question:
although the set P1 in which we look for an HMC solution is
built from a triplet (H1, F1, N1), produced by the DR step, this
triplet is not unique; if P1 had no HMC solution, could another
set P2, built from another triplet (H2, F2, N2), nevertheless
contain an HMC solution?

We thus need to study the relation between P1 and P2.
Since (H1, F1, N1) is of minimal degree, from (40) any
other minimal degree solution (H2, F2, N2) can be computed
from (H1, F1, N1) via an invertible matrix T12. Let P1 be
an element of P1. By pre- (respectively post-) multiplying

equation (41), with parameters (H1, F1, N1), by
[
T12 0
0 1

]
(respectively

[
T12 0
0 1

]T
), one can show easily that

P2 = {T12P1T
T
12 ; P1 ∈ P1}, (75)

which we denote simply by the set equation P2 = T12P1T
T
12.

This is summarized by Figure 4 below.

Fig. 4: Starting from a factorizable covariance series (rk)k∈N
(see figure 2), the deterministic realization step (in blue)
consists in finding a triplet (H,F,N) representing the series
under study. This step provides one solution out of an infinity
of solutions to this problem. These solutions are isomorphic
and it suffices to know the appropriate invertible matrix
T12 to move from a given solution (H1, F1, N1) to another
(H2, F2, N2) (dashed arrow).
The SR step (in orange) amounts to finding a state-space
system modeling function (rk)k∈N from the triplet (H,F,N)
obtained at the previous step. A triplet (Hi, Fi, Ni) leads to
a set of solutions Pi. These sets are also isomorphic and T12

suffices for moving from P1 to P2, respectively obtained from
(H1, F1, N1) and (H2, F2, N2) (dashed arrow).

Let now a triplet (H1, F1, N1) and a solution P1 ∈ P1, such
that

N1 = F1P1H
T
1 . (76)

This matrix P1 is thus an HMC solution of (rk)k∈N. Equation
(76) is equivalent to

T12N1︸ ︷︷ ︸
N2

= T12F1T
−1
12︸ ︷︷ ︸

F2

T12P1T
T
12︸ ︷︷ ︸

P2∈P2

T−T12 HT
1︸ ︷︷ ︸

HT2

; (77)

so from (40) and (75), we see that P2 = T12P1T
T
12 is one HMC

element belonging to set P2. In other words, if there exists an
HMC element in the set P1 associated to a triplet (H1, F1, N1)
from the equivalence class produced by the DR step, then any
set P2 = T12P1T

T
12 (with T12 an arbitrary invertible matrix)

also contains an HMC solution. Similarly, if there is no such
element in P1, then no set P2 = T12P1T

T
12 will contain a

solution either. Finally it suffices to look for an HMC solution
in the set P produced by the SR algorithm, without bothering
any longer of the other elements in the equivalence class.
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