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A Basic Mental Model (BMM) of a mathematical concept is a content-related interpretation that gives 
meaning to this concept. There exist many suggestions for BMMs in mathematics education, e.g., for 
natural numbers, functions, derivatives or integrals. In this article we present four BMMs of an equa-
tion and discuss the relation between these BMMs and the solving of equations. Particularly, we are 
interested in the interrelationship between these BMMs and the use of digital technologies in this 
solving process. These theoretical considerations bring up research questions which should be an-
swered to achieve a better understanding of the concept of equation and the solving processes.  

Keywords: Equation, solving of equations, Basic Mental Models, digital technologies.  

Basic Mental Models (BMM)  
The concept of Basic Mental Model (in German: Grundvorstellungen) has been well established in 
German-speaking didactics of mathematics for many years (Hofe v. & Blum, 2016). A BMM of a 
mathematical concept is a content-related interpretation that gives meaning to this concept, 
providing relations to meaningful contexts (see Greefrath et al., 2016). The meaning of a concept is 
constituted by its interpretation in scientific mathematics, in school mathematics and in the 
(historical) development of the concept (Kilpatrick et al., 2005). BMMs can be conceived as 
prerequisites for students to deal with mathematical concepts in an insightful way.  

The concept of BMM can be used both in a normative (prescriptive) and an individual (descriptive) 
sense (see Hofe et al., 2005). 

• Normative BMMs are the answer to the question: How should students generally and ideally think 
of a given mathematical concept? They are identified by didactical analyses of the mathematical 
concept. They can be used as educational guidelines and to specify learning objectives for 
mathematics lessons. The determination of BMMs is a didactical challenge for researchers and 
requires a subject-oriented classification of mathematical and real-life situations of the concept.  

• Individual BMMs are individual mental models or concepts students actually develop in learning 
processes and problem-solving situations. They can vary from or represent only part of normative 
BMMs, they even can be based on misconceptions. Individual BMMs are the result of the personal 
development of meaning and the integration of the concept into an individual’s personal 
worldview. 
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BMMs of mathematical concepts can be considered within the theoretical framework of “Concept 
Image – Concept Definition” (Tall & Vinner, 1981). They are parts or subsets of the “Concept Image” 
of a mathematical concept. While “Concept Image” refers to all individual mental images identified 
with the concept, BMMs are the core or central components of these images.  

The development of BMMs is a creative task for mathematics educator. Based on the concept 
definition, a critical investigation of the use of this concept and the involved perceptions in problem 
solving situations in scientific mathematics, in university mathematics lessons and in the school 
curriculum give hypotheses of the existence of different BMMs. These have to be empirically 
verified, like Greefrath et al. (2021) have done this for the concepts of derivative and integral.   

A mathematical spotlight: equations and equivalence of equations 
Equations with only numbers or quantities are statements which can be true or false. E.g., the equation 
3 + 5 = 8 is a true, 3 + 5 = 7 is a false statement. Equations with unquantified variables, e.g., T1(x) = 
T2(x), T1, T2 algebraic terms, are predicates, which will turn into statement if the variables are 
quantified, e.g., for x = 4, 3∙x + 1 = 7 is a false statement, for x = 2 it is a true statement. Two equations 
are equivalent, if 

• their sets of solutions are the same or 
• there is an equivalence transformation which transforms one equation into the other.  

Each injective function applied to both expressions of an equation is an equivalence transformation. 
This applies especially for the elementary transformations like addition and multiplication with real 
numbers (for more details see Arcavi et al., 2017).  

BMMs of an equation  
BMMs of an equation form a content basis for what students normatively need to work with 
equations. They are central and important in developing perceptions and (mental) representation 
about basic activities while solving equations. BMMs are based on mathematical aspects of equations: 
the definition of an equation, the use of the equals sign and the relationship between the equation 
concept to the concepts of algebraic expressions and functions. 

• Operational BMM: An equation is understood as a calculation or transformation. The equal sign 
is seen as an operational sign, which indicates a reading direction of the equation in the sense of a 
"resulting-in” sign. 
- Arithmetic calculations: The equation 3 + 4 = 7 can be expressed as "3 + 4 → 7" or verbally by 

"3 plus 4 results in 7". It is the predominant BMM of an equation in primary school. 
- Transformations of algebraic expressions: Equations like (a+b)2 = a2 + 2ab + b2 can be 

expressed by (a+b)2 → a2 + 2ab + b2 or verbally by “expanding (a+b)2 results in a2 + 2ab + b2”.  
"Results in" can also be read—with “factorizing” instead of “expanding”—in the other 
direction.  

• Relational BMM: An equation is understood as a task to determine numbers or quantities for the 
expressions on both sides of the equation to get the same value or quantity on both sides. The equal 
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sign is seen as a relation sign. The variable here is understood as an unknown which has to be 
determined.1 

The visualization for or a representation of this 
BMM is the model of an equal arm balance. In 
this model, each expression is represented as a 
combination of weights. Numerical values are 
represented by unit weights and each variable 
value is assigned by a fixed—initially unknown 
to the spectator—weight. The equality of values 
of both terms is expressed in the balance of the 
scales. Like in Figure 1, the balance model is 
suitable especially for linear equations. These 
are carried out as actions of removing the same 
weights from or adding the same weights on 
both scales. 

• Functional BMM: An equation T1(x) = T2(x) is a comparison of two expressions which are 
understood as functions with y = T1(x) and y = T2(x). Here, too, the equals sign is understood 
relationally, but the BMM of the variable is that of a changing number or quantity. 

In this functional interpretation, the variable x "passes 
through" the values of the definition range of the two terms 
T1(x) and T2(x). This results in the equation becoming a false 
or true statement, depending on the values of T1(x) and T2(x). 
However, we want to determine the value(s) xo with the same 
function values T1(xo) = T2(xo). In a graphical representation 
of the two functions with y = T1(x) and y = T2(x), solving an 
equation means determine the intersection points of the two 
function graphs. This is possible for nearly all types of 
functions. Figure 2 shows an example of a quadratic equation. 

This BMM can be transferred to a system of equations with 2 
variables if a function is defined by each of the two 
given equations whose common function values are to 
be determined. 

• Object-BMM: An equation is regarded as a 
mathematical object that has characteristic 

 

1 We refer to the three central BMMs for variables without explaining their background (see e.g. MacGregor and Stacey 
(1997) or Oldenburg (2019) for details): The variable as a general number, the variable as an unknown number and the 
variable as changing number or quantity.  

 

Figure 1. An equal arm balance  

Figure 2. The equation x2 – 3 = 0.75x + 2 leads 
to the two functions with T1(x) = x2 – 3  and 
T2(x) = 0.75x + 2  
 



 

 

4 

 

properties, such as the number of possible solutions, the definition range or special solution 
algorithms. E. g.  
- The quadratic equation x² + x – 3 = 0 has exactly two solutions. There exist several methods to 

calculate these solutions.   
- The equation x2 + y2 = z2, x, y, z Î ℕ is a Diophantine equation whose solutions are called 

Pythagorean number triples.  
- The equation x² + y² = r2 with x, y Î ℝ, r Î ℝ+ is an equation of a circle with the coordinate 

origin as the center and the radius r. 

The first two BMMs are based on the operational and relational meaning of the equal sign and thus 
mark the transition from the arithmetic-dominated mathematics of the primary level to the algebra of 
the secondary level. The third and fourth BMM represent an understanding of equations on (lower 
and upper) secondary level. They will be especially important while working with digital 
technologies. There is a hierarchy in the appearance of these BMMs from primary to upper secondary 
school: Operational BMM ® Relational BMM ® Functional BMM ® Object-BMM .   

Central activities and working with equations  
The meaningful working with and the flexible use of concepts require a wider view of the concept, 
especially seeing the concept in relation to different applications and to different representations (see 
e.g., Freudenthal (1983)). At least since the works of Piaget and Aebli, and further those of Vygotsky 
and Leont’ev, real hands-on activities are seen as central and fundamental for the development of 
mental structures or (thinking) operations. The development of BMMs must therefore be seen in close 
relation to activities and related tasks with this concept. 

Referring to the quite elementary “Input-Operation-Output”-model concerning the working with 
tasks (see e.g., Günster and Weigand (2020)), this model can be transferred to three central activities 
while working with equations (in mathematics lessons). These central activities are:  

• Input or setting up an equation: Setting up an equation in such a way that the central 
relations presented in a problem are expressed appropriately in the equation. It is therefore a 
matter of translating a problem situation into the language of mathematics.  

• Operate on or anticipating and applying transformations: Developing strategies which 
can be flexibly used to solve equations in a problem-adequate way.  

• Output or interpreting: Gaining insights into an issue by means of an equation, appropriately 
transformed equations or the solution(s) of an equation. 

These central activities require syntactic knowledge concerning the structure of expressions that 
determine the equation and knowledge of solution strategies concerning different equation types. 
Furthermore, flexibility and symbol sense are required, and the ability to transfer equation to other 
(equivalent) equations (see Kieran (1992), Oleksik (2019)). 

Semantic knowledge is required with regard to the meaning of equations in relation to environmental 
situations, inner-mathematical models and representations, and the interpretation of the solution(s) in 
relation to these situations. 
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Digital technologies—nowadays and in the future 
For solving equations, there is already a 
wider range of digital technologies that can 
be roughly divided—not non-overlapping—
into two categories: on the one hand, tools for 
solving equations and, on the other hand, 
learning environments. Tools such as 
spreadsheets or computer algebra systems 
allow the user alternative ways of using 
them. Learning environments are structured 
learning arrangements designed with a 
teaching objective, using tools and visual 
aids. Figure 3 shows an interactive digital simulation of a beam balance and the solving of a linear 
equation. Moreover, there are digital assessment systems such as STACK (Sangwin, 2013) or 
learning apps like Photomath2, Chegg Math Solver3, Cymath4 or Mathway5. A didactic discussion of 
such programs can be found in Arcavi et al. (2017, p. 106). These systems will certainly be further 
developed in the coming years.  

BMMs and the solving of equations with digital technologies (DT) 
The four BMMs allow meaningful explanations for different algebraic methods of solving equations. 
Since the main focus here is on the significance of the BMMs and the use of DT, the operational 
BMM, which essentially plays the significant role 
in primary school and lower secondary school, 
will not be discussed (cf. Arcavi et al. (2017)). 

The Object-BMM 

A CAS solves equations on the numeric and 
symbolic levels, and it is a formulary that offers 
formulas for linear, quadratic, like in Figure 4, 
and special types of polynomial functions of 
higher order than 2.  

 

2  https://photomath.app/  
3  https://www.chegg.com/math-solver 
4  www.cymath.com/ 
5  www.mathway.com 

Figure 3. Simulation of a balance (University of 
Colorado Boulder) 

Figure 4. Solving quadratic equations with a CAS  
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The Object-BMM can be integrated into an Input-Operation-Output model:  

“Operation” may be seen as a “black box”, if the learner does not know the algorithm used in this 
“box”. But it might also be a “white box”, if the CAS is “only” used as a tool to get the result quicker 
than with paper and pencil. Furthermore, to turn the “black box” into a “white box” it might be helpful 
to explain “Operation” and the Object-BMM—in dependence of the type of the equation—by 
referring to the relational and the functional BMM. 

The functional BMM 

A CAS allows the solving of 
equations on different represen-
tation levels. It calculates the zeros 
of (special types of) functions on the 
symbolic and numeric level by only 
pressing one button and it visualizes 
the solutions on the graphic level. 
The solutions are the zeros of the 
function. Figure 5 shows an 
equation with a parameter, the 
solutions are given dynamically by 
varying the parameter 𝑏 with a 
slider.  

Special equations of higher degree, particularly equations of degree 3 and e.g., trigonometric and 
exponential equations can be solved—quite often—numerically, sometimes symbolically, and nearly 
always graphically.  

Solving (more complex) 
equations with a CAS is not 
only a “pressing a button”-
activity. Basic knowledge of 
solving different types of 
equations and different 
strategies for solving of 
equations are necessary, 
especially if an approach that 
had been used did not lead to a 
successful solution. Figure 6 shows an example of the solving of the equation 1 + 𝑠𝑖𝑛(𝑥) = 2!. In 
this case, trying to get a symbolic or numeric solution with a CAS is not possible.   

The relational BMM 

Concerning the functional BMM, a CAS is a tool for solving equations. However, a CAS can also be 
used as a teaching-learning system and integrated into a learning environment. An example is the 
step-by-step execution of (equivalence) transformations for an equation. For this, arithmetic 

Figure 5. Solving quadratic equations (with a parameter b) 
and the functional BMM 

Figure 6. Graphical solution of the equation 𝟏 + 𝒔𝒊𝒏(𝒙) = 𝟐𝒙 
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operations are applied to 
an equation as a whole 
while the algebraic 
transformations can be 
visualized graphically. 
The rather confusing 
static Figure 7 has to be 
seen in a dynamic step-
by-step presentation to 
show more clearly the 
invariance of the x-
coordinate of the 
intersection point of the 
graphs and hence the 
consistency of the 
solution of each 
transformed equation. 

Conclusion and research questions 
Solving of equations—in this article—is seen in relation to the BMMs of equations (operational, 
relational, functional BMM and Object BMM) and the use of DT, mainly CAS, but with different 
kinds of representations. The first research question is the substantial question about the existence 
and the kind of individual BMMs: 

1. Are the four BMMs represented in students’ thinking if they solve equations and how is the 
relationship between BMM and the way of solving an equation?  

We suspect that the BMMs have to be distinguished concerning different types of equation, especially 
linear, quadratic and “other” equations, and different methods of solving equations (especially 
symbolic, graphic, numeric).  

The second research question is about the three central activities while working with equations and 
their relation to the BMMs?  

2. How do the BMMs of equation interact with the central activities while solving equations?  

Concerning the solving of equations with DT, the interrelationship between three dimensions—
BMMs, DT and central activities—seems to be a crucial point. The third research question aims to 
get criteria for the development of tasks for constructively generating BMMs of equations.   

3. Which tasks and activities—especially with the use of DT—support the development of BMMs for 
equations (depending on the different types of equations)?      

The analyses in this article are the theoretical basis for answering these research questions 
empirically. This will be the next step in this research project. 

Figure 7. Step-by-step transformations of an equation  
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