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Abstract

The main goal of this paper is to use the enlargement of filtration framework for pricing

zero-coupon CAT bonds. For this purpose, we develop two models where the trigger event

time is perfectly covered by an increasing sequence of stopping times with respect to a reference

filtration. Hence, depending on the nature of these stopping times the trigger event time can be

either accessible or totally inaccessible. When some of these stopping times are not predictable, the

trigger event time is totally inaccessible, and very nicemathematical computations can be derived.

When the stopping times are predictable, the trigger event time is accessible, and this case would

be a meaningful choice for Model 1 from a practical point of view since features like seasonality

are already captured by some quantities such as the stochastic intensity of the Poisson process. We

compute the main tools for pricing the zero-coupon CAT bond and show that our constructions

are more general than some existing models in the literature. We obtain some closed-form prices

of zero-coupon CAT bonds in Model 2 so we give a numerical illustrative example for this latter.

1 Introduction
Catastrophe (CAT) bonds are an alternative to traditional reinsurance intended to hedge against

the risks incurred following a natural disaster such as earthquakes, pandemics, etc. The operation

process is as follows. When an insurer or reinsurer wishes to cover a risk in a catastrophic geograph-

ical area, they are taken out by investors in the financial markets who perceive so many coupon

exchanges. The interest of the issuer is to eliminate the risk of default and increase the available

capacity. The operating principle is similar to that of conventional bonds. But in the case of the

occurrence of triggering events, the investor loses all or part of the coupons or even the principal of

the bond. In the absence of events after a given period, generally between 3 and 5 years, investors

recover their initial stakes plus interests.

The first catastrophic bonds emerged in 1994, two years after Hurricane Andrew hit, which cost

the US $20 billion. Insurers and reinsurers then realized that natural risks were going to be more

and more expensive. CAT bonds were then created as an alternative and complementary to cover

extreme risks.
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In a nutshell, the issuing of catastrophe (CAT) bonds has been and continuous to be essential

for insurance companies. Recently, we are witnessing the occurrence of the Coronavirus disease

COVID-19 pandemic that causes significant losses and the use of these products would be essential

to cover against such losses.

Themodeling of CAT bonds is somehow similar to that of credit risk. Indeed, most of themodels

interested in the construction of the investor’s trigger event time (by misuse of language, we may

sometimes call it simply default time) � are based on the structural approach used to price credit

derivatives where � is the first moment that the aggregate losses process ! exceeds the threshold’s

fixed value � (we simply call these models first hitting time models). Thus the investor loses all

or part of his principal as soon as � occurs before the maturity of the CAT bond. The advantage

of this type of modeling is that the default time can coincide with the arrival times of catastrophic

events. However, even if the aggregate losses approach the threshold (for example !C/� = 0.9999,

for all C ≥ 0) as long as the overshoot does not occur, the default mechanism cannot exist. This is

not advantageous for the issuer of the CAT (for example a reinsurance company).

Several good examples using this approach include the model of Burnecki and Kukla [1] who

used a compound doubly stochastic Poisson loss process for aggregate losses where the catastrophe

event times are jump times of the standard Poisson process (i.e., with a constant intensity). Their

approach has been used in [2] for calibrating CAT bonds for Mexican earthquakes. In [2], by in-

vestigating different loss models (such as Pareto, Burr, and Gamma distributions), authors showed

that there is no significant impact of these models on the zero-coupon CAT bond prices. The first

hitting time model in [1] has been extended in [3] where the authors used a deterministic inten-

sity rate of the Poisson process in the double Poisson loss model and provide an explicit intensity

of the trigger event time aswell as a semi-analytical solution for evaluating zero-couponCAT bonds.

In the first hitting time models, default occurs when the aggregate claims process exceeds a

specified level (called threshold value). However, in that framework even if the trigger event time

can coincide with the arrival time of catastrophe events this interesting property is not highlighted

in most of the papers.

Another approach to model the investor’s trigger event mechanism is to evaluate all the losses

until maturity, so the investor loses his principal as soon as the latter exceeds the value of the thresh-

old fixed in advance, otherwise, he recovers its principal plus the coupons. But in this last setting,

valuation and payment can bemade by taking into account onlywhat happens aftermaturity. While

the default mechanism could even appear just a fewmonths or years after the signing of the contract

and for an investor it would be necessary to find out about his default as soon as possible than to

wait until the end of the contract. Among others, it should be referred to Schmidt [4] who used the

Shot-Noise process for modeling the aggregated losses process. Shao et al. [5] developed a pricing

methodology using a stochastic interest rate framework together with an important focus on two

aggregate loss processes such as a compound inhomogeneous Poisson perturbed by diffusion and

a general Semi-Markov process. Mistry and Lombardi [6] proposed to improve the catastrophe loss

estimation by adding a high spatial resolution for hazard and exposure models. However, these

approaches fail to take into account the payment at hit (i.e, exactly at the trigger event time, if this

occurs before maturity) in the pricing step.

These two approaches are equivalent as soon as we are no longer interested in payment at hit

and when the percentage of the principal lost by investor in case of the default mechanism is no

more stochastic (this is generally the case in CAT bond modeling). Note also that in these two types

of approaches, the calibration of the aggregate loss process is essential since the price of CAT bonds

is affected by the frequency and also the severity of catastrophic losses.
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In other terms, the CAT bond prices depend on the aggregate claims distribution. However in most

of the cases, closed form of that distribution does not exist and one resorts to numerical approx-

imations. For instance, [7] has proposed numerical solutions for the loss distribution, in case of

compound Poisson process loss process, to compute the price of catastrophe bonds.

To the best of our knowledge, only the paper of Jarrow [8] has used the reduced form approach

in credit risk to model CAT bonds where the trigger event time is supposed to admit a deterministic

intensity. Even if the latter was not interested in the construction of the investor’s trigger event time,

his results show the use of the standard Cox model which is the usual model of the reduced-form

approach to credit risk. This way of modeling the time to default allows it to obtain a closed-form

zero-coupon CAT bond price, and the calibration of the intensity rate can only be done from ob-

served data of the market prices of CAT bonds as studied in the recent paper [9] which was able

to construct a surface of implied intensity rate as a function of maturity and the probability of first

loss following a catastrophic event. However, the modeling does not take into account either the

severity or the intensity of the losses following the events. On the other hand, in Jarrow’s model,

the default time cannot, in any case, coincide with catastrophic event times since the reduction of

the compensator is absolutely continuous with respect to the Lebesgue measure in a standard Cox

model.

In this paper, we introduced twomodels based on the enlargement of filtration theory for pricing

zero-coupon CAT bonds. Our approaches will be focused on the information quantified in the CAT

bonds. Indeed, we build two models that inherit some credit risk hybrid ones such as the ones

developed in [10], [11] with some ramifications that may be adapted to the CAT bonds modeling

context so that they can take into account the aggregate losses. We show through our study that

the enlargement of filtration is a suitable tool for CAT bond pricing. The main tool of our models is

the fact that the trigger event time may coincide with a strictly positive probability with stopping

times of a reference filtration. As such, since these stopping times can be fixed we may construct an

accessible trigger event time. In model 2, we also show that in some cases the prices of CAT bonds

admit some negative jumps at the catastrophe event time.

Our twomodels are general frameworks thatmay lead to a newperspective onmodelingCATbonds.

The paper is organized as follows. We first introduce notation and basic notions in Section

2. In Section 3, we present our two models in a general framework by computing the quantities

of interest for the pricing of zero-coupon bonds, as the conditional expectations and the dual

predictable projection. In the first model, we show that in the general case where some of the

stopping times in the reference filtration are not predictable, ourmodels cover some existing ones in

the literature on CAT bond modeling. We also focus on a most meaningful case from the practical

point of view, by which the stopping times in the reference filtration are predictable. In the last

section, we establish a case study based on simulations of Model 2 where we deal with a particular

aggregate loss process called the Shot-Noise process. We illustrate how the jumps in the (Shot-

Noise) aggregate loss process induce the jumps in the CAT bonds pricing and compare our results

with the ones obtained using a Compound Poisson process where the prices are always continuous.

2 Some well-known facts about default time and enlargement of
filtration

In this section we recall, for the ease of the reader, some well-known results and definitions.

We consider a probability space (Ω,G , P) and � a positive random time defined on (Ω,G). We

introduce the right-continuous increasing default process �C = 11{�≤C} associated with � and we

denote by A = (AC)C≥0 the filtration (completed and right-continuous) generated by �. We recall
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that, for any process -, one has

∫ C

D
!B3�B =

∫
]D,C] !B3�B = !�11{D<�≤C}.

Let H a given filtration on Ω. There exists a unique H-optional locally integrable variation process

�>,H, called the H-dual optional projection of �, such that

E

[∫ ∞

0

!B3�B

]
= E

[∫ ∞

0

!B3�
>,H
B

]
for any bounded H-optional process - such that E

[∫ ∞
0

|!B |3 |�|B
]
< ∞.

There exists a unique H-predictable locally integrable variation process �?,H, called the dual pre-

dictable projection of �, such that

E

[∫ ∞

0

!B3�B

]
= E

[∫ ∞

0

!B3�
?,H
B

]
for any bounded H-predictable process - such that E

[∫ ∞
0

|!B |3 |�|B
]
< ∞. we shall sometimes call

them H-dual projections of �. (see [12] for more details on dual projections).

If � is an H-stopping time, the compensator of � is by definition the unique H-predictable
increasing process �H such that �H

0
= 0 and �C − �HC is an H-martingale (see [13, p.265]). Note that

�HC = �
H
C∧�. This compensator �H of � is nothing else than �?,H. This property extends as follows:

Lemma 2.1 For any H-predictable bounded process �, the process

��11{�≤C} −
∫ C∧�

0

�B3�
?,H
B

is an H-martingale.

Proof: This result follows from the fact that

��11{�≤C} =

∫ C

0

�B3�B = (� � �)C ,

and, for � being H-predictable, the H-dual predictable projection of � � � is � � �?,H (see [12], p.

148, Theorem 5.23). �

Definition 2.2 A random time � is said to avoid H-stopping times, if for any finite H-stopping time �, one
has P(� = �) = 0.

Definition 2.3 Let ' an H-stopping.

• We say ' to be H-predictable if there exists an increasing sequence of H-stopping times ('8)8≥1 con-
verging to ' such that '8 < ' on the set {'8 > 0}, for all 8. If ' is H-predictable, (11{'≤C} , C ≥ 0) is a
predictable process.

• We say that ' is accessible if [[']] ⊂ ∪8[['8]] where ('8)8≥1 are H-predictable stopping times, with [[']]
denotes the graph of ' (i.e [[']] = {($, C) : '($) = C} ).

• We say that ' is totally inaccessible if it avoids allH-predictable stopping times (i.e., P(' = � < ∞) = 0

for any H-predictable stopping time �).
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We now work on a filtered probability space (Ω,G , F, P) on which a random time � is defined.

We denote by / the Azéma supermartingale (see [13, Subsection 5.9.4], [14], [15]) associated with

�, which satisfies /C := P(� > C |ℱC). Note that /C > 0 on {� > C} and /C− > 0 on {� ≥ C} (see [16,

Lemma 2.14]). Then, �?,F, the F-dual predictable projection of �, is also the predictable part in the

Doob-Meyer decomposition of /C := <C − �?,FC where < is an F-martingale (see [16, subsection 2.2,

page 33]).

Definition 2.4 Let G = (GC)C≥0 be the progressive enlargement of F with �, i.e., G = F ∨ A, which means
that GC = ∩&>0G0

C+&, with G0

B = ℱB ∨AB for every B ≥ 0 (see, e.g., [17], [18]).
The filtration G is the smallest filtration satisfying the usual hypotheses containing F and turning out � into
a stopping time.

Definition 2.5 The F-predictable reduction of the compensator of �
The process Λ given by

ΛC =

∫ C

0

11{/B−>0}
3�

?,F
B

/B−
(2.1)

is F-predictable and increasing, and, denoting by Λ� the process Λ stopped at time �,

�C −ΛC∧� = �C −Λ�
C = �C −

∫ C∧�

0

3�
?,F
B

/B−

is a G-martingale (see [16, Proposition 2.15]).
The process Λ� is the G-compensator of the default process � (we shall also say compensator of �) and we call
Λ the F-predictable reduction of the G-compensator of �.
If Λ is absolutely continuous with respect to the Lebesgue measure, i.e., ΛC =

∫ C

0

�B3B, then its derivative �,
that is a non-negative F-predictable process, is called the F-intensity rate.

We recall that the random time � avoids all F-stopping times (resp. all F-predictable stopping times)

if and only if �>,F (resp. �?,F) is continuous (see [16, Proposition 1.43]). It can be proved that the

jump times of �>,F are F-stopping times not avoided by �.

3 Catastrophe bond modeling
In a filtered probability space (Ω,G , F, P) covering themarket uncertainty, we consider an increasing

sequence of F-stopping times (�8)8 , with �0 = 0. We consider an increasing càdlàg process ! (as-

sumed to be independent of F) to be the aggregate loss process related to a sequence of catastrophe

events such that !0 = 0, !∞ = ∞.

Let � be the catastrophe default time (known also as trigger event time) of a CAT bond contract.

Definition 3.1 A zero-coupon CAT bond with maturity ) is a contract that pays a fixed amount (called the
principal) %cat at time ) if � does not occur before ) and a fraction � (with 0 ≤ � < 1) of the principal if �
occurs before ). Its payoff is then given by

� = %cat11{�>)} + �%cat11{�≤)} .

We consider G to be the enlarged filtration of Fwith �. Here G represents the extra information

about the market. Hence, as one can see, the pricing of the CAT bond should be done in G.
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Fortunately, the enlargement of filtration theory offers a way to return the pricing in the reference

filtration F. This requires the knowledge of some characteristics of the trigger event time � such as

the Azéma supermartingale and the dual predictable projection in F. Furthermore, these quantities

depend on the model related to �. In what follows, we introduce two models for which we give

those quantities and discuss the pricing of zero-coupon CAT bonds.

3.1 Model 1
We define the trigger event time � as

� = �8 on {!�8−1
≤ � < !�8 }, for 8 ≥ 1 (3.1)

where � is a (finite) positive fixed amount representing a threshold value of the CAT bond. We

consider the function Ψ related to the law of the aggregate loss process ! as Ψ(C , �) := P(!C ≤ �)
and note thatΨ(∞, �) = 1 hence, � is almost surely finite.

We will need the following assumption (we shall see why this hypothesis in the following section):

Hypothesis (A): The lawΨ of ! is non-increasing with respect to the time C.

An interesting feature of our approach is that the F-stopping times (�8)8 are not avoided by the

trigger event time � and these times can be fixed a priori so that they coincide with the catastrophe

arrival times.

3.1.1 The quantities of interest for pricing

We start by computing the F-conditional survival law of the trigger event time �which allows deriv-

ing the Azéma supermartingale / associatedwith � and then using the Doob-Meyer decomposition

of / for obtaining the dual predictable projection of �. All these details related to the computation

of the F-conditional survival law of � can be seen in the proof of the following proposition.

Proposition 3.2 The Azéma supermartingale / of the trigger event time � is given by

/C := P(� > C |ℱC) = 1 −
∞∑
8=1

11{�8≤C} [Ψ(�8−1 , �) −Ψ(�8 , �)] , for C ∈ R+. (3.2)

Remark 3.3 Note the importance of the assumption (A)which implies that / is non-increasing (this

can be seen in (3.2)).

Proof: For all C , D ∈ R+, one has

P(� > D |ℱC) =
∞∑
8=1

P(�8 > D, !�8−1
≤ � < !�8 |ℱC).

This implies that

P(� > D |ℱC) =
∞∑
8=1

P(�8 > D, !�8−1
≤ � |ℱC) −

∞∑
8=1

P(�8 > D, !�8 ≤ � |ℱC)

=

∞∑
8=1

P(�8 > D, !�8−1
≤ � |ℱC) −

∞∑
8=1

P(�8−1 > D, !�8−1
≤ � |ℱC)

=

∞∑
8=1

P(�8 > D ≥ �8−1!�8−1
≤ � |ℱC)
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where the second equality is due to the fact that �0 = 0.

Therefore, by using the tower property one obtains

P(� > D |ℱC) =
∞∑
8=1

E[11{�8>D≥�8−1}P(!�8−1
≤ � |ℱ∞)|ℱC]

=

∞∑
8=1

E[11{�8>D≥�8−1}Ψ(�8−1 , �)|ℱC]

=E

[ ∞∑
8=0

11{�8≤D}Ψ(�8 , �) −
∞∑
8=1

11{�8≤D}Ψ(�8−1 , �)|ℱC

]
.

SinceΨ(�0 , �) = 1, one has

∞∑
8=0

11{�8≤D}Ψ(�8 , �) = 1 +
∞∑
8=1

11{�8≤D}Ψ(�8 , �)

Hence, it follows

P(� > D |ℱC) =1 − E
[ ∞∑
8=1

11{�8≤D}[Ψ(�8−1 , �) −Ψ(�8 , �)]
��ℱC ] .

If C ≥ D, one has

P(� > D |ℱC) =1 −
∞∑
8=1

11{�8≤D}[Ψ(�8−1 , �) −Ψ(�8 , �)]

which is due to the fact that the random variables 11{�8≤D} and 11{�8≤D}[Ψ(�8−1 , �) −Ψ(�8 , �)] are
ℱC-measurable.

In particular, we have

/C := P(� > C |ℱC) = 1 −
∞∑
8=1

11{�8≤C} [Ψ(�8−1 , �) −Ψ(�8 , �)] .

We can also easily check that

P(� > D |ℱD) = P(� > D |ℱ∞) ,
which implies the immersion property of the model. �

In what follows, we compute the F-dual predictable projection of � using the Doob-Meyer de-

composition of /. This decomposition depends on the nature of the F-stopping times (�8)8 .

Case where some of the (�8)8 are not predictable:
We denote, for any 8, by Λ8 the F-compensator of �8 , i.e., the F-predictable increasing process Λ8 ,

with Λ8
0
= 0, such that (11{�8≤C} −Λ8C∧�8 , C ≥ 0) is an F-martingale. If it exists, we denote the intensity

rate of �8 by �8 (i.e, Λ8C∧�8 =
∫ C∧�8

0

�8B3B, for all C ≥ 0).

Proposition 3.4 The F-dual predictable projection �?,F of the trigger event time � is given by

�
?,F
C =

∞∑
8=1

∫ C

0

(Ψ(�8−1 , �) −Ψ(B, �))�8B11{�8−1≤B<�8 }3B, for C ∈ R+. (3.3)
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Proof: This proposition can be proved as the sameway as Proposition 3.15 of [10] with Γ = 0 and

by lettingΨ(C , �)play the same role as 4−Ψ(C). Themain steps of the proof are based onLemma2.1. �

Case where the (�8)8 are predictable:
In this case, the Azéma supermartingale / is predictable, and one has �

?,F
C = 1 − /C , for all C ∈ R+

(i.e., < = 1, almost surely). In addition, the trigger event time covered by the (�8)8 is accessible.

In the next subsections, we discuss the pricing of zero-coupon bonds by taking into account the

two cases.

3.1.2 The price of the CAT bond

For simplicity, w assume a constant interest rate A and P being the pricing measure. Hence, the

price +C()) of the zero-coupon CAT bond with principal %cat and maturity ) at time C ≤ ) is

+C()) = 4ACE
[
%cat4

−A)
11{)<�} + 4−A��%cat11{C<�≤)} |GC

]
.

According to [19, Proposition 5.1.1], we have

+C())4−AC = 11{C<�}%cat4
−A) 1

/C
E[/) |ℱC] + 11{C<�}�%cat

1

/C
E

[∫ )

C

4−AD3�
?,F
D |ℱC

]
, ∀0 ≤ C ≤ ) . (3.4)

By consequence, one has

+0()) =%cat4−A)E[/)] + �%cat E
[∫ )

0

4−AD3�
?,F
D

]
=%cat4

−A)
(
1 − E

[
�
?,F

)

] )
+ �%cat E

[∫ )

0

4−AD3�
?,F
D

]
(3.5)

where we have used the fact that / = < − �?,F and since �
?,F

0
= 0 then E[<)] = E[<0] = E[/0] = 1

almost surely.

3.1.3 Case where some of the (�8)8 are not predictable

Note that the main quantity we need here for obtaining the price at time 0 of the zero-coupon CAT

bond is the dual predictable projection of the trigger event time �. According to equality (3.4),

this quantity depends on the law of the aggregate losses, the catastrophe arrival times with their

intensity rates, and the threshold level.

By combining (3.4) and (3.5), one obtains

+0()) = %cat4−A)
(
1 −

∞∑
8=1

∫ )

0

E[& 8(B)]3B
)
+ �%cat

∞∑
8=1

∫ )

0

4−ADE[& 8(D)]3D, (3.6)

where & 8(C) := (Ψ(�8−1 , �) −Ψ(C , �))�8C11{�8−1≤C<�8 }, for 8 ≥ 1.

Aparticular framework of ourmodel Here, we consider a particular casewith the two F-stopping
times �0 and �1 with �0 = 0 (i.e., 8 ∈ {1, 2}). Then from (3.2) the Aéma supermartingale / has the

following expression

/C =

{
Ψ(�1 , �) if �1 ≤ C
1 if �1 > C.
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From (3.4) the F-dual predictable projection �?,F of the trigger event time � is given by

�
?,F
C =

∫ C

0

(1 −Ψ(B, �))�1

B11{0≤B<�1}3B, for C ∈ R+.

Therefore, the price +0()) of the zero-coupon CAT bond that pays a principal %cat at ) if � does

not occur before ) and zero otherwise (i.e. � = 0), is then given by

+0()) = %cat4−A)
(
1 −

∫ )

0

E
[
(1 −Ψ(B, �))�1

B11{0≤B<�1}
]
3B

)
(3.7)

which is similar to the zero-coupon bond price at time 0 obtained in [3].

Comment 3.5 Note in this case that our model is a more general framework according to some

existing CAT bond models in the literature (such as the ones in [20], [3]). Indeed, the particular

model presented here corresponds to the one where the trigger event time is �1 and can bemodeled

by a standard Cox time with an intensity rate �1
. It suffices to specify the loss process - and the

usual models can be recovered.

3.1.4 Case where the (�8)8 are predictable

In this case, the main quantity for pricing zero-coupon bonds is the Azéma supermartingale /, and
since / = 1 − �?,F, the equality (3.4) can be replaced by

+C())4−AC = 11{C<�}%cat4
−A) 1

/C
E[/) |ℱC] − 11{C<�}�%cat

1

/C
E

[∫ )

C

4−AD3/D |ℱC
]
, ∀0 ≤ C ≤ ).

In the case with zero interest rate, one has +0()) = %cat(1 − �)E[/)], i.e.,

+0()) = %cat(1 − �)E
[
1 −

∞∑
8=1

11{�8≤)} (Ψ(�8−1 , �) −Ψ(�8 , �))
]
. (3.8)

Note in this case that the price depends on the law of the aggregate losses, the catastrophe

arrival times, and the threshold level. In the particular case where the (�8)8 are deterministic, the

computation is simply based on the computation of the aggregate loss distribution. Note that, in

general, closed-form solutions are not easy to obtain for this distribution but numerical algorithms,

such as Monte Carlo and Fourier transformation can be successfully used to estimate it. However,

the problem of estimating that distribution arises when there is low available data, which is the case

in general for CAT bonds.

3.2 Model 2
We recall that given an F-survival process / and a uniform random variable* in [0, 1] independent
from F, one can construct a random time � associated with / by extended the standard Cox

construction as (see, e.g., in [21] )

� := inf {C ≥ 0 : /C ≤ *}. (3.9)

In this setting, immersion holds and we have

P(� > C |ℱC) = /C .
We consider the survival process of the investor in the CAT bond introduced above to be defined by

/C := 4−
!C
� , ∀ C ≥ 0 (3.10)
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and we model the trigger event time of the investor as in (3.9). It is clear that this is non-increasing

with respect to C and 0 ≤ /C ≤ 1, for all C ≥ 0. Furthermore, / is non-decreasing with respect to

the threshold value �. This is a valid survival process in CAT bond modeling. Let us note that the

definition (3.9) is equivalent to define to as

� := inf {C ≥ 0 :

!C

�
> Θ} (3.11)

where Θ is a unit exponential random variable independent of the reference filtration F. We

postulate that the F-stopping times (�8)8 are the jump times of the process !.

This model belongs to the so-called Generalized Cox model in credit risk (see [10]). It suffices to

set  := !
� . Hence all the characteristics of the trigger default time � can be found following [10]. As

an example of modeling, instead of using a general form of ! we just deal with a particular process

known as the Shot-Noise process which is an important process used in CAT bonds.

3.2.1 Example of the Shot-Noise process.

We consider the ℱ�8 -measurable non-negative random variable H8 1 to be the amount of losses at the

catastrophe time �8 and we denote by � the jump measure of the marked point process (�8 , H8) and
� its compensator (for simplicity, we suppose � to be deterministic2. We define the aggregate loss

process as

!C :=
∑
8≥1

11{�8≤C}�(C − �8 , H8) =
∫ C

0

∫
R
�(C − B, G)�(3B, 3G), ∀C ≥ 0, (3.12)

where � is a function R+ × R→ R+ with

�(C , G) = �(0, G) +
∫ C

0

ℎ(B, G)3B, ∀C ≥ 0, G ∈ R, (3.13)

where ℎ is a non-negative Borel function on R+ × R. We assume that∫ )

0

∫
R
ℎ2(B, G)�(3B, 3G) < ∞, ∀) < ∞. (3.14)

The equality (3.13) guarantees the fact that ! is increasing with respect to the time direction and

the relation (3.14) insures the semi-martingale property of ! (see, e.g., Lemma 2 of [4]).

By using Proposition 3.15 of [10], we obtain

/C(D) := P(� > D |ℱC) = 2(D)!C(D), for D ≥ C (3.15)

where, 2(D) = exp

( ∫ D

0

∫
R
(4−

�(D−B,G)
� −1)�(3B, 3G)

)
,∀D ∈ R+ and !C(D) = exp(−

∫ C

0

∫
R

�(D−B,G)
� �(3B, 3G)−∫ C

0

∫
R
(4−

�(D−B,G)
� − 1)�(3B, 3G)), for any D ∈ R+ which is an F-martingale. In particular, the survival

function of � is P(� > D) = 2(D) and the Azéma supermatingale is /C = /C(C).

Following the proposition 3.14 of [10], we have the F-dual predictable projection of � which is

given by

�
?,F
C =

∫ C

0

∫
R
/B−(4−

�(0,G)
� − 1)�(3B, 3G) (3.16)

1The random variable (H8)8 are called the shots and are supposed to be i.i.d in the catastrophe loss modeling.

2The assumption for � to be deterministic is crucial for the random measure � to have independent increments (see Th.

6.2.1 in [22]) and allows to avoid more complications.
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and the F-predictable reduction Λ of the compensator of � satisfies

3ΛC =

∫
R
(1 − 4−

�(0,G)
� )�(3C, 3G), Λ0 = 0.

Furthermore, if =D is continuous, the trigger event time � admits an intensity rate �. For instance,
if (�8)8 are the jump times of a Poisson process # with deterministic intensity function �# such that

�(3C, 3G) := �(3G)�# (C)3C, where � is a distribution function, then

�C = �# (C)
∫
R
(1 − 4−

�(0,G)
� ) 5 (G)3G, for all C ≥ 0. (3.17)

Hence the intensity of the trigger event time depends on the threshold value �, the loss severity

distribution function �, and the claim arrival intensity �# . Note that the intensity rate of � is

time-varying if the intensity of the claim arrival is time-varying. Furthermore, this quantity is

non-increasing with respect to �.

3.2.2 Price of the zero-coupon CAT bonds under the Shot-Noise model.

We consider a non-negative stochastic interest rate A adapted to a Brownian filtration F, indepen-

dent of the Shot-Noise process ! defined in (3.12) . By denoting F! as the filtration generated by the

!, we define the reference filtration F as F = F, ∨ F!. For simplicity, we consider that the principal

%cat (that we assume to be equal to 1) is fully lost in case of occurrence of the trigger event, i.e, � = 0.

In this setting, we have the following result.

Lemma 3.6 The price of the zero-coupon CAT bonds is given by

+C()) = 11{C<�} exp

(∫ )

C

∫
R

(
4−

�()−B,G)
� − 1

)
�(3B, 3G) − 1

�

∫ C

0

∫
R
[�() − B, G) − �(C − B, G)]�(3B, 3G)

)
&C()),

with &C()) := E
[
4−

∫ )
C
AB3B |ℱ,

C

]
.

Proof: The price +C()) of the zero-coupon CAT bond is given by

+C()) = E
[
%cat11{�>)}4

−
∫ )
C
AB3B |GC

]
.

Under the general framework of pricing defaultable zero-coupon bonds of [19, Proposition 5.1.1],

we can write

+C()) = 11{C<�}
1

/C
E

[
/) 4

−
∫ )
C
AB3B |ℱC

]
= 11{C<�}

1

/C
E

[
4−

∫ )
C
AB3BE

[
/) |ℱ,

) ∨ ℱ
!
C

]
|ℱC

]
where we have used the tower property and the fact that fact that 4−

∫ )
C
AB3B

is ℱ,
)
∨ℱ !

C -measurable.

Since ! is independent of F, (hence / is independent of F, ) and ℱ !
C ⊂ ℱC , one obtains

+C()) = 11{C<�}
1

/C
E

[
4−

∫ )
C
AB3BE

[
/) |ℱ !

C

]
|ℱC

]
= 11{C<�}

1

/C
E

[
/) |ℱ !

C

]
E

[
4−

∫ )
C
AB3B |ℱC

]
= 11{C<�}

1

4−
!C
�

E
[
4−

!)
� |ℱ !

C

]
E

[
4−

∫ )
C
AB3B |ℱ,

C

]
.

We have

E
[
4−

!)
� |ℱ !

C

]
= E

[
4−

!)
� |ℱC

]
= /C()) = 2())!C()),

where 2()) = exp

( ∫ )

0

∫
R
(4−

�()−B,G)
� −1)�(3B, 3G)

)
and !C()) = exp(−

∫ C

0

∫
R
�()−B,G)

� �(3B, 3G)−
∫ C

0

∫
R
(4−

�()−B,G)
� −

1)�(3B, 3G)). Hence, the result follows by replacing !C by its value given in (3.12). �
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3.2.3 A particular Shot-Noise process.

A very tractable Shot-Noise model called the stochastic discounting model (see [4]) is given by

!C =
∑
8≥1

11{�8≤C}H84
−
(�8−C) , (3.18)

with (H8) some non-negative random variables and 
 a strictly positive parameter. In this case, the

process ! is a Markovian Shot-Noise process since �() − B, G) := G4
()−B) = 4
()−C)�(C − B, G) (see
[23]) hence, the price of the CAT bond is given by the following semi-closed form

+C()) = 11{C<�} exp

(∫ )

C

∫
R+
(4− G4


()−B)
� − 1)�(3B, 3G) − 1

�
(4
()−C) − 1)!C

)
&C()) (3.19)

where &C()) := E
[
4−

∫ )
C
AB3B |ℱ,

C

]
.

Here we say semi-closed form because of the quantity &()) but closed form can be obtained when

the interest rate process is an affine process or a polynomial one.

For example, in the case where the interest rate follows a Cox-Ingersoll-Ross (CIR) model, i.e., A
verifies

3AC = �A(� − AC)3C + �
√
AC3,C , A0 = G,

where �A , �, and � are positive parameters and, a Brownian motion, then &C()) = 4�C ())−�C ())AC ,

where � and � verify �C()) = 2
�A�
�2

ln

(
2ℎ 4

1

2
(�A+ℎ)()−C)

ℎ−�A+4 ℎ()−C)(ℎ+�A )

)
and �C()) = 2(4 ℎ()−C)−1)

ℎ−�A+4 ℎ()−C)(ℎ+�A )
, where

ℎ =

√
�2

A + 2�2 .

Comment 3.7 One of the specificities of this model is that the arrival catastrophe events induce

some jumps in the CAT bond prices at the time of occurrence of those events. Indeed let us consider

the F-adapted process +̃()) such that +C())11{C<�} = +̃C())11{C<�}. This process +̃()) always exists

and admits some negative jumps with sizes given by

Δ+̃�8 = +̃�8−(4−(
�()−�8 ,H8 )

� − �(0,H8 )� ) − 1) . (3.20)

This can be easily seen by using the results of example 4.2 of [10] and by noting that the filtration

F, that is a Brownian one supports only continuous martingales. The process +̃()) is called pre-

default price in credit risk modeling. In the same vein, we may call it a pre-trigger price in the CAT

bond modeling.

We now consider the F-stopping times (�8)8 to be the jumps times of a time-inhomogeneous

Poisson process # with intensity function �# and consider the compensator measure �(3C, 3G) :=

�(3G)�# (C)3C, where � is a distribution function. Therefore, the price of the CAT bond given in

(3.19) becomes

+C()) = 11{C<�} exp

(∫ )

C

∫
R+
(4− G4


()−B)
� − 1)�(3G)�# (B)3B − 1

�
(4
()−C) − 1)!C

)
&C()). (3.21)

Hence, the price of the zero-coupon CAT bond is affected by the threshold value �, the claim

arrival intensity �# , the interest rate uncertainty, the distribution of the shots �, and the speed of

the growth 
 of the impulsion function � of the Shot-Noise. These two last parameters constitute

the severities of the losses.

Furthermore, if �# is constant, we have

+C()) = 11{C<�} exp

(
�#

∫ )

C

(
)( 4


()−B)

�
) − 1

)
3B − 1

�
(4
()−C) − 1)!C

)
&C()) (3.22)
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where)(D) is the Laplace transformof the distribution � evaluated at D ∈ R+. The Laplace transform
is not always explicit but some approximations have been introduced for some distributions. For

instance, if � is the log-normal distribution with paramters � ∈ R and � > 0 then a closed-form of )
does not exist but numerical approximations can be used to compute ) (see, e.g, in [24], [25]). For

instance following [24] we have, by setting �(B) := 4
()−B)
� ,

)(�(B)) = 4−��(B)√
1 +W(�2�(B))

exp

(
− 1

2�2

W(�2�(B))2 − 1

�2

W(�2�(B))
)

whereW is the Lambert function (see, e.g., [26]).

When � is a Pareto distribution function, i.e., in the form

�(G) = 1 − 10

1 + G G > 0, 0 > 0, 1 > 0.

Then ) can be setting using the result of [27], i.e.,

)(�(B)) = 0(1�(B))(0−1)/2
exp (1�(B)/2),−(0+1)/2,−0/2(1�(B))

where,�,� is the Whittaker function (see [28]) .

Comment 3.8 • In the case where 
 = 0, the (�8)8 being the jumps times of an homogeneous

Poisson process # with intensity �# and the shots (�8)8 being i.i.d and independent of # , the

Shot-Noise process ! defined in (3.18) is a Compound Poisson process.

• In this case the CAT bond pre-trigger price is continuous.

4 Illustrative example of the CAT bonds prices in the case with
Shot-Noise processes

In this subsection, we compute the term structure of the pre-trigger price of a zero-coupon CAT

bond with principal %cat = 1 and maturity of 3 years using the Shot-Noise model. As such, we

use a threshold value � = 10000 and a CIR interest rate model with parameters (A0 = 0.0204,

� = 0.0204, �A = 0.0884, and � = 0.0477) extracted from [6] and whose values are calibrated from

US treasury yield curve for the period ranging in [1994-2013]. We generate a sample path of the

aggregate loss amounts from the Shot-Noise process defined in (3.18) where the underlying Poisson

process is assumed to be homogeneous with parameter �# = 0.5. For this purpose, we consider

the distribution � of shots to be log-normal with parameters (� = 6.387, � = 0.153) obtained by

[6] from the calibration of their simulated loss data and a speed of the growth of the catastrophe

events 
 = 0.8. Our choice of the log-normal distribution for the shots allows us to make an easy

comparison, in terms of the behavior of the CAT bond prices, with a compound Poisson aggregate

loss process by only setting 
 to 0. However, one could choose an exponential distribution with a

very small parameter and a small claim arrival rate �# so that we could get closer to the realities of

the catastrophe losses. The simulation of the Shot-Noise is done using algorithm 2.1 of [29].

In Figure 1, we represent the term structure of the zero-coupon CAT bond pre-trigger price

(the blue curve) as a function of time in years along with the corresponding path of the aggregate

losses (in red) generated from the Shot-Noise process !. We note two jumps in aggregate losses

at times �1 = 1.104 and �2 = 1.971 with jump sizes respectively to equal 601.8668 and 582.0399.

This automatically induces negative jumps at the same times, in the price of CAT bond with sizes

corresponding respectively to 0.17989792 and 0.05843795 computed using the equality (3.20). One

can be surprised at the difference in jump sizes during the two events. Indeed, despite the larger
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I 1
01 02

Figure 1: CAT bond price vs Aggregate losses

size of the second jump of the Shot-Noise, the size of the first price jump remains higher than that

of the first. However, in terms of ratio, we can see that it is reasonable since the size of the first price

jump represents 19.309152% of its last value before the jumpwhile that of the second is 7.092837% of

its last value just before the moment of the jumps. We generally observe an increasing trend for the

CAT bond price in between the jump times. For more illustrations, Figure 2 of the appendix shows

different scenarios for the behavior of the time-varying CAT bond price according to the trajectory

of the aggregate losses.

Figure 3: CAT bond price with respect to different threshold values

Now for a given trajectory of aggregated losses, we fix different threshold levels (5000, 9000,

15000, 20000) and compute for each Threshold the value of the zero-coupon CAT bond at time

0 ≤ C ≤ ). Figure 3 presents the time-varying CAT bond price according to these levels of thresh-

old. Unsurprisingly, the results show that the CAT bond price is non-decreasing with respect to the

threshold values. Indeed, Higher threshold value leads to low probability of exceeding it, which

leads to the increase in the CAT price. This satisfies the results obtained in [3, 7] among others.
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Different scenarios of this analysis can be seen in Figure 4 of the appendix.

From a standpoint to show the importance of using the Shot-Noise process in our framework,

we sample one path of the aggregate losses from a Compound Poisson process (CPP) using a log-

normal distribution for the severity distribution and a homogeneous Poisson process with the same

parameters as the ones used for the Shot-Noise (i.e., � = 6.387, � = 0.153 and �# = 0.5). We also

compute the time-varying pre-trigger price of the CAT bond introduced above using the CPP and

the same trajectory of the CIR interest rate. Figure 5 represents the path of the CAT bond price

(black curve) computed using the CPP with the corresponding trajectory of the CPP (green curve)

and a trajectory of the CAT bond price obtained from the Shot-Noise (in blue) also along with the

corresponding Shot-Noise path (in red). The results show two jumps of the compound Poisson

process at times �1 = 0.549 and �2 = 1.674 with jump sizes respectively equal to 599.3870 and

608.2323. Despite the jumps of the CPP, we observe a continuity everywhere of its corresponding

CAT bond price. The last finding shows that it is more convenient to use Shot-Noise processes in

our framework than using a Compound Poisson process for the aggregate loss modeling.

Figure 5: CAT bond price vs Aggregate losses

In Figure 7, we plot the surface of the CAT bond price with respect to different maturities and

threshold values. Unsurprisingly, as it has been shown by most of papers in CAT bonds modeling

(such as for example in [1], [5], [6]), we observe that the price is non-increasing in the maturity

direction and non-decreasing in the threshold value direction.

5 Conclusion
In this paper, we have explored the abilities of two models related to credit risk modeling for CAT

bond pricing. In Model 1, we have first investigated the case where the trigger event time is covered

by totally inaccessible stopping times that make it to be totally inaccessible. We then study the sec-

ond case where those stopping times are predictable hence the trigger event time is also predictable.

We have derived all the quantities of interest for pricing zero-coupon CAT bonds. We also showed

that, in some settings, the model generalizes some ones developed in the CAT bond modeling.

In Model 2 we started with the survival process of an investor in a CAT bond and then based on

the results of enlargement of filtration, we construct the trigger event time. We have shown that

this framework is related to the generalized Cox model [10] introduced in credit risk modeling and
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Figure 7: The time C = 0 surface of CAT bond price with respect to the threshold value and the

maturity.

can lead to some closed-form prices of zero-coupon CAT bonds. We have studied the case where

the aggregate loss process is a Shot-Noise. In that setting, the prices of zero-coupon CAT bonds

admit some negative jumps at the occurrence times of the catastrophe events. Furthermore, we

have illustrated these jumps in an example where we especially use a Markovian Shot-Noise which

is more tractable for simulation. A comparison with a framework using the compound Poisson

process (CPP) reveals that it is more suitable to use the Shot-Noise process in our approach for

catastrophe loss modeling than using the CPP.

While the two approaches offer a new perspective on modeling CAT bonds, some potential

improvements have to be taken into account in the forthcoming studies.

In model 1, we have shown that the zero-coupon CAT bond prices depend on the distribution of the

aggregate losses. However, the estimation of this distribution could lead to some problems because

of the low available data in the CAT bond framework. An adapted numerical approximation could

be achieved for calibrating this model in real data.

In model 2, we did not interested in the estimation of the Shot-Noise since several approaches to

estimating that process exists in the literature (see, e.g., [4] and the literature therein). However, it

would be better to investigate how to incorporate the spatial resolution for hazard and exposure

models developed in [6] in that estimation.
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Figure 2: Different scenarios for the CAT bond price vs Aggregate losses.
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Figure 4: Different scenarios for the CAT bond price with respect to different threshold values.
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Figure 6: Different scenarios for the CAT bond price via the Shot-Noise vs the CAT bond price using

the CPP.
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