Cecilia Kilhamn
email: cecilia.kilhamn@gu.se

Tinkering in algebra -the case of John

Keywords: Algebra, figural patterns, computational thinking, programming, tinkering

Finding a general rule for a figural pattern is a common type of task in early algebra, intended to enhance the ability to express generalization. In light of the incorporation of programming in school mathematics, this paper reports on one teacher's experience of using tinkering as a didactic strategy for patterning tasks, in comparison with a traditional approach. The discussion centers around possible benefits of integrating programming and algebra. An affordance of working with a computer program was that the general expression became relevant for the students and changed from being the end point of a patterning task to function as the starting point for mathematical tinkering.

Introduction

The current world-wide incorporation of programming in school curricula [START_REF] Brown | Restart: The resurgence of computer science in UK schools[END_REF][START_REF] Mannila | Computational thinking in K-9 education[END_REF] raises questions of how these new ideas and technologies could enhance mathematics education. In Sweden, as in many other countries, programming has been included in the mathematics syllabus [START_REF] Bocconi | The Nordic approach to introducing computational thinking and programming in compulsory education[END_REF]. Uniquely for Sweden, programming has also specifically been connected to algebra, although it is not a well-defined concept in the curriculum documents [START_REF] Kilhamn | Algebraic thinking in the shadow of programming[END_REF]Swedish National Agency of Education, 2018). Programming could be broadly interpreted as a pedagogical tool for developing students' digital competence and computational thinking, or in a narrow sense as a set of computer coding activities. Many Swedish teachers struggle to understand and shape what programming in school mathematics is and what it might be in relation to mathematics education [START_REF] Kilhamn | Teachers' arguments for including programming in mathematics education[END_REF][START_REF] Misfeldt | Surveying teachers' conception of programming as a mathematical topic following the implementation of a new mathematics curriculum[END_REF]. In this paper programming is seen in the broad sense, defining computational thinking (CT) in line with [START_REF] Aho | Computation and computational thinking[END_REF] as "the thought processes involved in formulating problems so their solutions can be represented as computational steps and algorithms" (p. 832). The aim of this paper is to contribute to a discussion about how algebra learning could benefit from programming activities and computational thinking practices such as tinkering. By describing a teacher's experience of a lesson on figural patterns based on tinkering with code, the paper seeks to induce a discussion in the spirit of [START_REF] Gadanidis | Computational thinking, grade 1 students and the binomial theorem[END_REF], who write that "We need many more cases of what might be in mathematics and CT integration to better understand the role CT affordances might play in disrupting and improving mathematics education" (p. 94).

Figural patterns

Algebra is sometimes described as the study of structure, where algebraic thinking emphasizes relations and structure over processes. [START_REF] Hewitt | Never carry out any arithmetic: the importance of structure in developing algebraic thinking[END_REF] defines algebraic structure as a combination of recognizable parts and recognizable patterns connecting the parts. Structure is important to discern in order to describe generalizations across and between specific instances. Patterning tasks, i.e. working with figural patterns, can be used to enhance students' sense of structure [START_REF] Hewitt | Never carry out any arithmetic: the importance of structure in developing algebraic thinking[END_REF], and to promote students' understanding of functional relationships [START_REF] Friel | A framework for analyzing geometric patterns[END_REF]. In this paper, figural patterns are seen as a way into generalization.

A traditional teaching trajectory for patterning tasks starts with a figural pattern where the first three figures are visually exposed. The students are then asked to find the number corresponding to the next figure, then perhaps to figure number 7, then 10, then 20, then 100. Typically, students insert the numbers in a table to find a functional relationship between a figure number and the total number of elements in the figure, and finally write a general expression for figure n.

This teaching trajectory has been widely reported in research literature (e.g. [START_REF] Blanton | The development of children's algebraic thinking: The impact of a comprehensive early algebra intervention in third grade[END_REF][START_REF] Kieran | Teaching and learning algebraic thinking with 5-to 12-year-olds[END_REF]. Some researchers stress the importance of drawing [START_REF] Friel | A framework for analyzing geometric patterns[END_REF] or using words and gestures [START_REF] Radford | The progressive development of early embodied algebraic thinking[END_REF] before symbolizing. However, sometimes the teaching trajectory quickly moves away from the visual figures into a table of values, where a total number of elements for each figure is calculated and students are asked to look for patterns in the table. [START_REF] Hewitt | Never carry out any arithmetic: the importance of structure in developing algebraic thinking[END_REF] describes the danger of students losing touch with the context of the figural pattern by spending time calculating and looking at the table of values created from the figures. In order to see structure, he suggests students should stay focused on the figures and avoid doing the arithmetic, since the total number hides the structure that reveals the generalization. He argues that "learners should never do any arithmetic, just write down the arithmetic they would do"(ibid, p 563). El Mouhayar (2018) showed that students who focused on numbers were more likely to take a recursive approach, going from one figure to the next, whereas [START_REF] Strømskag | A pattern-based approach to elementary algebra[END_REF] found that students who stayed within the figural context more often found a general expression In contrast to the traditional learning trajectory for figural patterns, a more challenging problem could be to present a pattern and ask for the figure number of a large number of parts. One such problem about a matchstick figure, taken from TIMSS07, was used in a study of problem solving in small groups [START_REF] Kilhamn | The role of justification in small group discussions on patterning[END_REF]. When the study was presented at a conference in Cambridge, participants in the audience criticized the problem, advocating instead the traditional step-by-step instruction described above, claiming it to be the 'right way to teach patterns'. The reaction pinpointed the fact that this type of instruction is a well-established didactic strategy. However, as the case of John presented below will show, it may not always be the most prosperous strategy.

Computational thinking and tinkering

Computational thinking (CT) is a fairly new concept in educational research, first introduced by Papert in 1996. The term involves the kind of thinking skills needed to understand and capitalize on digital technology, and practices used by programmers. In recent years, researchers in computational science as well as mathematics education have attempted to define CT or create frameworks that describe it (e.g. [START_REF] Aho | Computation and computational thinking[END_REF][START_REF] Grover | Computational thinking in K-12: A review of the state of the field[END_REF][START_REF] Kotsopoulos | A Pedagogical Framework for Computational Thinking[END_REF]. One of several commonly accepted elements of CT is pattern generalization [START_REF] Grover | Computational thinking in K-12: A review of the state of the field[END_REF], which is also an important ingredient in algebraic thinking. In this paper we will focus on the practice of tinkering brought up more or less explicitly in all CT frameworks. Dictionaries often define tinkering as the act of improving something by making changes to it, and a tinkerer as a person who enjoys experimenting with and repairing machines. In a CT perspective, tinkering experiences promote engagement in changes and modifications of existing objects [START_REF] Kotsopoulos | A Pedagogical Framework for Computational Thinking[END_REF]. [START_REF] Brennan | New frameworks for studying and assessing the development of computational thinking[END_REF] describe several CT practices such as testing, debugging, reusing and remixing, that could be seen as aspects of tinkering. Tinkering involves exploration, modification and reflection, it is about trying, adjusting and trying again. Fundamentally, it builds on learning from failures, turning mistakes into triumphs in the spirit of Thomas Edison, who is said to have uttered "I have not failed, I have just found 10 000 ways that won't work". 1 In mathematics education, tinkering could mean to explore a mathematical idea or mathematical relationship by making small and purposeful changes and reflecting on these. It is not the same as a guess-and-check problem solving strategy, since the main objective when tinkering is not to find a correct answer but to explore and change something already present. In a description of a teaching intervention in a Grade 6-7 algebra class, Boaler and Sengupta-Irving (2016) used the term mathematical tinkering to describe how the students played around with a problem and its solution, going beyond the problem at hand to explore the effect of small changes, challenging themselves to make the problem harder.

Method

The case study presented here emerged from a larger set of data collected when studying the transposition of knowledge that followed the recent inclusion of programming into school mathematics in Sweden [START_REF] Bråting | Integrating programming in Swedish school mathematics: description of a research project[END_REF]. A research question for the larger study was: What opportunities, challenges and pitfalls related to the learning of algebra can be identified in the didactical choices teachers make when implementing programming in mathematics? Interviews were initially made with 20 teachers identified as early adopters [START_REF] Kilhamn | Teachers' arguments for including programming in mathematics education[END_REF]. They were all enthusiastic about the challenge, had some previous experience in teaching programming, and many were responsible for implementation of digital technology in their schools. The audio recorded interviews took approximately 30 minutes and were semi-structured around questions that had been supplied in advance. Following four background questions the interview guide included the following topics: What is the role of programming in mathematics? Where do you find inspiration and ideas? Can you give an example of a good programming activity that you have tried? What programming concepts are important to bring up in mathematics? Many of the teachers described programming activities with little connection to mathematics, and when there was a mathematics content, it was most commonly geometry, arithmetic or probability. One teacher was different in that he said he tried to incorporate some Python programming into every topic, in almost every lesson. When asked to describe a good lesson he chose an algebra lesson. He claimed that the incorporation of programming had changed his teaching and created better learning opportunities for his students. His story is reported here as the case of John.

The case of John

The interview with John was made in October 2019. John had by then been teaching mathematics, science and technology in grades 7-9 for over 25 years. In 2017 he was appointed head teacher with a specific responsibility to coach his colleagues in the use of digital tools and programming, mainly in technology. In mathematics he used an interactive whiteboard, but struggled to find ways to engage students in programming activities that were compatible with the mathematics curriculum. In 2018, when programming was officially included in the mathematics curriculum, he started to use the netbased platform Google Collaboratory, coding in Python. John described a lesson about figural patterns in Grade 7 (students' age 13), claiming that it was the first time ever that his students truly engaged in finding a general expression for a pattern. When he started working with these students two months earlier, they had no previous coding experience through school. Every student in his classroom has a personal laptop, so he can use the platform both in class and for homework, where he can see what the students do, give personal feedback and pick up student solutions for whole class discussions. John's ambition is to get students into the habit of using Python code every lesson so that they become accustomed to programming, learning syntax through experience more than direct teaching. John stood out from the other early adopters in that he included programming in almost every content topic, rather than making it a topic in itself. He said he did not teach programming per se, but he told his students to use programming, treating it as a mathematical tool. Typically, he would give them an example code to tinker with and modify. In addition to the interview, python codes as well as written reflections that John shared with his colleagues were collected.

The lesson

Below, the lesson is described in three parts and analysed in relation to aspects that were in some way different from the traditional teaching trajectory on figural patterns described above.

Part 1: Introducing the general expression

During the previous lesson, the class had worked with a figural pattern where a number of markers in a figural arrangement increased by three for each figure, starting with five. They had explored and discussed what features of the pattern were important in order to find a general expression: change and starting number. Together they now wrote the following basic code in Python, which everyone copied into their personal computer and tried out.

The code gives a sequence of instructions that computes and prints the figure number and its corresponding number of markers. John expressed that he did not expect all students to comprehend the code in detail, but for this part of the lesson it was enough to copy the code and run it to confirm that it worked for that pattern. John wrote the following reflection: "Many students found this difficult and did not seem to see the benefit of this program. The next step is to get the students to program."

Part 2: Transferring to other patterns

In contrast to a standard lesson where the general expression for the pattern comes at the end, the programming activity used the general expression as the starting point for exploration through tinkering. After introducing the above piece of code, the students worked with similar figural patterns presented as tasks in their textbook, all visual configurations of growing patterns with linear solutions. The students were encouraged to make use of the code they had produced but with access to sticks and markers if they needed. All students chose to work with the code. When they knew that one pattern was described by figure_number*3+2 they could start to tinker with the expression to explore the effect of small changes. A further challenge came when the question was posed the other way around, for example "what figure number would need 64 sticks?" The code did not produce the answer and needed to be modified. John explained: "Then I showed the class how to modify this code so that instead of asking for a certain figure it prints the first 50 figures with the number of sticks in. And then you can see that: 'Well there are 55 sticks in figure number 17'. And thiswhen they suddenly sawthey had it all there! It was like 'wow' they could do anything, all information was there in this table that was printed."

In this section of the lesson the power of the computer was put to use, so that patterns could be investigated using larger numbers and more data without having to do all the calculations. The students discussed large numbers and compared different outputs. The most confident students started to think about what needed to be changed in the code to get the inverse operation instead.

1.

2.

3.

Figure 1: Figural pattern used for homework: the first three figures.

All students managed to solve the task although the pattern on surface value looked quite different from previous patterns. Many explained that they had copied the original code and tinkered with it until they got the correct result when they ran it (figure_number*3+1), checking with the given Figures 123. Some modified the code, adding features. Some came up with quite different solutions, with more or less efficient codes. Others came up with creative expansions, such as making a loop that kept asking for another figure number or commands that could handle an invalid input.

In the interview, John expressed that his students better understood the importance of finding the formula for a pattern because it is used in the program. It was the first time he saw that students found the general expression useful. In traditional patterning tasks many students would do the arithmetic for the first three figures and perhaps a few more, but they would lose interest before they got to the general expression, not seeing the point of finding it. Now they were dazzled with what the computer could do once they inserted the expression and were curious to see what happened with the numbers produced when small changes were made. It was, John noted, easier for them to relate to the figure n, because it was there, in the program, with the descriptive name figure_number.

Discussion

The case of John brought out several possible affordances of introducing programming when dealing with figural patterns. One was that students, as suggested by [START_REF] Hewitt | Never carry out any arithmetic: the importance of structure in developing algebraic thinking[END_REF], could explore the pattern without doing a lot of arithmetic. In fact, the power of using a computer code to do the arithmetic enabled students to look for patterns in larger numbers and to find structure in a table with many more entries. Iteratively moving back and forth between the code, the printed output and the original pattern figures enhanced students' focus on structural aspects of the pattern while downplaying arithmetic procedures. However, according to John, the main benefit had a more psychological character addressing the fact that students found the general expression relevant and useful as a way to communicate with the computer. Instead of being the end point of the task, as in traditional patterning tasks, the expression became a starting point, something to tinker with that sparked curiosity. Furthermore, the expression became more visible and made more sense when the variable was represented by a descriptive word, not as the abstract letter n. This could potentially be a useful intermediate step before dealing with variables in symbolic algebra, well worth further investigation.

Tinkering proved to be a valuable practice for these students when looking for a general expression for a pattern. The algebraic question "What is the general expression for the nth figure of the pattern?" changed into a computational question "What do we need to change in the command given to the computer so that it describes or generates the pattern?", leading up to questions about the effects of different changes made in the code. While this is in line with how [START_REF] Aho | Computation and computational thinking[END_REF] defines CT, it also uncovers opportunities for students to rise to yet another level of generalisation that further develops their algebraic thinking, namely that very different patterns can be described by the same or a similar algebraic expression. Tinkering, or what [START_REF] Brennan | New frameworks for studying and assessing the development of computational thinking[END_REF] describes as reusing and remixing predefined code, empowered students to see similarities between patterns with quite different surface features.

Another benefit was the opportunity of expansion, providing more challenge for students who needed it. Many of the students in John's class started posing new questions, such as what to do if the input is invalid or how to write the code so that the figure number is the output when the total number is the input. Furthermore, it would be possible to tackle the pattern the other way round by asking students to change the expression in the code slightly and then try to create a pattern to match the new expression and the numbers printed when the program was run.

The various affordances of programming in John's algebra lesson suggest that we should be open to the use of programming is school mathematics. Further design research with lessons like this would therefore be valuable. However, a teaching approach that involves tinkering with code is only possible when the teachers' coding proficiency is high, otherwise the work is bound to get stuck on syntax issues. This case study describes a teacher with many years of experience and good programming skills, which is not always the case. Much work is still needed to help teachers develop necessary programming competence [START_REF] Kilhamn | Teachers' arguments for including programming in mathematics education[END_REF][START_REF] Misfeldt | Surveying teachers' conception of programming as a mathematical topic following the implementation of a new mathematics curriculum[END_REF], but in the meantime teachers could embrace a tinkering approach to teaching and start using mathematical tinkering, in the sense of [START_REF] Boaler | The many colors of algebra: The impact of equity focused teaching upon student learning and engagement[END_REF], for mathematics in general and patterning tasks in particular.

Why not let the lesson start with an intricate algebraic expression, perhaps graphically represented using dynamic software, and then explore what happens when small changes are made?

Part 3 :

 3 Homework assignment Finally, John the following task as homework: Make a program that calculates the number of white squares in the following pattern. The program should ask what figure you want to know the number of white squares for, and then show you the result. If you want, you can modify and improve the program.

https://www.goodreads.com/author/quotes/3091287.Thomas_A_Edison

Acknowledgment

This work was supported by the Swedish Research Council [Grant no. 2018-03865].