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We discuss an approach to transforming and solving algebraic equations via the so-called bar model, 
based on the strategy of transposing. After developing a learning environment, we conducted design 
experiments to get insights into how students work with it. First, this paper aims to present the core 
idea of our learning environment. Second, we highlight the following difficulties that students face 
when working with the bar model: (1) the model itself, with its translation processes between 
graphical and symbolic representations (such as numbers, variables or operation signs), turned out 
to be a considerable learning content, (2) the transition from arithmetic-numerical contexts to 
general algebraic equations in the bar model seems to bear distinct conceptual obstacles which may 
even lead to misconceptions based on over-generalizations resulting from the bar model. We point to 
theoretical insights and implications for enhancing our learning environment. 
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Introduction 
In the transition from arithmetic to algebra, students face a variety of difficulties (e.g., Warren, 2003). 
Especially for low-achieving students, it is important to fill the concepts and procedures introduced 
in arithmetic-numerical contexts with meaning for transferring them into the field of algebra. One 
example of such an idea that originates from numerical considerations is the concept of equivalence 
with its strong connections to the procedure of equivalence transformations regarding solving 
equations. This process, however, is known to bear several problems for learners. Kieran (2006) gives 
a short overview of students’ errors, like ignoring the minus sign or reduction errors. To work against 
these procedural errors, a deep understanding of the idea of equivalence could be helpful. The idea 
of equivalence represents a central part of solving equations in school algebra and can be 
characterized by three different perspectives (Prediger & Roos, in press): (1) equations are equivalent 
if they have the same set of solutions, (2) equations are equivalent if there exists an equivalence 
transformation that transforms one into the other1, and (3) equations are equivalent if they describe 
the same situation. While the first and second characterizations stay close to the formal mathematical 
definition, the third can be used for giving meaning to equivalence transformations in a rather intuitive 
and visual way. Thus, especially for low-achieving students, this could be a promising approach to 
build up conceptual understanding for the mathematical procedure of solving equations. 

Our focus is on developing a learning environment, i.e. teaching material, to ease the transition from 
transforming arithmetic-numerical to algebraic equations. With the help of the so-called bar model, 

 
1 An equivalence transformation can be seen as an application of a bijective function on both sides of the equal sign. 



 

 

 

we want to emphasize the meaning of equivalent equations in order to develop the strategy of 
transposing for solving equations. Firstly, we summarize the theoretical background for creating our 
learning environment. Secondly, we report results of interview studies used to evaluate the learning 
environment to derive theoretical and practical conclusions. 

Theoretical Background 
Regarding the process of solving algebraic equations, Selter et al. (2012) differentiate between two 
formal strategies: performing the same operation on both sides (𝐵 + 𝐶 = 𝐴 ⇔		
𝐵 + 𝐶 − 𝐶 = 𝐴 − 𝐶) and transposing (put an expression on the other side of the equal sign by 
applying the respective inverse operation: 𝐵 + 𝐶 = 𝐴 ⇔ 	𝐵 = 𝐴 − 𝐶;  
compare Figure 1) (see also Kieran, 1992). While solving equations by performing the same operation 
on both sides should depict one main objective (Malle, 1993), especially at the beginning of the 
learning process, the strategy of transposing is considered more intuitive for students (Mason et al., 
2005). Selter et al. (2012) particularly emphasize the close relationship of the idea of transposing to 
former arithmetical experiences. Therefore, the strategy of transposing can be linked back on the one 
hand to the concept of equivalent equations as equations describing the same situation and, on the 
other hand, to experiences that were made in arithmetical contexts. We explain both shortly. 

Equivalent equations as describing the same situation – a graphical model 

According to Malle (1993), object relationships 
represented in drawings (such as relationships 
between line segments) can be used to give variables, 
expressions, and formulae a meaningful 
interpretation. Such graphical models can also be 
used later on for making sense of transposing when 
solving equations (ibid.; see Figure 1). 

The Singapore bar model (e.g., Fong Ng & Lee, 2009) works similar to this approach. This model is 
used widely among others in Singapore’s primary schools (e.g., Kaur, 2019) and discussed as a 
method for supporting students to get good results in problem solving activities for instance in 
international assessment studies like TIMSS (e.g., Beckmann, 2004). 

 
Figure 2: The bar model as a visual representation of equivalent equations 

One bar model serves to describe three equations (see Figure 2) and that is why these equations are 
called equivalent. Following a semiotic point of view, the bar model can be considered a 
representational system. As with every representational system, working with the bar model 
presupposes specific knowledge being implicit (see Kempen and Biehler (2020) for a more detailed 
description) to work with. For example, two numbers are added by placing corresponding line 

Figure 1: Bar model for representing 
transposing; based on Malle (1993, p. 220) 



 

 

 

segments next to each other, subtraction by crossing out or erasing. Multiplication is traced back to 
counting units in this model and is thus done by bundling line segments with equal length (see the 
five fs in Figure 2); division can be done by laying out a line segment with smaller segments of equal 
length. The equality of two values, expressions, etc., results from the phenomenon that two resulting 
line segments are equal. It becomes clear that one needs both an understanding of the mathematical 
operations and how they are represented or performed in the context of the bar model. To 
communicate such incidents, a distinct language is required that refers to the operations performed in 
the bar model and to the model itself. This language is closely related to the meaning-related language 
needed to describe basic operations (see Table 1). 

Linking back the idea of equivalent equations to arithmetical contexts 

For the strategy of transposing the relationship between the operations – the inverse operation of 
addition is subtraction etc. – is one key component that must be transmitted from arithmetic to 
algebra. To accomplish this transmission, it seems helpful to focus on the meanings of the operations 
involved as well as the related language that comes along with these meanings (see Table 1). The use 
of such meaning-related language seems also helpful when working with the bar model (see above). 

Table 1: meanings and meaning-related language (see also Prediger & Roos, in press) 

Meanings of the basic operations Examples for meaning-related language  
• Addition as putting together 
• Subtraction as taking away or determining the difference 

•  I have 2 and I put it together with 3, then I obtain in total 5. 
• I have 5, and I take away 3, so 2 remains. 
• I have 3, so I need 2 more to reach 5. 

• Multiplication as counting in units 
• Division as sharing (partitive model)  
• Division as measuring (quotative model) 

• I count in groups: 3 groups / sets / units of 2 are 6. 
• I share 6 among 3 people, so everybody gets 2. 
• 2 fits 3 times into the 6. 

The learning environment 

Based on the considerations above, we developed a learning environment to prepare the transition 
from arithmetic to algebra for transforming equations using the bar model (Prediger & Roos, in press). 
The steps in the learning environment are shown in Figure 3, although the paper focusses on step II 
and V. 

Different representa-
tions for equations 

(I) 

The bar model in 
numerical contexts 

(II) 

Equivalent equations 
in numerical contexts 
             (III) 

The bar model in 
algebraic contexts 

(IV) 

Equivalent equations 
in algebraic contexts 

(V) 

Figure 3: Steps in the learning environment towards transforming algebraic equations 

In step II (The bar model in numerical contexts), students get to know the bar model and start working 
with it. The key component here is the understanding of the bar model itself and how to perform and 
understand basic (arithmetic) operations in it (see Table 1, Figure 1). Learners need to connect the 
bar model as a graphical representation of equations with equations represented symbolically, and 
formulate verbally corresponding relationships. In step V (Equivalent equations in algebraic 
contexts), the objective is to detach the ideas of transforming equations from the use of the bar model 
so that students can transform equations also in rule-based procedures. Here, abstraction processes 
and the idea of reverse operation play a decisive role. 



 

 

 

Research Question 
Our focus is on developing a learning environment to ease the transition from transforming 
arithmetic-numerical to algebraic equations by using the bar model. The design research project 
(Gravemeijer & Cobb, 2006) builds and enhances the design based on empirical insights into 
students’ learning processes. In this paper, we focus on the following research question: Which 
obstacles become apparent when transforming and solving algebraic equations with the aid of the 
bar model? 

Methodology 
Within the applied design research approach (Gravemeijer & Cobb, 2006), the learning environment 
created was sequenced into five steps (Figure 3). The target group of our learning environment 
consists of low-performing students who need a second chance to develop an understanding of the 
mathematical process of solving equations. The first two design experiment cycles addressed three 
low-achieving tenth graders in remediating mathematics classes, aiming to pass their Grade ten exam 
in a prevocational setting (Cycle 1) and three eighth graders of a German comprehensive school 
(Cycle 2). Data was collected while the students worked on equations in zoom-sessions in addition 
to their ‘normal’ math classes during the pandemic in January – May 2021. In total, 960 minutes of 
video data were collected and partially transcribed.  

During the sessions, the design experiment leader watched the student work with the material. 
Whenever the student’s work stayed unclear, she asked the students to explain their approach, 
thoughts, and solutions. Also, when students needed additional help or had questions, she explained 
the tasks in more detail. 

In our analysis, we watched the videos and selected places where difficulties with the bar model or 
the transformation of equations occurred. For these places, we took a closer look into the 
corresponding transcripts. Two of the typical conceptual challenges appear when working in step II 
and step V of the learning environment. They will now be discussed based on the cases of Vivien and 
Anno. The problems discussed below can be considered prototypical for our sample in terms of their 
characteristics. 

Tentative Results 
Case of Vivien 

The case of Vivien was already presented in Prediger & Roos (in press). She is an 18-year old girl in 
grade 10 participating in a remediating mathematics class. In this episode, the design experiment 
leader (DEL) talks with Vivien about the task in Figure 4 located in step II of the learning 
environment.  

Three different running programs and their drawings 
• John goes running every Saturday to train for a half marathon. He runs 21 km every time.  
• Eva runs three times a week 7 km and  
• Max runs every day 3 km from his place to his grandparents. 

Assign Eva, Max and John’s runs to the matching drawings.   

Figure 4: Vivien’s solution to the running program task 



 

 

 

1 Vivien: And Eva beneath, the one next to it [refers to the lower right bar].  
Where there is written 3, then the middle line and then 7. 

2 DEL: Here? 
3 Vivien: Yes. 
4 DEL: And can you explain how you came up with that or why? 
5 Vivien: Because it says, “Eva runs three times a week 7 km”. And then I would say, the 3 

stands for “three times a week” and the 7 for “7 km”. 
Vivien focused on the numbers while missing to connect the bar model with the intended 
mathematical operation. This problem is also mirrored in her explanation: Rather than grasping the 
additive structure of 3 and 7 in this part of the bar model (e.g., with meaning-related language of 
addition like “putting together”, see Table 1), she only articulates the numbers, not joint lengths: 
“Where there is written 3, then the middle line and then 7” (Line 1). Vivien shows difficulties with 
the distinction of additive and multiplicative structures in connection with the bar model. This is also 
reflected in her rather simple use of language: “And then” is the only connective between 3 and 7 that 
she uses, which does not allow her to distinguish an additive structure from a multiplicative structure. 
Moreover, Vivien fails in realizing the idea of multiplication displayed in the bar model on the upper 
right. Here, multiplication is shown as counting units. It becomes evident that a learner has to combine 
two facets of knowledge: First, the conceptual understanding of multiplication as counting units is 
needed for mathematizing the text on Eva’s run. Second, the representation of this multiplication (as 
several units consisting of 7 km each) in the context of the bar model has to be realized (three line 
segments of length seven are meant to represent "3 ∙ 7"). In this sense, the conceptual understanding 
of multiplication serves as a prerequisite for choosing the adequate bar model. However, based on 
this conceptual understanding, the corresponding representation in the bar model (the juxtaposition 
of three line segments [addition] of equal length [leading to multiplication]) has to be understood, 
too, as a matter of implicit knowledge. 

Case of Anno: Anno is a 14-year old German 8th grader with average achievement in mathematics 
classes at the comprehensive school. In the beginning of his learning process, he displayed a good 
understanding of the bar model by explaining the meanings of the underlying operations. When 
talking about the bar model, he finds the correct corresponding symbolic equations and gives a correct 
explanation (see Figure 5). 

 

Figure 5: Anno explaining corresponding equations in the bar model 

Anno refers directly to the significance of the operations when he speaks of pieces that have been 
"put together" or of the "three compartments" that have been placed in the 24. Thus, although the bar 
model is new to him, he seems to have a good intuitive understanding of the operations and the 



 

 

 

corresponding connections between the bar model and the symbolic representation. In the following 
episode, the design experiment leader and Anno discuss the task shown in Figure 6 (step V, see Figure 
3). This task was designed to initiate a detachment from the bar model with which the students had 
worked before. Detaching is necessary because the multiplication with the rate r can hardly be 
visualized as counting in units in the bar model (and scaling up and down is not known by Anno). 
Therefore, from the tasks, which were solved before with the bar model, the idea of the reverse 
operation is to be transferred. 
 

You know an example of such a formula from percentage calculation: 

𝑎𝑚𝑜𝑢𝑛𝑡'()(*
!

= 𝑟𝑎𝑡𝑒.
"

× 𝑏𝑎𝑠𝑒.
#

 

i) What are the equivalent equations here? 

 

Figure 6: Anno’s task for detaching from the bar model due to other meanings of multiplication 

After Anno finds the correct equivalent equations (𝑎 = 𝑟 × 𝑏; 𝑟 = 𝑎 ÷ 𝑏; 𝑏 = 𝑎 ÷ 𝑟) the interviewer 
asks how he came up with his solutions: 
 

Anno: Yes, because it was always in the beginning [referring to former tasks in the 
learning environment] larger [value] was always calculated by the two smaller 
ones.  If you now assume that somehow these are the two smaller ones, like 3 times 
2 or something, the larger value is calculated by these two [marks the rate and the 
base]. This [referring to a] you can then divide by the two, by the rate and the base, 
I suppose. 

Also in the following, Anno continues explaining his strategy of transposing equations by using ideas 
of smaller or bigger numbers. For him, the number or variable that stands alone opposite the 
multiplication on one side of the equation has to be the largest. If one wants to obtain an equivalent 
equation, this only makes sense if one divides the larger number by a smaller number. He shows here 
– similar to Vivien – a non-sufficient focus on the underlying operations with respect to their 
structures. Although Anno described the meaning of multiplication and division as inverse operations 
in earlier tasks, he can only superficially exploit this idea when developing a strategy without the bar 
model. He uses a method that is based on the magnitude of numbers (“if one now assumes […] these 
are the two smaller […] the larger value is calculated by these two”). This strategy might be 
considered an over-generalization resulting from the bar model: The one number alone on one side 
of the equation is always bigger than the two numbers on the other side. In fact, multiplication in the 
bar model is based on the aspect that at least one of the factors is a natural number. Albeit Anno’s 
strategy can be helpful when working with equations with natural numbers, the strategy fails when 
multiplying with factors smaller than 1.  

Discussion and Conclusion 
The insights we gained in our design experiments are the following: 

Regarding the understanding of the bar model, some students have considerable difficulties 
connecting representations (iconic-symbolic-verbal) relying on conceptual understanding of basic 
operations. For such students, it is hard to use the model to make sense of equivalence transformations 

The same is now possible with every formula. So I 

finally don’t have to learn so many by heart… 



 

 

 

of equations. Even the step before, representing one side of the equal sign in the bar model already 
depicts challenges. These students focus on the given numbers in the model instead of on the 
underlying mathematical structures. This phenomenon has also been reported in the context of 
multiplication for grade 5 students (Prediger, 2019). However, our sample consists of students in 
grade 10. Other students who have acquired an adequate understanding of the meaning of equivalent 
equations within the bar model are not necessarily able to develop an appropriate strategy (like 
transposing) when prompted to detach it from the bar model. Especially regarding algebraic equations 
with a multiplicative structure, the concept of inverse operations should be used, not an idea 
concerning the magnitude of numbers that are not transmissible to decimal numbers below 1. 

Based on these findings regarding students’ obstacles when using the bar model for solving equations, 
we want to highlight the following theoretical implications. First, when working with the bar model, 
a profound understanding of basic mathematical operations has to be considered essential. This 
understanding is not only necessary for performing respective operations when solving equations in 
arithmetical or algebraic contexts; learners need to have an appropriate conceptual understanding to 
understand which operations are illustrated in the bar model or perform operations in the bar model 
themselves. Although Koleza (2015) found that third graders already understand multiplication after 
short instruction with the bar model, our preliminary results show that this does not have to be the 
case even for students in grade 8. Moreover, the bar model must first be seen as a learning object in 
its own right before it can aid learning. In this sense, the bar model is neither self-evident nor self-
explanatory, as learners need specific knowledge to work with it. Besides, the student’s attention 
must be directed from a focus on the numbers to a focus on the underlying operations (see also 
Prediger (2019)) and its representation in the bar model. In the case of Anno, the extensive work with 
the bar model led to an over-generalization of a respective strategy for working with equations. 
Furthermore, this overgeneralization might be considered a considerable misconception. 
Accordingly, the idea of inverse operation has to be highlighted in the bar model to focus rather on 
the operations than on the ‘length’ in the bar model. Following these theoretical insights, we draw 
the following related practical implications: (1) Especially for low achieving students, the repetition 
of the meanings of the basic operations seems necessary. Accordingly, we plan to extend our learning 
environment with a new part at the beginning to ensure respective prerequisites. (2) The conceptual 
meanings of the basic operations need to be more closely related to the bar model so that the bar 
model is brought in more explicitly as an independent object of learning (step II, Figure 3). (3) Tasks 
must be added that focus on the application of the idea of inverse operations; this idea should be 
followed throughout the whole learning environment. In addition, tasks have to be incorporated to 
help students detach from the bar model and thus work against overgeneralizations and 
misconceptions.  

Based on the results of our analysis, we are planning the next cycle of our research project for the end 
of 2021.   
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