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Data assimilation for aerothermal mean flow reconstruction using aero-optical observations: accounting for RANS model-form uncertainty

In this study, we investigate a Data Assimilation approach for the numerical reconstruction of turbulent aero-thermal flows, and more particularly of their average density fields. The proposed approach relies on an ensemble Bayesian inference method providing a derivative free optimization framework suitable for solving inverse problems and quantifying model uncertainties. The originality of this work lies in the use of minimally invasive measurements such as those obtained by the optical technique referred to as Background Oriented Schlieren (BOS). Such a measurement technique provides dense maps of light ray deviations through the flow of interest that can be obtained from multiple points of view and cameras. These deviations are obtained by integration through the volume of interest and projection into 2D planes, yielding an observation operator that can be modeled by numerical ray tracing. Such observations provide incomplete but spatially dense information about the 3D flow observed. Until now, restitution of density fields of turbulent aerothermal flows was mainly tackled with purely aero-optical modeling as in tomographic BOS. The present approach intends to provide additional physical constraints in the restitution process by relying on a flow model such as those obtained by Reynolds Averaged Navier-Stokes (RANS) equations. As it will be detailed, the developed DA framework is first applied as a calibration tool on the closure coefficients of a two-equation turbulence model, the kω SST model. Numerical simulations of a hot jet impinging on a flat plate with non-uniformly distributed temperature are considered as an example. The mean density field is reconstructed and compared to a reference synthetic experiment obtained by Large Eddy Simulation. Significant improvements in the RANS model predictions in terms of relative errors between the estimate samples mean and the LES data were obtained. However, some remaining local discrepancies are observed and can be understood as the consequence of the rigid nature of the model closure in the reconstruction of a multi-featured flow. To alleviate the current closure inadequacy, an inclusion of model-form uncertainties, found in a higher-dimensional space, is investigated. Finally, beyond providing an efficient data-driven reconstruction technique, the proposed procedure enables working with high-dimensional turbulence models (e.g. second-order turbulence models such as Reynolds Stress Models), i.e. with a number of parameters of the same size as the state. This will allow investigation of more complex aerothermal flows and other modifications of turbulence closure models in future works.

INTRODUCTION

Aero-thermal flows characterized by in-homogeneous density fields are ubiquitous in aeronautical applications where heat exchanges can play an important role in the life-span of some mechanical components (cooled aeroengine blades for example) or in the aerodynamic performance of a structure (e.g. hot impinging jets for surface anti-icing). Having an accurate modeling capability of such aero-thermal flows would help manufacturers to develop optimal cooling or heating devices. Usually, experimental wind tunnel tests and numerical simulations are deployed separately in the investigation of such flows. On the one hand, numerical simulations may provide full fields of flow state quantities such as temperature, density or velocity. Among various techniques, Reynolds Averaged Navier-Stokes (RANS) simulations form a widespread and affordable approach. Yet, important limitations exist in RANS models that are usually detrimental for accurate simulations of aero-thermal flows. In particular, the level of heat exchange at a wall is generally unsatisfactorily predicted, which may require the use of higher-fidelity but more expensive simulations [START_REF] Grenson | Caractérisation expérimentale et simulations numériques d'un jet chaud impactant[END_REF]. On the other hand, experimental techniques may provide reliable but limited information about such aerothermal flows. For example, the Background Oriented Schlieren (BOS) technique [4], which exploits the refraction of light in the traversed flow to provide light deviation maps using a simple optical setup, can give some quantitative insights into the flow density field. This density field may then be reconstructed from the observed deviations based on a tomographic approach [START_REF] Nicolas | A direct approach for instantaneous 3D density field reconstruction from backgroundoriented schlieren (bos) measurements[END_REF]. While such a technique can be efficiently used to study free flows, its application to bounded flows is more challenging because of the restrictions applying on the possible points of view. Furthermore, tomographic reconstructions are performed relying on an aero-optical modeling only and does not involve any prior or basic information on the flow of interest. Finally, it should be emphasized that this procedure can only provide estimates for the density field and not for other flow quantities such as the temperature or the velocity. Based on estimation theory, Data Assimilation (DA) [START_REF] Evensen | Data assimilation: the ensemble Kalman filter[END_REF] allows to overcome the respective limitations of numerical simulations and experiments, namely the lack of accuracy due to, among others, modeling errors for the former and the scarcity of flow information for the latter. In this study, following the line of thoughts initiated in the work of Ben Ali et al. [1], we investigate an ensemble-based Bayesian approach where 2D maps of BOS light-deviations and RANS simulations are brought together. The goal is twofold. On the one hand, the present methodology aims at providing a physically-meaningful and complete flow estimate using light-deviation measurements. On the other hand, such a hybrid approach can be expected to significantly enhance RANS predictions compared to baseline results that cannot be used alone to accurately describe the flow of interest. Compared to our previous work [1], the present study considers model-form uncertainties, hence going beyond a simple calibration of global RANS model coefficients. The paper is organised as follows. Section 2 describes the methodological ingredients including the approach followed to deal with RANS model-form uncertainties. Section 3 first describes the flow configuration and then discusses the results of the Bayesian inference procedure applied to synthetic experimental data. Finally, section 4 concludes the study and opens up with some perspectives.

DATA ASSIMILATION FRAME-WORK

Given noisy BOS observations of an aero-thermal flow in the form of mean optical deviation maps [START_REF] Nicolas | A direct approach for instantaneous 3D density field reconstruction from backgroundoriented schlieren (bos) measurements[END_REF], our objective is to infer an approximate mean flow state relying on a RANS model that naturally involves physical constraints on the flow quantities and that is subject to model-form uncertainty. The present study particularly focuses on the development and the validation of an approximate Bayesian inference method suitable for RANS model Uncertainty Quantification (UQ).

A state augmented approach

The framework considered in the present study relies on a state-space model [2], and more particularly on a state augmentation approach recently proposed for inverse problems [START_REF] Iglesias | Ensemble kalman methods for inverse problems[END_REF] and termed Ensemble Kalman Inversion (EKI) [3]. This approach relies on an iterated ensemble Kalman method [START_REF] Evensen | Data assimilation: the ensemble Kalman filter[END_REF][START_REF] Kato | A data assimilation methodology for reconstructing turbulent flows around aircraft[END_REF] that blends observations and prior knowledge for estimation of the true flow state. In this sense, the present approach may be classified as a sequential DA technique were temporal dynamics is replaced by an artificial one, providing an approximate Bayesian inference method [START_REF] Xiao | Quantifying and reducing model-form uncertainties in reynolds-averaged navier-stokes simulations: A data-driven, physics-informed bayesian approach[END_REF].

In this framework, the state-space model at iteration K writes

X K = M M M(X K-1 , η m ), (1a) 
Y K = H H HX K + η o , (1b) 
with the n-dimensional state X K and the m-dimensional measurements Y K . In a state-augmented framework, X K contains flow physical variables (and particularly ρ in our case), augmented with parameters acting as function weights that need to be adjusted for model-form uncertainty quantification. Eq. (1a) then models the artificial dynamics with M M M embedding the non-linear RANS operator that updates the state from iteration K -1 to iteration K with some (unknown) model uncertainty η m .
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It can be emphasized here that RANS models are generally parametrized by carefully-determined empirical closure coefficients hidden in the model M M M in Eq. (1a).

If one considers such a model as perfect, thus neglecting η m , the variability of the RANS solutions can only be controlled by the values of these parameters. In a general manner, if one believes in some degree of (weak) universality of such calibrated RANS models, these parameters should be minimally and carefully modified. Yet, this constraint was intentionally relaxed in our previous work [1] for the development and validation of the present methodology, providing a data-driven RANS coefficients calibration procedure. In the present work, the model is rather considered as imperfect by including the noise term η m in order to account for model-form uncertainties. These uncertainties are interpreted as a consequence of restrictive assumptions made to derive and close the RANS governing equations. We are then not interested in balancing individual terms appearing in a RANS model equations, but rather in targeting what may be called structural errors, i.e. errors made in the structure of a particular governing equation. Compared to the data-driven calibration approach, this can be interpreted as a data-driven model-closing method involving higher (spatial) dimensions.

Eq. (1b) represents the observation (or measurement) model in which H H H is a linear observation operator that projects the state X K to the measurement space with some measurement noise η o . The linearity of the observation operator emerges from the type of measurement here considered and detailed in section 2.3. It is on this statespace model (1) that an ensemble-based Kalman Filter is applied to provide flow state and parameters estimates. Further details on the artificial dynamical model M M M, on the observation model H H H and on the ensemble Kalman method used are provided in the following sections.

Aero-thermal RANS model 2.2.1 Baseline model

The aero-thermal RANS model constrains the estimated solution with conservation equations for mass density ρ, momentum ρU and total energy ρE. The RANS models are closed by relations for the Reynolds stress tensor ρu ′ i u ′ j for the dynamic part, and for the turbulent heat flux terms ρu ′ i T ′ for the thermal part. These two modeled terms entirely account for the unresolved physics and are the ones that can be considered as uncertain and subject to optimization with the present approach.

Among the large variety of models available in the literature [START_REF] Wilcox | Turbulence modeling for CFD[END_REF], we chose to use the kω SST (shearstress transport) [START_REF] Menter | Ten years of industrial experience with the SST turbulence model[END_REF] turbulence model as baseline for the present methodological developments since it was reported in [START_REF] Grenson | Caractérisation expérimentale et simulations numériques d'un jet chaud impactant[END_REF] to yield a very reasonable quantitative description of the flow considered in this work and detailed in section 3.1. Such a model is one of the eddy-viscosity models, which relies on Boussinesq's hypothesis. Closure for the RANS total energy equation is obtained in the present work using the simple gradient diffusion hypothesis to model the turbulent heat flux, such that

ρu ′ i T ′ ≃ - µ t Pr t ∂ T ∂ x i , (2) 
where µ t is the turbulent viscosity deduced from the k -ω SST model for the Reynolds stress tensor and Pr t is the turbulent Prandtl number.

Accounting for model-form uncertainty

Different levels of RANS model uncertainty have been proposed in the literature [START_REF] Duraisamy | Turbulence modeling in the age of data[END_REF][START_REF] Xiao | Quantification of model uncertainty in RANS simulations: A review[END_REF], three of which being the uncertainty in the functional representation of the Reynolds stress, the uncertainty in functional forms used in the model, and the uncertainty in the chosen model coefficients. The present work will only focus on modelform uncertainties (second level) for an eddy-viscosity model by introducing source-terms in the RANS transport equations. Future works will investigate more general approaches were uncertainties are introduced on the Reynolds stress tensor itself [START_REF] Xiao | Quantifying and reducing model-form uncertainties in reynolds-averaged navier-stokes simulations: A data-driven, physics-informed bayesian approach[END_REF].

To illustrate these three uncertainty levels, the different assumptions made for eddy viscosity models are briefly reminded. Firstly, the Boussinesq hypothesis assumes that the (deviatoric) Reynolds stress tensor is aligned with the mean rate of strain, the proportionality coefficient being the eddy viscosity. Secondly, the eddy viscosity, scalar-valued and thus isotropic by construction, is then related to turbulent quantities such as the turbulent kinetic energy k and the frequency ω for which transport equations are constructed. Higher moments in these equations are replaced by semi-empirical relations that close the model and prevent deriving additional equations. It can also be noted that under an aero-thermal setting, similar simplifications are brought to the energy transport equation. Finally, fixed values for the parameters appearing in these closing relations are chosen, usually based on results obtained for a few number of canonical flows.

While Ben Ali et al.

[1] addressed model parameters uncertainty for the present eddy-viscosity model, this work proposes a methodology to account for model-form uncertainty at the level of turbulence and thermal modeling. Yet, for conciseness, we restrict its description to the turbulent kinetic energy transport equation alone.

Formally, the errors arising from the simplified terms within the k equation are modeled as a random field, called η k . Moreover, similarly to [START_REF] Xiao | Quantifying and reducing model-form uncertainties in reynolds-averaged navier-stokes simulations: A data-driven, physics-informed bayesian approach[END_REF], the spatial behavior of this field, e.g. smoothness and spatial correlations, is monitored through projection onto a deterministic functional basis set, {ψ i (x)}, such that

η k (x) = ∞ ∑ i θ k i ψ i (x) , (3) 
where the coefficients θ k i are random weights applied to the modes of the basis. In this study, the basis set is chosen by assuming that the discrepancy field η k is a zero-mean random field drawn from a Gaussian measure of probability, such that η k ∼ N (0, C(x, x ′ )), where C(x, x ′ ) is the multivariate covariance between tuples of spatial positions. This covariance matrix, also so called the kernel of the Gaussian process, is defined as

C(x, x ′ ) = σ (x, x ′ ) exp || x -x ′ l c || p , (4) 
with σ (x, x ′ ) being constructed by the cross product of a variance field V (x) between pairs of positions and p specifying the correlation metric ||.||. Of particular importance, the variance field V (x) will encode some a priori expectations of where large discrepancies are likely to arise. As in [START_REF] Xiao | Quantifying and reducing model-form uncertainties in reynolds-averaged navier-stokes simulations: A data-driven, physics-informed bayesian approach[END_REF], it can be defined through a problem specific knowledge, e.g. specific knowledge on physical behaviors in certain regions of the flow (such as separations, wakes, flow curvatures). In the current study, however, we aim at investigating a more general approach for the definition of this field. For that purpose, V (x) is instead specified based on a specific knowledge of the model. Indeed, since turbulence anistropy is poorly represented under the Boussinesq assumption, it is here safe to say that non-homogeneities (say of the turbulence kinetic energy) represent a bottleneck for turbulence modeling. This observation is used to restrict model-form uncertainties to regions of high interest, but there is a further need to spatially correlate them to ensure smoothness. This is enabled by the correlation length l c which can be specified based on the local length scale (e.g. turbulence, characteristic to a specific flow region). It should be noted that in the definition of the kernel 4, both the length l c and the pnorm are two free parameters that are chosen by thumbs rule.

With the above choices of representation of the modelform uncertainty, the basis functions {ψ i (x)} are found as the eigenvectors, φ i (x), of the kernel C scaled by its eigenvalues,λ i , such that

ψ i (x) = λ i φ i (x) . (5) 
Formally, the eigen-decomposition of C(x, x ′ ) arises from the computation of the Fredholm integral

C(x, x ′ )φ (x ′ )dx ′ = λ φ (x) . ( 6 
)
The basis is known as a Karhunen-Loeve (KL) basis and the uncertainty field is hence a parameterized function, with random parameters θ k i (Eq. 3). After truncation to L modes, the set of parameters that need to be optimally identified can be expressed in a vector form as

θ K = (θ k,1 K , • • • , θ k,L K ) . (7) 
The state in Eq. 1 is then defined as the physical state sought from the RANS simulation and augmented by the parameters θ K , such that X K = (ρ K , θ K ).

Observation model

The data Y K as given in the observation model (1b) results from the application of the observation operator H H H on the the flow state embedded in X K . This operation involves performing a synthetic BOS observation [START_REF] Nicolas | A direct approach for instantaneous 3D density field reconstruction from backgroundoriented schlieren (bos) measurements[END_REF] to evaluate 2D visualization maps of ray deviation angles in one projection plane (or camera). A multi-camera setup will be considered in future works dealing with non-axisymmetric flow configurations.

In a geometrical optics framework, the observed deviation angles result from the integral of the field of refractive index gradient ∇n r along the path of light rays traversing the in-homogeneous fluid flow medium. The local refractive index is related to the fluid density by the Gladstone-Dale relation n r -1 = Gρ, where G is a constant that depends on the gas composition (air in the present case) and the light wavelength. The three components of light ray deviations in space can then be written as

ε = G n r0 s∈ray ∇ρ ds, (8) 
where n r0 is the refractive index of the medium surrounding the flow, which is assumed constant. As the ray path depends itself on the density, the relationship is generally nonlinear. A common way to simplify the problem is to use the paraxial approximation since the angles are usually small [START_REF] Nicolas | A direct approach for instantaneous 3D density field reconstruction from backgroundoriented schlieren (bos) measurements[END_REF], providing a linear framework for the observation operator H H H that then amounts to a linearized ray-tracing operator. Furthermore, the three components ε x,y,z of the field of light ray deviations then approximately correspond to deviation angles and are thus considered as such in the following sections. Given the preceding definitions, the observation data Y K in (1b) can be defined as

Y K = ((ε x , ε y , ε z ) 1 , • • • , (ε x , ε y , ε z ) L ), ( 9 
)
where L is the number of light rays considered (or equivalently the number of points considered in the 2D deviation map). The dimension of Y K is m = 3L and the observation operator H H H is of dimension m × n in matrix-form. Finally, the experimental noise η o in (1b) is assumed to follow a Gaussian distribution N (0, R R R). The value of the (diagonal) co-variance matrix R R R was determined by a trial and error method to avoid convergence issues induced by possible negative model parameter values. This pragmatic approach is by no means optimal and proper ways of defining it and of thresholding parameters will be considered in future works.
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The inference algorithm

As in [1], we employ an iterative Bayesian inference method to combine the prior and the available BOS data to infer the distribution of θ . Again, this ensemble-based inference approach is iterated to obtain converged posterior state and no stopping criteria are used in this validation work. Yet, for practical applications with time and resources constraints, one may use some norm that measures the discrepancy to the observed quantity. In summary, an approximate solution to the inverse problem is obtained following the steps given by Algorithm 1.

RECONSTRUCTION OF SYNTHETIC EXPERIMENTS

This section presents model-form uncertainty inference results obtained with synthetically generated data. These synthetic data provide known ground-truth to assess the validity of the present inference method. The application case investigated is a subsonic hot-jet flow impinging a flat plate.

Flow configuration

This impinging jet flow configuration is illustrated in Fig. 1. A fully-developed turbulent air flow heated at a total temperature T J of 130 °C is issued from a round pipe of diameter D = 0.06 m at x/D = 0 with a centerline mean axial velocity U J = 31.5 m s -1 . The bulk Reynolds number is Re b ≈ 60, 000. The subsonic turbulent hot jet impinges a flat plate located at x/D = 3 and placed perpendicular to the jet axis. The simulation domain radially extends up to y/D = 12 to capture the development of the induced wall jet. This turbulent flow is statistically symmetric around the jet axis and 2D axisymmetric RANS simulations were performed. Relying on a previous extensive experimental study [START_REF] Grenson | Investigation of an impinging heated jet for a small nozzle-to-plate distance and high reynolds number: An extensive experimental approach[END_REF], boundary conditions for the jet mean axial velocity profile in the pipe exit plane and for the entrained air flow mean velocity profile at x/D = -3 are set using LDV measurements. Furthermore, the plate temperature distribution T P is defined using infrared temperature measurements obtained at thermal equilibrium. The simulations are performed using an unstructured mesh containing approximately 42, 000 grid cells. Time integration is carried out using a firstorder implicit scheme and a first-order spatial scheme is used to ensure stationarity of the solutions for the range of parameters explored. Synthetic BOS observations are performed with one camera oriented with its optical axis parallel to the z axis. The observation resolution is chosen to provide dense deviation maps with a dimension of (n x = 500, n y = 500), thus such that the size of observation data Y K is m = 3 × 2.5 × 10 5 = 7.5 × 10 5 . 

Validation by twin experiments

In our previous work [1], the validity of the present framework for the estimation of the constants of a turbulence model using BOS observations was first evaluated using synthetic data from two numerical twin experiments performed with the RANS model itself. The results obtained after calibration were satisfactory, providing support for the correctness of the iterative ensemblebased inference method implemented and for the relevance of approximate density field reconstructions based on 2D maps of BOS measurements only.

In the next section presenting the results obtained considering model-form uncertainty, the model constants are left to their default values. The solution computed with the default turbulence model is referred to as the baseline.

Results

As mentioned in section 2.2.2, we present results obtained by considering uncertainty in the transport equation for k. This choice is based on the importance of k in first-order RANS models where it is usually the first turbulence scale.

The covariance matrix defining η k is obtained as follows. First, the length l c defining a spatial correlation scale should be related to a characteristic length scale of the considered flow configuration and is then chosen to be the pipe diameter D. Second, a 1norm is chosen in the computation of the metric in Eq. 4. This was observed to yield a better match with data over the radial basis kernel compared to a 2norm.

The variance field V (x) obtained is illustrated in Fig. 2. This field was further smoothed by convolution with a Gaussian function of size 3 × 3 to enlarge the regions of uncertainty. As illustrated in this figure, the field reaches high values at locations in the flow where predictions usually need to be improved, i.e. the free jet shear layer (0 < x/D < 2), the downstream impact/mean flow de-
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Algorithm 1 Iterative Bayesian inference procedure Initialisation: K ← 0; (*) Perform a first RANS simulation to extract features needed for field V (x), (**) Construct/approximate covariance Kernel C(x, x ′ ), (***) Compute the Basis set {φ i (x)} from Eq. 6, (****) Generate an initial ensemble {θ (i) celerating region (y/D < 1.5 and x/D > 2) and the radial wall jet (y/D > 1.5 and x/D > 2). Away from these regions, this approach naturally provides lower variance values. Regarding the truncation of the basis set, 49 modes were retained for the current study. On-going work is being conducted to study the effect of early truncation, which monitors the degree of smoothness of the uncertainty field.

K |i = 1 • • • N}, repeat ( 
It is emphasized that the modal decomposition was performed on a subdomain of the simulated flow, similar to the observation one that covers all the relevant flow regions (i.e. 0 < x/D < 3 and 0 < y/D < 4). Fig. 3 illustrates the first four normalized modes ψ i , sorted by decreasing eigenvalues. It can be seen that all the modes vary in the regions of interest, consistently with the structure of the variance field V (x). Furthermore, the degree of spatial fluctuations increases with the mode number.

Applying the iterative approximate Bayesian inference method yielded the convergence history on the mean root mean squared error (MRMSE) of the BOS observations presented in Fig. 4. Convergence history of the MRMSE is plotted alongside the Bayesian calibration results from [1]. In comparison, we note an improved reduction on the level of deviation errors and a faster convergence rate.

A more local investigation of the associated errors can be conducted by analyzing the optical deviation maps evaluated for BOS observation. Fig. 5 shows the RMSE of the two deviation fields ε x and ε y between the reference LES state and the prior (baseline) state, while Fig. 6 displays the RMSE fields obtained between the LES state and the posterior sample mean. Comparing the two figure, a significant overall decrease of the discrepancies is obtained over the entire observed domain, going from maximum errors of 19% to about 7%. A drastic decrease in the errors is particularly noticeable near the impact region and downstream along the plate. A noticeable improvement on the estimation of the gradient of the density along x in those regions should thus be expected.

Figs. 7 and 8 illustrate the improvements achieved in terms of reconstruction of the mean density field, by displaying the results obtained for the prior (baseline) state and the posterior state respectively. Maximum relative errors have been reduced by a factor of three while in some flow regions larger improvements can be observed. It is highlighted that this level of maximum error is actually confined only in a narrow region of the free jet shear layer close to the ejection.

Density profiles for the prior and the posterior samples are further presented in Figs. 9, 10 and 11, along with the LES solution. In the three regions of the flow, the prior sample mean (baseline) clearly deviates from the LES results. After inference, the posterior density profiles are however in better agreement. Yet, the match is not perfect and posterior results still deviate from the LES profiles, especially in the nozzle exit region. In our previous work [1] that considered the calibration of the global RANS model coefficients, the remaining local discrepancies observed in the same region at x/D = 0.5, 1 (see Fig. 9) between the posterior samples mean and the LES data were assumed to be likely the result of model inadequacies, the proposed aero-thermal RANS model being very rigid. Unexpectedly, the present work finds similar discrepancies despite the use of localized sources of uncertainty.

This observation could suggest that the LES solution used as a steady-state reference could actually suffer from some convergence issues and that the present results attempt to account for these intrinsic "measurement" errors with a model that is not tailored for it. Indeed, the averaging time scale that was used to evaluate the LES mean state (about 22 convective time scales in [START_REF] Grenson | Large-eddy simulation of an impinging heated jet for a small nozzle-to-plate distance and high reynolds number[END_REF]) may be too short to reach statistical convergence on the density field. Particularly, examining actual experimental measurements of mean temperature across the free jet region in Fig. 12, it can be noticed that some deviations are observed with respect to the measurements. Experimental data are actually more consistent with the baseline and posterior mean temperature field than the averaged LES results, with in addition the observation of an unexpected 

Effects of the parameters controlling the covariance kernel

In the expression of the covariance kernel (4), two free parameters are left to be arbitrarily chosen: the type of norm for the radial basis function and the characteristic length scale. Regarding the later, a finer investigation of its structuring effects on the uncertainty will be addressed in an ongoing work and no conclusion has been drawn so far. Regarding the former, some preliminary observations can be highlighted. Figure 13 shows the magnitude of the kernel eigenvalues based on the 1norm (chosen for the present study) against the 2-norm. It is observed that the spectrum of eigenvalues decreases significantly faster in the case of a 2norm. This suggests that with this norm, a fewer number of modes could be kept for inference while capturing a similar level of uncertainty. This result can be expected since this norm allows searching for an uncertainty field that is smoother in space. It can finally be emphasized that while a 1norm could lead to greater fitting capabilities (as observed in the present work), it is expected that a 2norm would ensure more robustness against possible erroneous or noisy data and could help avoiding over-fitting situations. Other pnorms could also be considered, but this is out of the scope of this study.

CONCLUSION

In this study, a DA technique based on an ensemble method was numerically investigated for mean density reconstruction of aero-thermal flows. In the process, 2D maps of light deviation angles obtained by synthetic BOS were considered as input observations and a RANS flow model was chosen to provide physically-plausible flow constraints. Following the line of thoughts initiated in the work of Ben Ali et al.

[1], an approximate Bayesian inference method was investigated. The study was particularly focused on the development and the validation of a reconstruction method suitable for RANS model Uncertainty Quantification (UQ), with an emphasis on model-form uncertainty in transport equations of first-order RANS models.

To validate the developed framework, a kω SST RANS model was considered on the application case of a hot jet impinging on a flat plate. For conciseness, the considered model-uncertainty was specified in the turbulent kinetic energy equation. Assuming a Gaussian representation of the error, a kernel was defined based on some flow features targeting local inhomogeneities. Then, a projection on a Karhunen-Loeve basis was performed in order to ensure some spatial structuring and to allow a reduced order representation of the uncertainty.

Results obtained with the current approximation technique applied to the observation data issued from a LES provided satisfactory posterior state and a better match with data compared to the approximate calibration technique developed in a previous work. The very localized discrepancies that remained in the recovered density fields after approximation highlighted the robustness of the approach.

However, it was also suggested that the reference LES data used may embed some non-negligible observation uncertainty when compared with the available experimental measurements in these region. As a possible workaround, the covariance of the observation uncertainties could be further adjusted to account for these possible issues, but this result highlights the importance of working with converged and unbiased observations. Finally, results with RANS-UQ technique highlighted the potential of model-form uncertainty quantification in the context of aero-thermal flow. It is worth mentioning that the process is relatively easier to setup then the calibration which may require more thorough-full sensitivity analysis to ensure numerical stability. This numerical stability is ensured by the spatial regularity that we impose to the extracted features. Moreover, exploring uncertainties within another setup of equations is relatively straightforward as fewer free parameters are involved. In future works, this approximate Bayesian estimation technique will be applied to real experimental results with more complex turbulence models (e.g. second order turbulence models such as Reynolds Stress Models). Furthermore, a deeper analysis of the identified model-form uncertainty terms will also be investigated with the intent to provide a diagnostic tool for turbulence closure models. 
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 1 Figure 1: Computation domain for the hot-jet flow impinging on a flat plate.
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 2 Figure 2: The variance field V (x) after smoothing, displaying the extracted features providing indications on the level of in-homogeneities present in the kinetic turbulent energy field. The field is scaled to the range [0, 1].
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 34 Figure 3: KL modes, scaled to the range -1 (blues) and 1 (red). The modes are ranked by decreasing eigenvalues.
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 5 Figure 5: 2D maps of RMSE on the observed optical deviations obtained across the reference LES state and the prior RANS state.
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 6 Figure 6: 2D maps of RMSE on the observed optical deviations evaluated across the LES state and the posterior (inferred) state.
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 7 Figure 7: Density distributions of (a) the LES solution and of (b) the prior density field. (c) Map of RMSE at K= 0 between the two fields.
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 8 Figure 8: Density distributions of (a) the LES solution and of (b) the posterior density field. (c) Map of RMSE at K = 5 between the two fields.

Figure 9 :

 9 Figure 9: Density profiles across the free jet at downstream locations x/D = 0.033, 0.25, 0.5, 1.0.
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 10 Figure 10: Density profiles across the free jet and close to impact at downstream locations x/D = 1.5, 2.0, 2.5.
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 111213 Figure 11: Density profiles across the wall jet at downstream locations y/D = 0.5, 1.0, 1.5, 2.0.