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Abstract
Chaos enables the emergence of randomness in deterministic physical systems. Therefore it can
be exploited for the conception of true random number generators mandatory in classical
cryptography applications. Meanwhile, nanomechanical oscillators, at the core of many on-board
functionalities such as sensing, reveal as excellent candidates to behave chaotically. This is made
possible thanks to intrinsic mechanical nonlinearities emerging at the nanoscale. Here we present
a platform gathering a nanomechanical oscillator and its integrated capacitive actuation. Using a
modulation of the resonant force induced by the electrodes, we demonstrate chaotic dynamics
and study how it depends on the dissipation of the system. The randomness of a binary sequence
generated from a chaotic time trace is evaluated and discussed such that the generic parameters
enabling successful random number generation can be established. This demonstration makes
use of concepts which are sufficiently general to be applied to the next generation of nano-
electro-optomechanical systems.

Keywords: chaos, nanofabrication, photonic crystal, random number generator, electro-
optomechanics

(Some figures may appear in colour only in the online journal)

1. Introduction

The combination of integrated electronics and suspended micro
or nanomechanics in micro-nano electromechanical systems
(M&NEMS) have led to a large number of industrial applica-
tions that have now invaded our daily lives such as, e.g.
accelerometers or gyroscopes [1], all present in a modern
smartphone. M&NEMS are also likely to be used as gas, mass
or pressure sensors, and have also potential for bio-medical
applications [2]. Although these devices generally rely on the
static response of a mechanical component to an external sti-
mulus, e.g. the acceleration provoked by a car accident in an

air-bag trigger, it can also be interesting to exploit the reso-
nance phenomena occurring in these mechanical structures. By
coupling the latter with an excitation scheme, such as a
piezoelectric or capacitive actuator, one can resonantly drive
the mechanical motion. This configuration finds an immediate
application with microphone which converts electrical signals
to acoustic waves, and reciprocally. By reducing the dimen-
sions of these electromechanical systems at the nanoscale, one
can not only access the radio-frequency (RF) domain, but also
unavoidably allow nonlinear phenomena to manifest in the
dynamics of these devices. Interestingly such nonlinear beha-
vior is not necessarily a drawback but can actually be exploi-
ted. Amplification of weak signals, for example, can be
achieved using NEMS thanks to a bistable regime enabled by a
structural Duffing anharmonicity of the material [3, 4].

Among the possible regimes achievable with such non-
linear oscillators, chaos might be the most intriguing as it
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enables the introduction of unpredictability in classical and
deterministic physical systems. Thus chaos emerges as a
possible solution to generate true randomness without
appealing to stochastic [5] or quantum [6] phenomena. In this
spirit there have been several proposals to generate true ran-
dom number sequences out of a chaotic time trace [7–10].
Several approaches using mechanical systems have also been
considered [11–13], for pseudo-RNG applied to image
encryption [14], and applied with bit-rate above 100 MHz
[9, 15], but rely on an external chaotic generator.

Here we present an integrated electromechanical device
based on photonic-crystal (PhC) membrane and interdigitated
electrodes (IDE) separated by a nanometric air-gap (see
figures 1(a) and (b)). Such a system enables controlled chaos
to emerge using a slowly-modulated electromechanical force
[16–18]. An in-depth study of chaotic dynamics is performed
upon the mechanical dissipation. Applying a threshold to
generate random binary sequences from chaotic time traces,
we evaluate the randomness quality as a function of two
parameters involved in the sequence generation. Importantly,
this study goes way beyond the scope of our system and could
be applied to any system displaying similar driven chaotic
dynamics [17].

Our experiment, which gathers both electromechanical
actuation and optical readout aided by an integrated optical
cavity, enables the transduction of the mechanical motion into

the optical domain. This ability to gather electromechanical
and optical properties within the same device constitutes the
basis for the development of nano-opto-electro-mechanical
systems (NOEMS) [19–22]. The multiplication of such novel
platforms respond the interest focused to specific functional-
ities, such as optical-to-RF conversion [23–25], or opto-
electro-mechanical switches [26, 27], for example.

2. System description and nanofabrication

To gather the mechanical, electrical and optical properties
into such NOEMS, we base the design on a 260 nm thick
suspended indium phosphide (InP) membrane. This 20× 10
μm2 rectangular membrane constitutes a mechanical resonator
whose quality factor can be significantly increased by opti-
mizing the four bridges connecting the membrane to the
substrate [28]. Electromechanical actuation is enabled by the
integration of IDE below the free-standing membrane. The
latter is engineered as an optical reflector by etching it
through with a 2D photonic crystal which maximizes its
normal reflexion coefficient [29].

The main steps of the nanofabrication process flow are
schematically depicted in figure 1(c). They include (a) the
electron beam lithography (EBL) of the IDE on a silicon
wafer, followed by metal deposition and lift off; (b) the

Figure 1. (a) Artistic view of the platform and random number generation encrypted in the readout optical field. (b) FEM simulation of the

electric field in a simplified cross-section of the system. The black arrows show the vector field

E which its norm is shown in color. (c)

Fabrication process: IDE deposition by EBL and lift off, integration of an InP substrate by heterogeneous bonding, EBL definition of the
mechanical structures and ICP, under-etching and CPD. (d) colorized SIM micrograph with the PhC membrane (blue) and IDT shown in
transparence (yellow).
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heterogeneous BCB-bonding [30] on the Si wafer of an InP
substrate incorporating the InP membrane onto which 350 nm
of SiN is deposited by PECVD and chemical InP substrate
removal; (c) the EBL patterning of the mechanical structures
and photonic crystals followed by ICP etching of the InP
layer; and (d) under-etching of the mechanical structure
(etching of the SiN layer) with HF, followed by critical point
drying. The resulting platform is shown in the colorized SEM
micrograph in figure 1(d).

The 350 nm air gap separating the membrane from the
IDE placed below constitutes an optical cavity at the He–Ne
wavelength (633 nm). This optomechanical readout permits
to enhance the sensitivity to detect the membrane out-of-plane
resonances [31]. Meanwhile the dielectric properties of the
membrane make it easier to be excited by capacitive actua-
tion. Both DC gate Vdc and RF signal p( )V f tcos 2ac d are
applied externally between these two electrodes and the field
lines penetrate and polarize the InP membrane. In figure 1(b),
we show the stationary solution for the electric vector field


E

(arrows) and norm
∣ ∣E (colorscale) in the system, obtained by

Finite-Element Simulation methods. This model accounts for
a 2D cross-section of the structure, with electrical potential of
1 V imposed every two gold digits while the others are
grounded. This produces electric field arcs that cross the
above InP membrane, which induces on it a capacitive force

µF Vec tot
2 . Neglecting non-resonant terms of Fec results in a

near-resonant force pµ( ) ( )F t V V f tcos 2f ac dc dd
. Therefore

when the actuation frequency fd approaches a mechanical
resonance fm, the mechanical oscillation amplitude of the
membrane increases. With this system, we are interested in
probing the first order mode of the membrane which has the
highest overlap with the incident optical field. This ‘drum’

mode has the strongest out-of-plane amplitude and therefore
is prone to exhibit nonlinearity, which is essential in the
following to obtain a chaotic dynamics.

3. Dissipation parameters control and influence on
chaotic dynamics

The sample is placed in a vacuum chamber pumped at 10−6

mbar. The He–Ne laser is focused at the center of the mem-
brane. Several mechanical modes are observed between 2 and
15MHz. As discussed above, we focus on the fundamental
mode, with frequency fm= 2.327MHz. The associated IDE is
submitted to a voltage p+ ( )V V f tcos 2dc ac d with Vdc= 2 V
and Vac= 0.5 V. While scanning the driving frequency fd
around the mechanical resonance, we demodulate the photo-
received optical signal with a passband filter centered at fd and
100 Hz wide, returning both demodulated amplitude V and
phase j. The amplitude voltage can be converted into a
mechanical displacement r after calibration.

This measurement is reproduced for different values of
the pressure in the vacuum chamber and four representative
spectral responses are shown in figure 2(a). We note a
significant broadening of the mechanical resonance while
the pressure increases. This results from the increasing

contribution of air-damping in the mechanical dissipation. We
fit each resonance curve with the Lorentzian lineshape (red
lines) and extract the mechanical damping rate. The latter is
plotted as a function of the pressure in figure 2(b). An
exponential increase is observed above 1 mbar while a
saturation to γ0∼ 2 kHz is observed below this value. The
saturation arises when the mechanical losses are no longer
dominated by air-damping but rather explainable by internal
mechanical loss channels such as clamping and thermo-
mechanical losses.

So far we have used sufficiently low input voltages Vac

and Vdc for the mechanics to remain in the linear regime,
where the system can be treated as a driven harmonic oscil-
lator. Increasing the electromechanical force applied on these
membranes leads to a distortion of the resonance, which can
become bistable above a threshold. Such behaviour is typical
of a Duffing oscillator, which consists in a nonlinear oscillator
with a third order anharmonicity β in its equation of motion of
the oscillator:

pg p b+ + + =̈ ( ) ( ) ( )x x f x x F t2 2 . 1m f0
2 3

d

This equation is commonly used to model nonlinear
mechanical resonances [3, 4], among others. The bistable
resonance can be observed by scanning fd forward and
backward around the mechanical frequency. Such measure-
ment is shown in figure 3(a) at three different values of the
vacuum chamber pressure. The data are normalized by their
respective maximum and the linear lineshape (see figure 2(a))
are reported here for reference. In each case we apply the
same excitation with Vac= 3 V. We note that a relatively
small increase of the mechanical linewidth provokes a sig-
nificant change in the bistability, whose frequency span tends
to reduce.

Figure 2. (a) Normalized spectral response of the mechanical mode
at different pressure condition in the vacuum chamber with
Lorentzian fits (red lines). (b) Pressure dependence of the mechanical
damping dots, with a power-law fit (red line).
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In the following we induce a chaotic dynamics by per-
forming an amplitude modulation of the electromechanical
force [16–18, 31]. We add a new component p( )V f tcos 2p p to
the voltage applied to the IDE and we refer to it as the pump
signal. It leads to a modulation at frequency fp of the electro-
capacitive force resonant component, which now writes

p pµ +( ) ( ( )) ( )F t V V V f t f tcos 2 cos 2f dc ac p p dd
. The driving

frequency fd is set at the low-frequency edge of the bistability,
ensuring a wider bandwidth for the chaotic regime [16].

Both the pump amplitude Vp and frequency fp can be
played with to tune the dynamical regime of mechanical
responses. Increasing the amplitude for a fixed frequency
typically leads to a period-doubling cascade route to chaos
[31]. Here we rather set the pump amplitude to Vp= 2.5 V
and scan the frequency from 2 to 20 kHz. The mechanical
response time traces r(t) and j(t) are recorded for 100 ms.
The quadrature j=( ) ( ) ( ( ))Y t r t tsin is used to reconstruct a
Poincaré section of the signal. The latter is plotted as a
function of fp in the bifurcation diagrams shown in
figure 3(b).

At low pressure, the mechanical displacement induces
sufficiently strong nonlinearity to enable a driven chaotic
dynamics, as illustrated at P= 15 μbar. The cascaded period-
doubling to chaos is observed for decreasing fp, and starts
around 16.5 kHz. The presence of chaos can be numerically
verified by computing the largest lyapunov exponent, that we
show in red below this bifurcation diagram. A zero LLE

indicates a periodic or quasi periodic motion whereas a
strictly positive LLE corresponds to a chaotic dynamics. The
presence of experimental noise slightly increases the LLE
giving rise to a slightly positive value even for periodic
motion but the significant increase at some specific positions
—from 6.6 to 14.5 kHz—clearly indicates the range of fp in
which chaos emerges. These regions are also visually iden-
tifiable on the diagram as they translate into a dense Poincaré
section. Here the chaos spans over ∼8 kHz but this range
tends to reduce when the mode linewidth increases, since this
comes also with a decrease of the mechanical nonlinearity, the
bistability span being strongly dependent on the damping rate.
Thus at 125 μbar the bifurcation diagram does not display a
chaotic regime although a period-doubling is observed at
∼12 kHz. The dynamics keeps getting poorer as the pressure
in the chamber increases, as illustrated with the third panel
taken at 250 μbar.

4. Random number generation

Now that we have described the conditions under which
chaos can be reached, we can focus on the exploitation of this
dynamical regime to generate random numbers. Here we
apply a method enabling the production of a sequence of
random bits from an experimental chaotic time trace. This is
achieved using a method described in [32] where the sign of a

Figure 3. For a vacuum chamber internal pressure of 15 μbar (top), 125 mbar (center) and 250 mbar (bottom), we show: (a) the normalized
mechanical displacement with forward (brown) and backward (orange) sweep of the driving frequency around mechanical frequency
fm = 2.327. The linear response is indicated for reference (back dashed). (b) An experimental bifurcation diagram parametrized with the
pump frequency fp. While the latter is swept from 2 to 20 kHz, a Poincaré section is built from the maxima of the quadrature Y(t), and plotted
as a function of fp. A period-doubling cascade is observed for decreasing fp, but chaos is only observed at sufficiently low pressure, as
confirmed by the largest Lyapunov exponent (LLE) plotted in red for the top diagram.
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time trace is periodically compared to a delayed copy of itself
with the logical function XOR. We record the quadrature

j=( ) ( ) ( ( ))X t r t tcos for fp= 12.3 kHz and Vp= 2.5 V. In
practice, we consider the normalized time trace (X− 〈X〉)/σX
where 〈X〉 and σX are the mean value and the standard
deviation of X(t) calculated over the full time trace, respec-
tively. Note that the following results remain unchanged by
using the other quadrature, Y(t). The normalized time trace
under study is shown in figure 4(a). We introduce a delay τ

and a sampling frequency fs, which corresponds to the rate at
which X(t) and X(t− τ) will be compared (see figure 4(b)).
The bits resulting from the XOR gate applied between the
respective signs of these two traces are shown in figure 4(c).

In the following the randomness of a binary sequence is
verified by applying the NIST Statistical Test Suite [33]. It is
composed by 14 randomness tests, each returning a p-value
that can be interpreted as the probability for the sequence to
be random according to the corresponding test. The p-value
validates the test if its value is above 0.01. In the following
we simply apply all these algorithms on our binary sequence
and check the p-values. If all the p-values validate the
sequence as random, we consider that this sequence passes
the randomness test. On the contrary, if at least one test fails,
we consider the sequence as not random.

Our objective is to characterize the randomness test
success as a function of the delay τ and the sampling fre-
quency fs. By generating a binary sequence for several values
of τ and fs, we plot a matrix showing the randomness test
result in figure 5. The green (resp. red) pixels correspond to a
successful (resp. unsuccessful) test. Both the sampling

frequency and the delay are shown in units of pump fre-
quency and pump period, respectively. -fp

1 corresponds to the
mean oscillation period of the chaotic trace. We observe a
significant increase of the randomness quality towards low
sampling frequencies, with a threshold limit around 0.35. This
is related to the modulation frequency fp in the present case.
Indeed at high sampling frequencies, the trace does not have
enough time to evolve between two samples. This favors the
apparition of runs of ones and zeros (‘00’, ‘11’, ‘000’, ‘111’,
and so on) which breaks the sequence randomness. Moreover
the randomness quality shows significant degradation at
fpτ= 1 and 2. This relates with a strong correlation between X
(t) and X(t− τ) for these values of the delay. Overall, low
sampling frequency and high delay improve the randomness
of the sequence. Randomness can emerge only if τ is suffi-
ciently high for the two traces to decorrelate. Beyond these
specific points, figure 5 evidences many pairs of delay and
sampling frequency allowing random number generation.

Here, the ability to extract randomness from chaos fully
relies on a deterministic chaotic dynamics that can be theo-
retically modelled with the Duffing oscillator [31]. It is pos-
sible to evaluate this chaos entropy [34] and to improve it by
different methods such as bandwidth enhancement [32] or
using electrical noise [5].

5. Conclusion

We have presented a nano-electromechanical system dis-
playing driven chaotic dynamics when submitted to a peri-
odically time-varying force. In a first experiment, we submit
the mechanical system to different environmental condition,

Figure 4. (a) Experimental chaotic time trace. (b) The trace X(t) is
compared to its delayed self X(t− τ). (c) The XOR logical gate is
periodically applied to the traces relative sign. It results in a binary
sequence.

Figure 5. Randomness test suite result as a function of the delay τ
and the sampling frequency fs applied to the trace presented in
figure 4(a). Both x- and y-axis are shown in units of modulation
periods.
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by controlling the pressure in the vacuum chamber. From the
dissipative properties of the system, we conclude on their
effect on the dynamics of the nonlinear system. The emer-
gence of chaos is clearly favoured by a higher mechanical
quality factor, as this comes with a more pronounced
bistability.

Using a chaotic time trace to generate binary sequences,
we study the randomness of the latter as a function of two
control parameter. We draw general conclusions about the
respective influence of these two buttons, and relate these
dependencies with the physics of the system. RNG in a driven
chaotic system such as the one presented here could benefit
from the use of two quadratures while only one is considered
here. Simultaneous generation of random bits using both
quadratures could multiply the bit-rate by two, and even more
in multimode systems, if several drives and demodulation
channels are used at the same time [31]. In order to improve
the sequences randomness, one could rather compare two
chaotic signals simultaneously provided by two fully uncou-
pled electromechanical resonators. This strategy only requires
a common RF driving signal for the two—which will most
likely trigger two different chaotic dynamics due to inherent
nanofabrication disorder—and improve the randomness by
reducing the correlation between the traces. Alternatively,
new nonlinear mechanical regimes [35] can be explored if the
mechanical Q-factor is significantly improved, e.g. by engi-
neering the mechanical loss channels [36]. These new regimes
might reveal chaotic regimes enabling higher randomness
quality.

In addition, the dynamics under study here is scalable,
i.e. it could be reproduced in other types of devices, per-
forming at higher frequencies, and relying on a different
physics. The condition for chaos to emerge relies (1) on the
presence of an intrinsic nonlinearity triggering bistable
behaviours in the system, and (2) on the time-modulation of
the driving force. Self-sustained optomechanical GHz oscil-
lators [37, 38] could be exploited to reproduce these results at
higher frequency, potentially increasing the bit rate to sev-
eral Gbps.
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