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In this theoretical paper we discuss what a calculational perspective on mathematical activity entails 

and discuss its relevance in terms of related speech genres in the introductory algebra classroom. 

Learning in the introductory algebra classroom is multifaceted because major shifts in form (the 

algebraic syntax versus arithmetic syntax) and function (analytic rather than calculational) are 

expected to take place. This theoretical argument is exemplified through student utterances from a 

Californian 6th grade classroom discussion, in which students’ calculational perspective on 

mathematical activity is apparent. The data reveal traits and intentions from both traditional and 

alternative instructional genres. Our main argument is that the students’ approaches to generalize 

provided patterns were limited to their perceptual field and thus fail to include a deductive argument, 

the key feature of algebraic reasoning.  

Keywords: Algebraic reasoning, analytic perspective, calculational perspective, introductory 

algebra, speech genre.  

Introduction 

This theoretical paper discusses two perspectives on mathematical activity, calculational and 

analytic, that are discernible in introductory algebra classrooms. Different frames of reference, or 

speech genres (Bakhtin, 1986), can present communicational challenges and limit possibilities for 

algebra learning. We take these two perspectives as points of departure and discuss these in terms of 

previous research. A calculational perspective is exemplified through discussions of patterning tasks 

in a US 6th grade classroom.  

Hewitt (2019), in a theoretical contribution, suggested that students in school ought to focus on 

“structure within complex examples” (p. 558) to develop algebraic thinking. Moreover, the students 

should be encouraged to make their reasoning explicit through expressing what they see rather than 

performing any mathematical calculations. Montenegro et al. (2018) argued in a similar manner from 

an empirical point of view. They found that students succeeded in obtaining a functional relationship 

in a figural pattern when the students turned away from the patterns in numbers and turned towards 

structure in the figural pattern engaged with. Both Hewitt (2019) and Montenegro et al. (2018) thus 

argued in favour of an analytic approach over a calculational one. 

Although the goal of algebra teaching is for students to engage in analytical thinking, the calculational 

discourse persists in many classrooms. We argue that research has to acknowledge and investigate 

the role that this discourse plays in students’ participation in algebraic activity. Learning in the 

introductory algebra classroom is multifaceted because major shifts in form (the algebraic syntax 

versus arithmetic syntax) and function (analytic rather than calculational) are expected to take place. 

Sfard (2007) addresses the bewilderment involved in the shift in function of mathematical activity 
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algebra teaching may cause for students through her heading “When the rules of discourse change, 

but nobody tells you”. We would like to contribute theoretical insights into the characteristics of 

students’ calculational perspective in introductory algebra classrooms 

A sociocultural approach to mathematical thinking  

To address students’ perspective on mathematical activity in classroom interactions we draw on 

Radford (2014) who defines thinking as cultural, embodied and material. Students mathematical 

thinking is not a separated and ideal internal process but occur as they use cultural artifacts (function 

table, algebraic syntax, etc.) and other semiotic means in social and goal-oriented activity. The 

semiotic resources the students use to solve patterning problems, such as gestures, spoken and written 

words, numbers, function tables and algebraic symbols, shape the form and generality of their 

mathematical thinking (Radford, 2018). Furthermore, the patterning activity itself and the cultural 

artifacts employed gain meaning from cultural practices such as algebraic reasoning and schooling, 

of which language is a prominent aspect (Sfard, 2007).  

We draw on Bakhtin’s (1986) notion of speech genres when considering the nature of different 

perspectives on mathematical activity and their role in shaping the classroom discourse. According 

to Bakhtin, speech genres are extremely heterogeneous, and examples varies from everyday small 

talk and narratives to sports commentary and different kinds of scientific statements. As an inclusive 

concept, speech genre is not generally defined. Instead, we conceptualize it in terms of the specific 

speech genres discussed in this study. For Bakhtin (1986), the utterance, i.e. the unit of language in 

use and in context, was the basic unit of analysis and he argued that addressivity is the key to 

understanding it. Addressivity refers to the dialogic nature of the utterance, as it is shaped to address 

a particular listener (real or imagined) foreseeing his response. Furthermore, Bakhtin found our 

utterances relatively stable in forms of construction and argued that no utterance is given that does 

not belong to a speech genre, emphasizing that we are not always conscious of it: “[we] speak in 

diverse genres without suspecting that they exist.” (Bakhtin, 1986, p. 78).  

Related speech genres in the introductory algebra classroom 

In the introductory algebra classroom, we argue that there are several related speech genres with deep 

cultural roots at play. A genre form may include linguistically coded intentions and rhetoric that a 

current speaker may not be aware of (Gerofsky, 1999). Gerofsky argued for the importance of 

intertextuality between related genres as “a genre which, in its form and addressivity, recalls other 

familiar genres may bring to consciousness the hidden ground and intentions embedded within 

[these]” (p. 38). Genres speak to students telling them what to expect and what is expected of them. 

Radford (2001) argued that algebra as a way of reasoning involves dealing with indeterminate 

quantities in an analytic and deductive manner with the intensions of explaining and arguing about 

general relationships and methods for solving problems. Thus, algebra is a specific genre form.  

Another speech genre at play is instructional discourse. Mehan (1979) showed that utterances in the 

classroom (mathematics as well as other subjects) followed a distinct pattern of initiation-reply-

evaluation (I-R-E). Thus, it can be seen as a rather standard and rigid speech genre, also found to 

dominate mathematics teaching in American classrooms (Stigler & Hiebert, 1999). 



 

 

Experimental studies have developed alternative programs to open up classroom discourse, in which 

students explore new problems, pose conjectures and argue (Lampert, 1990). Reform documents, 

such as Standards 2000, aim to bring these ideas into the ordinary classroom (Hiebert, 1999). The 

speech genre involved shares some ground and intentions with algebraic reasoning since algebra grew 

out of a sociocultural context of explaining and arguing (Radford, 2001).  

Hiebert (1999) explained that the implementation of alternative programs in school districts have not 

been effective for a simple but unappreciated reason, since it “is hard to change the way we teach” 

(p. 15). Furthermore, Hiebert argued that there is overwhelming evidence that what students learn in 

traditional teaching is unsatisfactory and consists of the following: “In most classrooms, students 

have more opportunities to learn simple calculation procedures, terms, and definitions than to learn 

more complex procedures and why they work or to engage in mathematical processes other than 

calculation and memorization” (p. 12). This supports the notion of students developing a calculational 

perspective on mathematical activity in mathematics classrooms. Furthermore, this genre can be seen 

to emerge as students’ uptake of teachers’ intentions in traditional instruction. A genre analysis of 

classroom interactions can shed new light on the communicational processes that shape the 

introductory algebra classroom discourse. In this paper we limit the further discussion to explore the 

nature of a calculational perspective and contrast it to an analytic perspective.  

Calculational and analytical perspectives in introductory algebra 

We propose a new theoretical stance on student activity in the introductory algebra classroom, i.e. a 

calculational perspective. Based on previous research on algebra learning, we single out as key 

demarcations between algebraic and calculational perspectives: (1) ways of interpreting signs and 

operations; (2) strategies for solving problems; and (3) ways of justifying solutions. This is contrasted 

to an analytic perspective, which is a central feature of algebraic reasoning (Radford, 2012).  

As regards the first demarcation, Booth (1984) and Kieran (1981) found that students working with 

numbers and their operations tended to interpret the operational signs and the equal sign as signaling 

types of actions rather than structure. Additionally, Kieran showed that students developed a limited 

view of what constitutes a mathematical solution and were likely to search for numerical answers 

(lack of closure). Radford (2018), upon repeatedly observing that 4th, 5th, and 6th grade students 

included an equal sign in their generalizations (i.e. n + n = x), argued that the conceptual challenge 

for students was not necessarily the alphanumerical symbols themselves, but a need for 

reconceptualizing numerical operations.  

Students holding a calculational perspective are limited to a processual view of signs and operations. 

In contrast, an analytic perspective includes a structural view of operations: (1) signaling 

mathematical structures that are relevant and can be used in transformations of expressions (Kieran, 

2018); and (2) seeing expressions as objects in themselves that can be operated upon, substituted, or 

classified (Sfard, 2007). These are interdependent of a developing awareness of mathematical 

generalities (Kieran, 2018) and an acceptance of indeterminacy, both in operations (operating with 

indeterminacy as if it were a number) and solutions (Radford, 2018).  

Concerning students’ problem-solving strategies, the second demarcation, students often use a guess-

and-check strategy to solve new algebraic problems, including patterning tasks (Bednarz & Janvier, 



 

 

1996; Lannin, 2005; Radford, 2018). Bednarz and Janvier (1996) found that students using a guess-

and-check strategy were not able to accept indeterminacy and remained dependent on performing 

calculations on numbers. In contrast, students that used a strategy of determining the underlying 

structure of the problem (which included the linking of different mathematical structures such as for 

example additive and multiplicative to determine how many equal parts) were able to explain an 

algebraic equation when shown such a solution.  

Addressing the third demarcation, students’ justifications, Lannin (2005) showed that 6th grade 

students mainly used empirical results to determine and justify their pattern generalizations when left 

to themselves. They tended to focus on particular values to determine and verify generalizations, 

rather than a general relation. Radford (2012) argued that algebra is an analytic art. Formulas must 

be deduced and not guessed for students to engage in algebraic reasoning. They have to come up with 

a deductive argument. A deductive argument, for example in a patterning activity, includes three 

components: (1) noticing a commonality between the terms p₁, p₂, p₃, …, pₖ; (2) generalizing this to 

all subsequent terms pₖ₊₁, pₖ₊₂, pₖ₊₃, …; and (3) using the communality to formulate an expression for 

any term in the sequence, i.e. an explicit strategy to generalize a sequence (Radford, 2008). However, 

students more often pursue a recursive strategy where each term (pₖ) is determined from the previous 

one (pₖ₋₁) (Lannin et al., 2006). Radford (2012) argued that such a generalization is of an arithmetic 

nature, as opposed to algebraic, as it is limited to include terms within the perceptual field. It does 

not include the third component of a deductive argument. Nevertheless, guess-and-check and 

recursive strategies might be helpful in generalizing a pattern. Particularly, a recursive strategy can 

give insight into the pattern’s rate of change, which again can be helpful in developing an explicit 

expression. However, research shows that students struggle to see the connection between the two 

ways of generalizing a pattern (Lannin et al., 2006).  

Ellis (2007) showed that the processes of generalization and justification were interwoven in students’ 

activity. 7th grade students’ generalizing acts were directly linked to the justifications they gave. On 

the other hand, their view of what counts as an acceptable justification influenced their generalization 

process and students following a deductive justification scheme developed more sophisticated 

generalizations from initially limited or unhelpful generalizations. 

In sum, a calculational perspective on mathematical activity includes (but is not limited to): 1) 

viewing numbers as the main objects of activity and other signs and operations as actions to perform; 

2) employing strategies rooted in calculational processes in problem solving, and 3) relying on 

empirical results for justification. These aspects may confirm and reinforce each other as Ellis (2007) 

pointed out, and they may function as barriers for students’ engagement in algebraic, analytic 

reasoning. The intention of the calculational genre, as opposed to the algebraic genre, is to perform 

calculations following known procedures to produce correct numerical solutions. 

Students’ calculational perspective in a 6th grade classroom 

To empirically exemplify our theoretical contribution, we draw on data from a Californian 6th grade 

classroom where students were working with patterning tasks. The background for this paper is an 

international algebra project called VIDEOMAT (see Kilhamn & Säljö, 2019). An in-depth analysis 

of students’ discourse in classroom patterning activity showed that students across countries pursued 



 

 

similar solving strategies. Reinhardtsen and Givvin (2019) found that students focused on processes 

of calculations rather than structure and quantitative relationships in their work, i.e. they drew on 

operations on numbers rather than introduced algebraic ideas and symbols. 

The teacher’s approach to working with every patterning task involved three main phases of activity, 

classroom exploration of a pattern, making a function table and developing an explicit generalization 

from a recursive one when possible, and extending the generalization to all subsequent terms and 

creating an algebraic expression. The teacher first asked for students’ observations and suggestions 

before proceeding, allowing students to pose conjectures and ideas.  

We structure the following section according to the three main characteristics of the calculational 

perspective outlined above. The first two episodes exemplify students’ view of numbers as the main 

objects of activity and other signs and operations as actions to perform. The third episode exemplify 

students use of strategies rooted in calculational processes, thus relying on empirical justification.  

Explicit and recursive generalizations: “Multiplying by 4 or they're adding 4” 

In the first lesson the teacher introduced the metaphor of function machine, emphasizing an explicit 

relationship between sets of numbers in the second phase of activity. In the first phase of activity the 

class discussed the numerical sequence 4, 8, 12, 16, __, __, __. Students suggested both recursive 

generalizations: “Like it's plus 4, 4 plus 4 equals 8, and 8 plus 4 equals 12, and so on”, and explicit 

ones: “I did multiples of 4, 20, 24, 28”. 

In phase two, the teacher drew a function chart and a function machine and then asked the students 

to discuss shortly with their seat-partner: “And if I put a 2 in, what's going on in here, so that I get an 

8 out. What's happening in this machine that represents this number sequence?”. One student, Mara, 

made a link to the previous discussion and said to her partner: “Multiplying by 4 or they're adding 

4”. Another student, Ivy, offers a more literal explanation: “And then it came out in a different 

number, so it's a function machine”.  

The ideas presented by students in the whole class discussion in the first phase are mainly concerned 

with how to calculate the terms in the sequence. Mara’s uptake of the calculational ideas as presented 

in phase two shows that these are accessible to other students. However, making sense of the 

difference between the two generalizations, recursive (pₖ= pₖ₋₁+4) and explicit (pₖ=4k) and the 

relationship between them, requires looking at the numbers and operations analytically.  

Neither Ivy nor Mara picked up on the significant changes in the perspective that the teacher was 

emphasizing. Ivy offered a literal interpretation and referred to a transformation of a number, as if by 

magic. Mara linked the teacher’s question to the previous discussion but did not notice that the 

operation of “adding 4” no longer was appropriate, i.e. the horizontal relationship between numbers 

in the two columns only corresponds to an explicit generalization of the sequence.  

 

Using letters: “Because you can do 4n … n can be any number, so multiply it”  

In the third phase of working with the sequence above after having determined the 10th and 20th terms 

of the sequence together, the teacher asked the students to discuss the general expression with their 

seat-partner “How do I show 4 times any number. We're just calling it n for right now”.  



 

 

Trace explained his expression to his partner: “4n. Because you can do 4n, yea, 4n. n can be any 

number, so multiply it, 4 dot n, 4n, stuff like that”. Trace made sense of his expression on the terms 

of being able to perform a calculation when replacing n with a number: “Because you can do 4n… n 

can be any number, so multiply it”. Thus, Trace was able to respond to the teacher’s question of how 

to show “4 times any number”. However, as Küchemann (1978) pointed out, there is a leap between 

being able to evaluate an expression and using a letter as a variable to express mathematical structures 

and relationships.  

In the third lesson the class worked with a figural pattern. In phase one the whole class discussion 

centered around rate of change. However, in the second phase of creating a function table guided by 

the teacher, the students no longer made references to the figures but quickly noticed a familiar 

(quadratic) relationship between the numbers in the two columns. Luna set up multiple numerical 

expressions such as 1·1=1, 2·2=4 and 3·3=9, and in the third phase she suggested: “It’s called n times 

n equals x”. Her generalization was developed and verified through calculating numerical 

expressions, and her algebraic expression also resembled these.  

Guess-an-check strategy: “I tried the next number which is 6” 

The teacher emphasized the relationship between a recursive and an explicit generalization as a 

strategy to determine the explicit expression throughout the classroom work. However, the students 

mainly used a guess-and-check strategy when working independently with function charts.  

In the third lesson the teacher gave the students a function chart in which the left column included 

the numbers 1-8, with x as the last entry, and the right column included the four first entries: 5, 11, 

17, 23. The instructions were to fill in missing numbers, describe patterns and write an expression.  

The teacher, in a whole class setting, asked Liam to explain what he noticed. He explained that he 

first looked at “1 times something gets to 5”, deciding this being 5. He then tried the next pair of 

numbers in the chart (2, 11), but found that 2·6≠11: “So, I realized that you could do, I tried the next 

number which is 6”. He then explained he did minus one to get the number he needed; five. He then 

tried the sequence of operations regarding the next pair of numbers in the chart (2,11): 6·2=12,  

12-1=11, and found that it worked. Liam demonstrates how the students approached the number 

sequences through guess-and-check. Also when working with figural sequences, the students used 

this strategy. Lisa, in the fourth lesson, explained her approach: “Um, I tried it, I kind of did, um. I 

don’t know how to explain it, but I started with doing multiplying it by 1 and adding 2, but it didn’t 

work. So, I tried multiplying by 2 and subtracting 1”. The students working with function charts 

increasingly made explicit generalizations, but these were mainly based on numerical schemes rather 

than analytical ones. This finding coincides with Ellis’ (2007) argument. 

Synthesizes and concluding remarks 

In this paper we set out to come up with theoretical insights into the characteristics of students’ 

calculational perspective in introductory algebra classrooms. We have argued that developing 

algebraic reasoning is a challenging process as previously met calculational perspectives interfere 

when trying to reason analytically about number patterns and figural patterns. The empirical examples 

demonstrate that students approach problems in introductory algebra through a calculational 



 

 

perspective. They face difficulties making sense of the difference between a recursive and an explicit 

generalization (cf. Lannin, 2005; Lannin et al., 2006), they evaluate letters but struggle using them to 

express structure and generalities (cf. Küchemann, 1978; Radford, 2018), and they use a guess-and-

check strategy (cf. Bednarz & Janvier, 1996; Ellis, 2007).  

The classroom data reveal traits and intentions from both traditional and alternative instructional 

genres. Elements such as letting students explore sequences, notice patterns, and suggest ideas invited 

students to engage in generalization processes. However, the use of a function chart and algebraic 

notation as a step-by-step process heavily supported by the teacher share traits with the traditional 

instructional discourse and may have informed students’ participation in the activity. Deeply rooted 

norms (cf. Stigler & Hiebert, 1999) of emphasizing procedures and products (solutions, facts, etc.) 

rather than mathematical processes (problem solving, generalizing, etc.) came to the fore in the 

classroom, despite efforts by the teacher to focus on the latter in discussions. 

We argue in accordance with Radford (2012) that the students’ calculational perspective is of an 

arithmetic nature, as opposed to an algebraic nature. The students’ approaches to generalize the 

patterns are limited to their perceptual field, and thus fail to include a deductive argument, the key 

feature of algebraic reasoning (Ellis, 2007; Radford, 2012). Despite the teacher’s efforts, the students 

do not make sense of the shifts in form (the algebraic syntax versus arithmetic syntax) and function 

(analytic rather than calculational) in this classroom. These expected shifts unfortunately do not take 

place. More research is needed to investigate the role that the calculational perspective play in 

students’ participation in algebraic activity. 

Radford (2018) found that symbolic thinking, in which letters are used to develop a generalization, 

took a long time for students to develop. Furthermore, it developed in line with an increasingly 

analytic approach to patterning activity. A genre analysis of the introductory algebra classroom 

supports this finding. A genre form includes many aspects that reinforce each other, as we have 

pointed out concerning calculational and analytical genres. Our discussion suggests the importance 

of addressing the elements of the algebraic genre as a consorted effort.  
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