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A focus on mathematical structures and relationships in mathematical activity is important for the development of algebraic thinking. A comprehensive and flexible understanding of equality, which in particular includes a relational perspective on equality, is an important prerequisite for this. In the project, that forms the basis of this paper, substantive learning environments were further developed by use of Term fields and tested in teaching-learning experiments. In the video-based qualitative analyses, the focus is on the justification processes of fourth graders in the context of equalities. This paper presents and discusses the main results of the study, four different ways of justifying equalities and their characteristics.

Introduction: understanding of equalities in primary school

A call for greater support of algebraic thinking in the early grades is made in current research (e.g., [START_REF] Steinweg | Key ideas as guiding principles to support algebraic thinking in German primary schools[END_REF]. Particular emphasis is placed on mathematical structures, found to be central to the development of early algebraic thinking [START_REF] Hewitt | Never carry out any arithmetic": the importance of structure in developing algebraic thinking[END_REF][START_REF] Steinweg | Key ideas as guiding principles to support algebraic thinking in German primary schools[END_REF]. According to [START_REF] Steinweg | Key ideas as guiding principles to support algebraic thinking in German primary schools[END_REF], equivalence structures are an algebraic key idea that focuses on the relation of given numbers, sums, products, etc. in equations. However, in primary school the equal sign is often introduced as an operational sign, prompting calculation.

Studies have found that students interpret the equal sign predominantly operationally and have difficulty taking a relational and structural view when needed (e.g., [START_REF] Eichhorn | Students' early grade understanding of the equal sign and non-standard equations in Jordan and India[END_REF][START_REF] Stephens | Equation structure and the meaning of the equal sign: the impact of task selection in eliciting elementary students' understandings[END_REF]. Some authors further differentiate between views of the equal sign. For example, regarding the relational understanding of the equal sign, [START_REF] Stephens | Equation structure and the meaning of the equal sign: the impact of task selection in eliciting elementary students' understandings[END_REF] distinguish between a relational-computational view and a relational-structural view. A relational view is crucial for flexibility in mental calculation [START_REF] Rechtsteiner | Zahlenblickschulung" as approach to develop flexibility in mental calculation in all students[END_REF][START_REF] Steinweg | Key ideas as guiding principles to support algebraic thinking in German primary schools[END_REF]. This is an important skill in elementary school arithmetic and also essential as preparation for algebra [START_REF] Jones | Substitution and sameness: two components of a relational conception of the equals sign[END_REF].

In addition to the numerous studies concerning the use of the equal sign and the solving of formal equations, approaches have also investigated the content-related understanding of equalities in primary school [START_REF] Mayer | Zum algebraischen Gleichheitsverständnis von Grundschulkindern On elementary school children's algebraic understanding of equality[END_REF][START_REF] Nührenbörger | Processes of mathematical reasoning of equations in primary mathematics lessons[END_REF]. In these studies, substantial learning environments were developed, incorporating task formats that children are familiar with from textbooks, such as Number walls and Computing chains. These task formats share a specific external structure, combining numbers and operations in a way that allows numerous basic mathematical activities to explore structures and relationships. Thus, the learning environments focus on equality but without the use of the equal sign. The results of these studies show that primary school children can indeed take a relational view of equalities and interpret them structurally.

Comparing the results of the studies described above using quite different learning environments, it is evident that children interpret equalities differently depending on the context and form in which they are presented. [START_REF] Seo | Classroom context and children's interpretations of the equals sign[END_REF] use the term pseudo-flexibility to describe children's context-dependent interpretation. Children can take an operational view or different relational views of equalities, but these views appear to be entirely determined by the context and are mostly not linked to each other.

The project, from which data is excerpted and analyzed in this paper, has two objectives. On the one hand, a teaching-learning arrangement was developed that can stimulate a comprehensive and flexible understanding of equality in children by using Term fields (see Figure 2). On the other hand, the children's justifications of equalities are analyzed qualitatively. The concepts from the literature described above serve as a starting point for analyzing the justifications provided by the children in this project. This paper focuses on the research question: How do children justify discovered equalities in the context of the developed learning environments?

Methodology and design

In line with the aim of the project, qualitative interview studies about German primary school children's conceptions of mathematical equality were conducted. The studies focus on two learning environments that were planned on the basis of already existing well known substantial task formats such as Arithmetic triangles and Number sequences (see Figure 1). The latter were enriched by using design principles developed from theory and study results. The central feature of both learning environments lays in the combination of a substantial task format and formal representation of appropriate equations. The children first work on tasks that encourage them to explore equalities in the context of the task formats and ask them to describe and justify these equalities (e.g., "Calculate the sum of the inner numbers and the sum of the outer numbers of the arithmetic triangle."). The goal is to develop a content-related relational concept of equality. Contentrelated does not refer to a factual context, but to the task formats, e.g. the arithmetic triangles. The relationship between the numbers of an arithmetic triangle is supported by the visual structure of the task format. Similar to the way [START_REF] Nührenbörger | Processes of mathematical reasoning of equations in primary mathematics lessons[END_REF] used "Term walls" with notated calculations instead of results in the context of "Number walls" in their study, the learning environments in the present study were enriched by using Term fields, i.e. small sticky notes with terms (e. g. 10+32) related to number fields (e. g., 42) of the task format (see Figure 2). Term fields are meant to serve as a kind of exploration tool to make explicit the essential structure of the task formats. They should be used as a basis for explaining relationships between number fields of the task format. In this way, children have an opportunity to focus on structures between terms in addition to compute them. Based on students' work with the Term fields, the students are given appropriate tasks for assigning equations to arithmetic triangles and number sequences, as well as tasks for evaluating, completing, and correcting equations. The equations always consist of terms that arise or potentially arise from the task format (Figure 3, see associated arithmetic triangle and number sequence in Figure 2). The children's attention is to be focused on the structure of the terms by means of certain guiding questions that are repeatedly asked during the interview (e. g., "From which triangle/number sequence was the equation formed?", "Why is the equation (not) correct?"). A total of 42 collaborative peer interviews, each with two fourth grade children, were conducted on the described learning environments. A pre-test was administered to each student at the beginning of the first interview. Students were given a set of equations to sort into two boxes ("true" and "not true"). Some equations were incomplete and had to be completed first. The pre-test was used to determine the children's interpretation of the equal sign before working in the learning environments. The children were randomly selected by the teacher and had neither previously encountered the Term field learning environments nor Arithmetic triangles or Number sequences in class. At the beginning of the interview series, the task formats were worked out together. The interviews were videotaped and largely transcribed. The analysis of the data follows the interpretative paradigm [START_REF] Krummheuer | Einführung in die Interpretative Unterrichtsforschung: theoretische Grundlagen und Beispiele aus der Forschungspraxis Introduction to interpretative classroom research: theoretical foundations and examples from research practice[END_REF][START_REF] Voigt | Die mikroethnographische Erkundung von Mathematikunterricht -Interpretative Methoden zur Interaktionsanalyse The microethnographic exploration of mathematics education -interpretive methods for interaction analysis[END_REF]. In particular, Steinbring's theory of the construction of new mathematical knowledge in classroom interaction is used to reconstruct the respective reference contexts of the children while they were justifying equalities [START_REF] Steinbring | The construction of new mathematical knowledge in classroom interaction[END_REF]. Thus, different ways of justifying were inductively reconstructed. These are presented and discussed below.

Empirical results and discussion: ways of justifying equalities in a range between result orientation and structure orientation

Equalities can be interpreted in different ways and, accordingly, justified differently, depending on which aspects of equality are focused on. The data analysis showed that children develop and use different justifications for equalities in the context of the learning environments, which can be located in a range between result orientation and structure orientation (see Figure 4). Previous findings from the literature described above were incorporated and extended in the development of the four categories. For example, the analyses confirmed the two relational views of equality, relationalcomputational and relational-structural, suggested by [START_REF] Stephens | Equation structure and the meaning of the equal sign: the impact of task selection in eliciting elementary students' understandings[END_REF]. In the study presented here, it was found that these views of equalities could be further differentiated by distinguishing between determination of overall and intermediate results (category 1 and 2), and using structure with or without generalized approaches (category 3 and 4). Category 1 and 2 correspond to a relationalcomputational view as defined by [START_REF] Stephens | Equation structure and the meaning of the equal sign: the impact of task selection in eliciting elementary students' understandings[END_REF], while category 3 and 4 correspond to a relational-structural one (see Figure 4). The children in the study didn't show a purely operational view of equalities in the interviews. However, students' operational view was evident in the separate pre-test. The learning environments were intentionally designed to stimulate a relational interpretation of equalities by including the task formats Arithmetic triangles and Number sequences. In contrast to the study by [START_REF] Stephens | Equation structure and the meaning of the equal sign: the impact of task selection in eliciting elementary students' understandings[END_REF], the study presented here reconstructed the particular situational view behind a justification, rather than investigate a child's fundamental concept of equality. In the following, the four categories of justifications are explained using selected episodes from the interviews.

Justifications by determining overall results

One way of justifying equality, evident in the present study, is based on determining the overall results of the terms. Each term in an arithmetic triangle or a number sequence is perceived as a separate task and their respective values are determined independently, and then finally compared. Charlie and Fabian evaluated equations formed from arithmetical triangles and corrected them if necessary. The following equation was placed on the table: 42 + 8 = 10 + 32 + 8

Interviewer: Why is that true (points to the equation)? Charlie:

(Pulls the equation towards him.) Forty-two (points to 42 on the left side of the equation) plus eight (points to 8 on the left) is fifty. Ten (points to 10 on the right) plus thirty-two (points to 32 on the right) is forty-two plus eight (points to 8 on the right) is fifty.

Charlie determined the overall results of both sides of the equation separately (50) by adding the summands linearly from left to right. Justifications in this category suggest that the children make a strongly result-oriented interpretation of the terms. They do not direct their attention to the mathematical regularities underlying the terms but focus on the results. In the range between result and structure orientation, such a way of reasoning is to be located correspondingly far to the left (see Figure 4).

Justifications by determining intermediate results

Another way of justifying relies on the determination of intermediate results. This involves determining selected term components of arithmetic triangles and number sequences and comparing the resulting partial results. Characteristic for such justifications is the omission of obviously equal term components occurring on both sides of the equation (e.g., equal starting numbers in number sequences or equal inner numbers in arithmetic triangles). Sometimes longer components of the terms are left out of the evaluation of equality, sometimes only single numbers, as in the following example. Lara and Grace evaluated equations which could have been formed from number sequences: 10 + 3 + 3 + 3 + 3 = 10 + 6 + 6

Interviewer: Why does it fit? … … Lara That's both twelve (points to the equation), always. … … Lara

So that together are twelve (taps the sixes on the right side) and three plus three plus three plus three (taps the threes on the left side) are also twelve again.

The summand 10, which occurred on both sides of the equation (starting number in the task format Number sequences), was omitted by Lara when evaluating the equality. She calculated only the nonidentical term components (12 each), compared the intermediate results and concluded based on their agreement that the equation is correct. Justifications in this category, point to a predominantly result-oriented understanding of equality.

Compared to the previous category, however, such justifications are still somewhat more relational, since equal values are compared and deliberately disregarded. The location of these justifications in the range between result orientation and structure orientation is therefore on the result-oriented side, although not quite as strongly to the left as that of the first category (see Figure 4).

Justifications by using a structure of the arithmetic terms

Another way of reasoning is based on focusing and comparing the two terms of an equation with respect to their structure and their relation to each other. The justifications refer to the concrete numerical values. There are many differences in how the children relate the structures of the terms. This depends on which mathematical laws they (implicitly) refer to. Rachel and Kate each wrote down different plus numbers and the corresponding term fields for a number sequence with starting number 10 and target number 22. As part of the task, the interviewer combined one of Rachel's term fields (10+4+4+4) and one of Kate's (10+2+2+2+2+2) into an equation. The children agreed with it and justified their decision: Here are (points to term field 10+2+2+2+2+2) uh, wait a minute (.) one two three four five six times (taps on the twos one after the other) and here are three times (points to term field 10+4+4+4) and that (points to the left term field) is the double of it (points to the right term field) so that-and here (points to the right term field) are six times and there are three times (points to the left term field) and three is half of six … … Rachel:

And two and four is also the -so two #1 is half of four. Kate: #1 Exactly. I just said that. … … Rachel:

Yes, because here are six t-oh (points to term field 10+2+2+2+2 and moves it by mistake) six times (points to the term field again) and there are three times (points to term field 10+4+4+4) and then it must work.

The terms were interpreted multiplicatively. The size and the number of the summands of one side (size: 2; number: 6) were related to the size and number of the summands of the other side (size: 4; number: 3). The reasoning implicitly referred to the law of constancy of the product. Justifications in this category point to a predominantly structure-oriented interpretation. The interpretation implies mathematical regularities that underlie the structure of the terms. Such justifications are accordingly on the structure-oriented side.

Justifications by using a structure of the arithmetic terms with generalizing approaches

The fourth way of justification, like the third one, refers to the comparison of the structure of terms and their relation to each other. The justifications are also based on mathematical laws. However, such a reasoning is not only based on the concrete numerical values, but is detached from them by making generalizable statements. The degree of generalization can vary. Lara and Grace used term fields to justify why 34 occurred in both the +8-sequence and the +4-sequences. Lara's reasoning was similar to Rachel's and Kate's, but showed clearly generalizing approaches: you multiplied that. So we have to-theoretically you have to halve here (points to "8" in "3•8=24" on her note) and double here (points to "3" in "3•8=24" on her note). … … Lara So, you you you double the three (points from "3" in "3•8=24" to "6" in "6•4=24") and halve the eight (points from "8" in "3•8=24" to "4" in "6•4=24"). Then a four will be written there and, you know what I mean? (Looks at Grace.) … … Lara You halve, you dou-halve the front number (points briefly to her note) or you halve the back number, you halve one number and you double the other one and then the same result comes out.

Lara justified the equality of the terms based on her written representation of her idea. She shortened the terms of the relevant term fields by multiplicative representation of the same summands and by omitting the identical starting numbers. Her justification contained generalized approaches. She replaced the number of summands, now represented by the first factor in each case in her representation, with a general description ("with which number you multiplied that"). When Grace didn't understand, she first concretized her idea using the exemplary numbers of the task ("you double the three and half the eight"). In terms of content, Lara's idea referred to the constancy of the product. Later she expressed her idea again in a highly generalized way. She replaced both the first and the second factor with a general description ("You (...) halve the front number or you halve the back number, you halve one number and you double the other one and then the same result comes out.").

In addition, Lara clarified that it doesn't matter which of the numbers is halved and which is doubled. She moved away from concrete numerical values and instead used descriptive word variables. Justifications of this category suggest that the children have a strong structure-oriented understanding of equality. The relationship between the terms is interpreted and explained on a more general level with regard to the mathematical regularities on which it is based. The classification of such generalizing justifications takes place far on the structure-oriented side.

Closing remarks

The analyses showed that children use different justifications in the range between result orientation and structure orientation, (implicitly) refer to appropriate mathematical laws and generalize these to different degrees. The way of justification depends on different factors, e.g. on the numerical values, the suggestions of the other child or the impulses of the interviewer. This connection will be examined in more detail in further data analysis.

The presented learning environments, which combine content understanding and formal representation of equations with the help of term fields and focus on sharing discovered equalities and possible justifications of these, can contribute to stimulate a flexible understanding of equalities. 
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