
HAL Id: hal-03745566
https://hal.science/hal-03745566

Submitted on 4 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A formal meta-modeling approach for the design of
automated manufacturing systems

Laurent Piétrac, Bruno Denis, Jean-Jacques Lesage

To cite this version:
Laurent Piétrac, Bruno Denis, Jean-Jacques Lesage. A formal meta-modeling approach for the design
of automated manufacturing systems. International Workshop on Formal Methods and Manufacturing
(FM&M99), Sep 1999, Zaragoza, Spain. pp.65-74. �hal-03745566�

https://hal.science/hal-03745566
https://hal.archives-ouvertes.fr

A formal meta-modeling approach for the design

of automated manufacturing systems

Laurent Pi�etrac1, Bruno Denis2 and Jean-Jacques Lesage2

1 LAI, INSA de Lyon, Bat 303
20, avenue Albert Einstein F-69621 VILLEURBANNE CEDEX - FRANCE

Laurent.Pietrac@lai.insa-lyon.fr
2 LURPA, ENS de Cachan

61, avevue du Pr�esident Wilson F-94235 CACHAN CEDEX - FRANCE
fBruno.Denis,Jean-Jacques.Lesageg@lurpa.ens-cachan.fr

Abstract. The design of Automated Manufacturing Systems (AMS)
consists in the construction of many models. The quality of the designed
system depends on the quality of the produced models, and also on the
quality of the languages and methods used during the design. Some re-
cent works aim to improve these languages and these methods by using
meta-modeling. The purpose of this paper is to make an inventory of
the requirements in meta-modeling and to propose a language of meta-
modeling enabling to meet these requirements.

1 Introduction

The AMS are increasingly complex systems, whose design requires increasingly
diversi�ed techniques. Moreover, an enhanced quality and an increased safety in
operation are required for these systems. These requirements are reected on the
process of AMS design, whose various stages are punctuated by the contruction
of models.

The development of models requires a certain number of concepts, the most
important of which we are recalling here (in bold). Each model is built starting
from a modeling language, which is sometimes accompanied by a method of

construction. Then the model can be used as a vector of communication; it
has to respect the syntax and the semantics of the language. In addition
to a method of construction, a language can thus be associated with methods
of model checking. In the same way, it is necessary to validate a model of
the system compared to the expected properties of this system. Moreover, some
models must allow the simulation of the dynamic behavior of the system: the
language is then associated to a model player.

A model, whatever it is, cannot take into account all the aspects of a system
itself. Thus, the design of an AMS requires the construction of several mod-
els. These models require various languages. To ensure the consistency and the
complementarity between these various models, di�erent languages must be in-
tegrated within integrated design methods. When they use one kind of model,
these methods involve the concepts of construction, validation, checking and

denis
Zone de texte
In Proceedings of International Workshop on Formal Methods and Manufacturing (FM&M99), Zaragoza, Spain, September 1999, pp. 65-74Jean Claude Gentina, Alessandro Giua, Manuel Silva (eds.)

player. When they use several kinds of model, these methods involve the con-
cepts of import and export between models, and interpretation of a model
to de�ne properties.

2 State of the art

To structure the design of the AMS a lot of life-cycle oriented approaches were
proposed by many authors. These approaches aim to specify the various activities
required by the complete design of a AMS. For each activity, the expected results
are speci�ed, but without imposing any method of work. Then, these approaches
are independent from the languages and methods used. But neither consistency
between models, nor their internal consistency are approached.

With the need of models dealing with several requirements, CIM-OSA pro-
poses a generic framework of modeling [1]. This framework of modeling proposes
a classi�cation along three axes of the models to build: the axis of generation,
the axis of derivation and the axis of particularization. While referring to this
cube, designers can check that the models built cover di�erent and complemen-
tary aspects. CIM-OSA proposes models associated with each box within the
cube, however users are free to use their own languages. But neither internal
consistency with each model, nor the bonds between them are approached.

These two frameworks make it possible to structure the design of the AMS,
but they do not directly contribute to modeling. In order to better de�ne the
languages used and the methods integrating these languages, a new approach
appeared: the modeling of built models. These " models of models " are often
called meta-models. In our opinion, only this new approach makes it possible to
make these languages and methods more rigorous and more evolutionary. The
construction of meta-models obliges us to structure our vision of the modelled
language or method. In addition, the meta-models can be modi�ed according
to the practices or according to the new user's needs, while obliging the meta-
modelisator to think about the consistency of the produced meta-model.

Most usually, the languages of meta-modeling used are the data models.
The languages used are NIAM [2], or entity-relationship [3]. These data-oriented
approaches allow a precise and clear expression of syntax and semantics of the
models. However, they do not make it possible to take the dynamic behavior
aspect of the models into account.

An algebraic modeling was used to improve the "internal" semantics (dy-
namic point of view) of the Sequential Function Chart (SFC) model [4]. The
principle of this approach is to use algebraic equations to characterize the state
of each step according to the conditions of activation and desactivation of this
step. This modeling allows to formalize the dynamic behavior of the SFC. How-
ever, the speci�cation of the dynamic behavior can be understood only if the
speci�cation of the static aspect is provided. The absence of description of the
data, in this meta-model, makes us think that it can come only in complement
to another meta-model. For the speci�cation of the static and dynamic aspects,
the interest of the use of two distinct meta-models is shown in [5]. However, we

think that this can lead to the construction of meta-models that do not take
into account all the semantics of the modelled concepts. Therefore it can involve
important losses or semantic errors.

The most advanced works on the construction of models are those by Soeki [6]
and by Gee [7]. These works are complementary. Indeed, Soeki is interested in the
speci�cation of the steps of construction of a model, with an abstract aspect. On
the other hand, Gee speci�es the concrete aspect (visual) of language, without
imposing precise steps in the method of construction.

Concerning multi-models methods, they have been studied at the LURPA
Laboratory since 1990 [8]. In particular, Kiefer [9] made it possible to de�ne
the static point of view of the bonds existing between symbols of integrated
languages within the same method.

3 The choice of the Z language

Unlike the approaches presented above, our objective was to be able to specify
the syntax as well as the semantics of the languages of the AMS design within
a meta-model, and also the methods associated with these languages. Moreover
we aim to take into account all these aspects with only one meta-language,
to avoid any problem of integration between several meta-languages. We also
wanted to validate our meta-models. These constraints led us towards a formal
meta-language.

The Z Language [10] was selected for these capacities to model data and
modi�cations of the state of the modelled system. Moreover this language has
had a signi�cant development and is the subject of a large literature. A lot of
softwares to write Z speci�cations exist: for example we used Z-EVES [11] to
check and validate our meta-models.

The �rst bene�ts of the use of Z for meta-modeling were presented in [12].
To validate our approach in a more exhaustive way, we applied it on two other
examples: an example of a single language for AMS design and an example of a
multi-language method.

4 Meta-modeling of a single language

The selected language is a language which allows us to use many aspects of our
approach. It requires the meta-modeling of its syntax, of its semantics and also
of its associated player and method of construction of models: the Generalized
Petri Net was chosen [13].

To build a meta-model of a language, there are three stages (�gure 2). The
�rst stage consists in building the meta-model of the language using its textual
de�nition. Then, this meta-model must be checked, that is the second stage.
Lastly, third stage, the meta-model must be validated compared to the need.
These three stages are presented here.

4.1 De�nition

A Generalized Petri Net (GPN) is a 5-tuple, PN = (P, T, F, W, Mo) where:
P = fp1, p2, . . . , png is a �nite set of places,
T = ft1, t2, . . . , tng is a �nite set of transitions,
F � (P � T)[(T � P) is a set of arcs,
W : F ! f1; 2; 3; : : :g is a weight function,
M0 : P ! f1; 2; 3; : : :g is the initial marking,
P \T = ; and P [T 6= ;.

4.2 A part of the meta-model

First of all, the meta-model describes all used types:

[PLACE ;TRANSITION]

USE ::= build j play

The PN schema describes used the variables in a Petri net model:

PN
P : FPLACE
T : FTRANSITION
arcTP : TRANSITION $ PLACE
arcPT : PLACE $ TRANSITION
WarcTP : TRANSITION � PLACE 7! N1

WarcPT : PLACE � TRANSITION 7! N1

M 0 : PLACE 7! N

M : PLACE 7! N

enabled : FTRANSITION
usePN : USE

dom(arcTP) � T
ran(arcTP) � P
dom(arcPT) � P
ran(arcPT) � T
dom(WarcTP) = arcTP
dom(WarcPT) = arcPT
dom(M 0) = P
dom(M) = P

The Play schema gives the evolution of state variable of the PN schema when
the transition named Fired? is �red. This schema is an example of a speci�cation
of a player:

Play
�PN
Fired? : TRANSITION

usePN = play
Fired? 2 enabled
P 0 = P
T 0 = T
arcTP 0 = arcTP
arcPT 0 = arcPT
WarcTP 0 = WarcTP
WarcPT 0 = WarcPT
M 00 =M 0
8 p : PLACE j p 2 P �

(p 2 arcPT�(j fFired?g j) \ arcTP(j fFired?g j)
^ M 0(p) =M (p) �WarcPT (p 7! Fired?)

+WarcTP(Fired? 7! p))
_

(p 2 arcPT�(j fFired?g j) n arcTP(j fFired?g j)
^ M 0(p) =M (p) �WarcPT (p 7! Fired?))

_
(p 2 arcTP(j fFired?g j) n arcPT�(j fFired?g j)
^ M 0(p) =M (p) +WarcTP(Fired? 7! p))

_
(p =2 arcPT�(j fFired?g j) [arcTP(j fFired?g j)
^ M 0(p) =M (p))

enabled 0 = ft : TRANSITION j (8 p : PLACE �
(p; t) 2 arcPT 0 ^WarcPT 0(p; t)� M 0(p))

_ t =2 ran(arcPT 0) � tg
usePN 0 = usePN

4.3 The checking of the meta-model

To check a speci�cation in Z language, two properties must be checked (in ad-
dition to the respect of types in the operation schemas):

{ the speci�ed state has no contradiction. This can be established by showing
that the contraint part of the state schema is satis�able. This is usually
achieved by proving an initialization theorem: we show that an initial state,
at least, exists:

9PN 0 � PNinitial

{ The operations are total, i.e. that they are always de�ned.

For example, the pre-condition of the operation schema Play is obtained here:

pre Play b= usePN = play ^ Fired? 2 enabled

Thus, this operation is not total. It is necessary to improve these schemas,
and for this reason we will create new diagrams.

Report ::=
okay j place in use j place not in use
j transition in use j transition not in use
j bad operation j transition not in enabled
j P and T empties

Success
r ! : Report

r ! = okay

The new player operation is done by the Simulation schema:

ErrorFired
�PN
Fired? : TRANSITION
r ! : Report

usePN = play
Fired? =2 enabled
r ! = transition not in enabled

PlayOrStopPlayInBuild
�PN
r ! : Report

usePN = build
r ! = bad operation

Simulation b= (play ^ Success) _ ErrorFired _ PlayOrStopPlayInBuild

The operation de�ned by Simulation is total :

pre Simulation
, (pre play ^ pre Success)

_ pre ErrorFired _ pre StartPlayOrPlayInPlay
, (usePN = play ^ Fired? 2 enabledpre true) _

(usePN = play ^ Fired? =2 enabled)
_ usePN = build

, usePN = play _ usePN = build
, true

4.4 Validation

To check the operation schemas, we used the Z-EVES toolbox [11]. The PN
instance, described �gure 1, was designed to highlight all the possible cases of
marking which allow to �re a transition.

p1

t1

p2

p3

t2 p4

Fig. 1. An example of PN model

In order to simplify the validation, we modi�ed the initial state to describe
the PN model presented directly:

PNinitial
PN 0

t1; t2 : TRANSITION
p1;p2; p3;p4 : PLACE

P 0 = fp1; p2;p3;p4g
T 0 = ft1; t2g
arcTP 0 = f(t1; p2); (t2;p3); (t2;p4)g
arcPT 0 = f(p1; t1); (p2; t2); (p4; t2)g
WarcTP 0 = f((t1;p2); 1); ((t2;p3); 1); ((t2;p4); 1)g
WarcPT 0 = f((p1; t1); 1); ((p2; t2);1); ((p4; t2);1)g
M 00 = f(p1; 0); (p2; 1); (p3; 0); (p4; 1)g
M 0 = f(p1; 0); (p2; 1); (p3; 0); (p4; 1)g
enabled 0 = fg
usePN 0 = build

We checked the Play schema with the following new schema:

Test2 b= PNinitial o
9
StartPlay o

9
Play

We checked this schema with the following value:

Fired? := t2

The result obtained was the result expected:

{ when StartPlay has been performed, we get enabled 0 = ft2g ;
{ when Play has been performed, we get :

� enabled 0 = fg and
� M 0 = f(p1; 0); (p2; 0); (p3; 1); (p4;1)g.

This small example, and many others, allow us to validate our meta-model
compared to our need, and this by the simple instanciation of the de�nite sets.

5 Meta-modeling of a multi-langages method

The �rst stage of the meta-modeling of a multi-language method consists in
meta-modeling each language which composes it. For each language, as for the
example of the previous session, it is necessary to build the meta-model of the
language and of the associated methods, then to check and validate these meta-
models. The meta-models of each language are then integrated within the meta-
model of the method. This also requires to add all the relations allowing this
integration. That can also require some modi�cation of certain elements of the
original meta-models. The meta-model obtained must also be checked and vali-
dated.

In [14], the multi-language method tested is a method which integrates a
particular class of Petri net and di�erential equations. Thus, this test allowed
us to show that our approach works for methods of design of dynamic hybrid
systems.

Integration Integration

Construction

Validation

Language definition:

Construction

Validation

Language definition:
events temporal Petri nets

predicates

Operation

predicates

StateSpace

predicates

Operation

predicates

StateSpace

Validation

predicates

Opération

predicates

StateSpace

Checking

Checking

Checking

events temporal Petri net
Meta-model of the

declarations

declarations

events temporal Petri net model
An example of

declarations

declarations

declarations

declarations

the integration
Meta-model of

Example of integrated model

Meta-model of

An example of
differential equation model

differential equation

differantial equation

Fig. 2. Stages for meta-modeling a method

In this paper, it is not possible to develop the meta-language of such a
method. The interested reader can refer to [14].

6 Conclusion

Our work has shown the feasibility and interest of the formal meta-modeling of
the activity of modeling for automated manufacturing systems. the use of the
Z language makes it possible to specify the syntax, the semantics, the dynamic
behavior of the languages, as well as the methods associated with these lan-
guages, all in the same meta-model. This integration of all the aspects of the
modeling activity guarantees the consistency of the meta-models. The use of a
formal language as meta-language makes it possible to validate and check the
meta-models, thus ensuring their rigor and their respect of the needs.

A meta-model of a language or a method can be used as a requirement for
software editors. Then, while we specify a language of a method using meta-
modeling, it could be interesting at the same time to \run" the current speci�-
cation. That should help the designers to re�ne their speci�cation. Our current
works thus aim to study the interest of the formal B language to get a \playable"
speci�cation.

References

1. A. Consortium, ed., Open system architecture for CIM, Research reports Esprit
project 688. AMICE Consortium - Springer verlag, 1989.

2. P. Lhoste, Contribution au g�enie automatique : concepts, mod�eles, m�ethodes et
outils. Habilitation �a diriger les recherches, Nancy I University, France, 1994.

3. F. Cou�n, S. Lamp�eri�ere, and J.-M. Faure, \Contribution to the grafcet formalisa-
tion. a static meta-model proposition," European Journal of Automation, vol. 31,
no. 4, pp. 645{667, 1997.

4. E. Bon-Bierel, \M�eta-mod�eles du grafcet," Master's thesis, Nancy I Univer-
sity/ENS de Cachan, France, 1994.

5. E. Bon-Bierel, Contribution �a l'int�egration des mod�eles de syst�emes de production
manufacturi�ere par m�eta-mod�elisation. PhD thesis, Nancy I University, France,
1998.

6. M. Saeki, \A meta-model for method integration," Information and software tech-
nology, vol. 39, pp. 925{932, 1998.

7. D. M. Gee, \Formal speci�cation of visual languages."
http://computing.unn.ac.uk/ davidg/papers/fspec.ps.Z, 1995.

8. B. Denis, J.-J. Lesage, and G. Timon, \Towards a theory of integrated modelling,"
Journal of Design Sciences and Technology, vol. 2, pp. 87{96, Oct. 1993.

9. F. Kiefer, Contribution �a l'ing�enierie int�egr�ee des syst�emes de production : formal-
isation des m�ecanismes d'int�egration entre mod�eles et applications sur site indus-
triel. PhD thesis, ENS de Cachan, France, 1996.

10. J. M. Spivey, The Z notation. Prentice-Hall Europe, 2nd ed., 1992.
11. M. Saaltink, \The z/eves system," tech. rep., ORA Canada, Ottawa, Ontario,

Canada, 1995.
12. L. Pietrac, B. Denis, and J.-J. Lesage, \Formalization of the design of control

systems," in Sixth International Symposium on Robotics and Manufacturing (IS-
RAM'96), Second World Automation Congress (WAC'96), (Montpellier, France),
27{30 may 1996.

13. T. Murata, \Petri nets : Properties, analysis and applications," Proceedings of the
IEEE, vol. 77, no. 4, 1989.

14. L. Pi�etrac, Apport de la m�eta-mod�elisation formelle pour la conception des syst�emes
automatis�es de production. PhD thesis, ENS de Cachan, France, 1999.

