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“Counting with all children from the very beginning”: One attempt to 
promote early arithmetical skills based on part-whole thinking  

Carina Gander  

Free University of Bozen - Bolzano, Italy; c.gander@unibz.it  

Currently, it seems to be difficult for teachers to create substantial learning environments of high 
quality to manage the arithmetical heterogeneity in First Grade. The 13 substantial learning 
environments based on part-whole thinking of the large-scale project “Counting with all children 
from the very beginning” might be one attempt at that. Following design-based research approaches, 
the substantial learning environments were first developed and then implemented in five mainstream 
classes with a total of 96 students in the Beta-cycle over a ten-week period. Data from the second 
cycle is the basis for the results presented in this paper. Preliminary results indicate that not all 
teachers succeeded in identifying problematic areas in their children’s arithmetical learning, 
especially in the instances of children who have underachieving mathematical skills and children 
with special educational needs (SEN).   

Keywords: Early arithmetic education, part-whole thinking, computation without counting, inclusive 
mathematics education, concepts for mathematics education  

Preliminary remarks 
Every child has the right to access education of good quality, as international organisations such as 
UNICEF, UNESCO or the European Union affirm. Thus, the focus regarding inclusion of all children 
in developed countries is now on promoting the quality of the teaching and learning situation (Florian, 
2008). However, there seems to be uncertainty in German-speaking countries about how to create 
inclusive learning environments of high quality for all children in mainstream classes, not only, but 
especially in early arithmetical education (Korff, 2016). Hence, the present research project seeks to 
design substantial learning environments based on part-whole thinking for First Grade. 

In order to allow others to make comparisons between inclusive school education in different nations, 
the author of this paper draft the current situation that teachers might face regarding inclusive 
practices in early arithmetical education in German-speaking countries, with a focus on Austria, 
where the research of this paper was conducted.   

With the passage of time, the Austrian education system, like that of many other countries, has made 
great progress as far as the issue of inclusion is concerned. In particular the ratification of the UN 
Convention on the Rights of Persons with Disabilities in 2008 sparked debate about inclusive 
education (as in many countries) and the necessary measures for the common compulsory school 
system. Nonetheless, even today, Austria, like many other countries in the world, still focuses on a 
multi-track approach: Parents are free to decide whether to send their child to a (local) mainstream 
school or a special school. In total, in 2020-21, approximately five percent of the children in 
compulsory education belong to the group denoted as having special educational needs. (Statistik 
Austria, 2021). It should be made clear that these data refer merely to the positioning-oriented 
definition of inclusion (see below). 



 

 

By the time children enrol in compulsory school in German-speaking countries (between the ages of 
six and seven), they have received considerably different targeted early mathematical education, 
depending inter alia on different educational plans in kindergarten and the mathematical knowledge 
of the kindergarten staff. The educational plans in kindergarten differ within and between German-
speaking countries – in Austria, the educational document consists of a few pages, and early 
mathematical education is dealt with in a few words. The year before school enrolment all children 
will already have attended kindergarten. By the end of First Grade, it seems to be widely accepted 
within the relevant German literature, that all students should learn how to compute without counting 
fluently with numbers up to 20 (see also Häsel-Weide & Nührenbörger, 2013). Therefore, it seems to 
be helpful if teachers first get children to grasp that numbers (at least up to 10, if not up to 20) are 
composed of other numbers and then, based merely on that knowledge, initiate their understanding 
of addition and subtraction (see also Schipper et al., 2015; Gaidoschik, 2019a; 2019b).  

The author of this paper is aware that in the field of international mathematics education, designing 
substantial learning environments of high quality in early arithmetical education is a central element 
for colleagues from other countries, where there are also likely to be challenges for teachers to teach 
mathematics inclusively. Thus, the following considerations concerning the implementation of part-
whole thinking in early arithmetical teaching may apply to other nations as well.  

Considerations on inclusive education in early arithmetical teaching 
In the international inclusive education community, there is no clear working definition of inclusion. 
Consequently, in many nations inclusive practices are handled very differently, and these practices 
can differ also between schools in one country, or even within the same school (see also Booth & 
Ainscow, 1998). To specify inclusion, it has been defined as both a one-dimensional and/or a 
multidimensional oriented approach. The former means physical positioning and teaching of children 
in an ordinary class (Vislie, 2003), the latter represents a wide plurality with other qualities (for 
example a positive learning environment to promote all children’s learning development) in addition 
to positioning. Many authors agree that inclusion in developed countries is now not merely about 
physical positioning, but has to comprise several aspects. Empirical research has also shown that 
positioning alone is no guarantee of meeting the needs of all children (see also Mitchell, 2014; Vislie, 
2003).  

The international mathematics education community will certainly respect the multidimensional 
oriented approach of inclusion. To understand how pupils learn, the theory of constructivist learning 
is vital. The students actively construct knowledge, and of course, there is huge variation amongst 
children with regard to how quickly and how sophisticatedly they are able to solve mathematical 
problems: ”Children with different developmental backgrounds may well be able to get the same 
answers on an arithmetical task, but how they do so might differ significantly” (for more details of 
the discussion between constructivist views and other views on mathematics education theory and 
research, see Steffe & Kieren, 1994, p. 719). 

Thus, in recent decades, some considerations on general inclusive (mathematics) didactics and few 
substantiated didactical concepts for inclusive mathematics education in primary school have been 
developed in the mathematics education community, but I am not aware of any (apart from the 



 

 

following), that explicitly deal with the utilization of the concept of numerical part-whole thinking in 
First Grade. 

Considerations on the TIGER concept (Gaidoschik, 2019a) 
All children in First Grade classes should be aware of “numbers as compositions of other numbers” 
(Resnick, 1983, p. 114), also termed the “part-whole schema” (Resnick, 1983, p. 115). Resnick 
describes this goal as “probably the major conceptual achievement of the early school years” (1983, 
p. 114), therefore a preferable alternative to computing by counting. According to this concept, 
children should learn to divide numbers in terms of part and whole relationships for all numbers at 
least up to 10. Children thus can be led to understand that any whole number can in fact be divided 
into smaller numbers, and so the number 7 for example, can be divided into 2 and 5. When put 
together, the parts 5 and 2 fulfil the requirement of being equivalent to the whole number 7. With that 
understanding, they might be able to solve addition (2+5; 5+2) as well as subtraction problems (7-5; 
7-2) – without counting.  

The utilization of the concept of numerical part-whole thinking in First Grade seems to be the standard 
in international mathematics education as in for example the “Number framework” (New Zealand 
Ministry of Education, NZME, 2008) and the “Mathematics programme of study” (UK Department 
of Education, 2013). Quite when this concept is taught in the academic year can differ across nations. 
Part-whole thinking is incorporated as early as possible in the school programme in these guidelines 
for teachers’ actions. The New Zealand Number framework explicitly states: 

It is important for you to recognise that part-whole thinking is seen as fundamentally more 
complex and useful than counting strategies. One reason is that counting methods are strictly 
limited, whereas part-whole methods are more powerful. Counting strategies are an inadequate 
foundation for these ideas, and this means that for counters, many advanced number ideas are 
inaccessible. Therefore, your major objective is to assist students to understand and use part-whole 
thinking as soon as possible. (NZME, 2008, p. 7) 

Current models and learning trajectories of these and other guidelines name different numerical stages 
for counting strategies, and give recommendations for teachers to follow and to work with their 
classes from one stage to the next. However, Gaidoschik (2019a) describes in detail a structure-
genetic didactical attempt as an alternative approach to the already existing ones. The concept he has 
named TIGER (Gaidoschik, 2019a) attempts to show how to teach children addition and subtraction 
on the basis of part-whole thinking. The author of this paper will provide a more detailed explanation 
of the TIGER concept and list some examples of the learning situations of the current project. 

The TIGER concept of part-whole thinking 

The TIGER (“Teile im Ganzen Erkennen und damit Rechnen”) concept, created by Gaidoschik 
(2019a), focuses on solid number concepts in early arithmetical teaching. The 13 learning situations 
of the current research project are based on these ideas. Drawing on this concept, the learning 
situations consist of the following three fundamental aspects, whereby the researcher (Gaidoschik, 
2019a, p. 424) recommends teachers “work with children in all three Fields A to C more or less 
concurrently” and “it would not help to stick to one single theme for too long in a row […] the sites 
relate to each other”: 



 

 

Firstly, (A) a child needs to acquire a solid understanding of counting competences and should thus 
master the significance of cardinality as a means to understand "how many of whatever". This 
includes teaching the “counting principles”, defined by Gelman and Gallistel (1987). The substantial 
learning environments that have been designed try to allow all children to consolidate their individual 
counting competences in the counting activities, for example by counting the number of children 
present in the class. Counting is used almost every day: Is anyone absent today? Is the number 
different from yesterday and if so, how has it changed? Of course, First Grade classes will be quite 
heterogeneous in their counting competences: Many children will already have no problems with 
counting (forwards and/or backwards), while some children will need more counting activities than 
others. As a benchmark, all children should (at an earlier or later stage) be able to count easily up to 
at least 10, both forwards and backwards (Gaidoschik, 2007).  

Secondly, (B) it is important that a child is able to judge very small sets without counting – through 
direct pattern recognition - and uses subitizing for smaller quantities (up to 4) and uses perceptual 
subitizing for quantities greater than 3 or 4. Perceptual subitizing is only possible for children and 
indeed us adults if bigger sets are presented in a structured way, so that counting can be avoided (see 
also Clements & Sarama, 2009). The learning situations that the author of this paper has created 
include activities to teach part-whole thinking, including in particular activities using fingers, 
recommended by Gaidoschik (for more details of fingers as a very useful “material”, see Gaidoschik, 
2007). Thus, for example, children should learn at the beginning to show the right number of fingers 
without actually counting them, and without extending them one by one. As a starting point we should 
focus on (at least) all numbers up to 5. In the following activities, structured dot patterns, dice, then 
ten-frames are useful materials in the learning situations. All in all, the use of materials in the current 
research project is important for children to acquire mental pictures and finally automatized 
knowledge but the use of materials is limited to a few structured arithmetical materials, as mentioned 
above. Note that all the activities with material should be presented in a structured way so that 
children are able to identify quantities (first for quantities up to 5 and later for all numbers at least up 
to 10) at a glance. The focus of such early activities is to teach children the interpretation of these 
structures, their relations to 5 and 10; and especially their part-whole compositions (5 as consisting 
of 2 and 3, or of 4 and 1, etc.). 

Thirdly, (C) a child should compare quantities and numbers. On the basis of one-to-one matching up, 
children should learn and/or consolidate that no counting is needed for pairing the items for number 
comparison such as identifying without counting (Gaidoschik, 2007). The learning situations focus 
on activities that foster children’s ability to compare quantities. Thus, inter alia in the learning activity 
“Throwing Tiles” they use one-to-one matching without needing to count the tiles, they create rows 
and then compare in pairs their quantities. In “Finger use” they should “show the right number of 
fingers without counting them” and then compare the fingers with other quantities and/or numbers. 

Organising the created substantial learning environments in the classroom 

To achieve a balance between children learning individually and learning together in (early 
arithmetical) education, which is the general consensus within the mathematics education community 
in German-speaking countries (see for example, Häsel-Weide & Nührenbörger, 2015), the current 



 

 

learning situations are divided into: (I) Whole-class instruction; (II) Individual Work; (III) 
Teamwork. Each teacher decides, depending on the class situation, which organisational structures 
are best and for which children. Presumably, for some children it might be useful at some point to be 
given additional or different activities to practice and/or consolidate their arithmetical knowledge. 
Nevertheless, as Feuser argues (1997), all pupils should, as much as possible, be working on the same 
activity even if it is being carried out on a different level. The learning situations in the current paper 
respect these ideas and try to give specific ideas for teacher’s action in classes.  

The research project, research method and research question 
To be able to examine the effectiveness of the learning situations created, collective case studies 
following the framework of design-based research approaches (Euler, 2014) have been conducted. In 
the Alpha-cycle, conducted in the school year 2019-2020 with 45 First Grade students in two 
Tyrolean mainstream classes, video-recorded conclusions were drawn for the implementation and 
further development of the substantial learning environments. These results were processed in an 
additional cycle. The Beta-cycle, which is relevant for the present data analysis, was carried out in 
five Tyrolean primary school classes in the school year 2020-2021 with 95 students over a 10-week 
period in First Grade in inclusive mainstream classes. Before starting the classroom implementation, 
all teachers were instructed in using and adapting the learning situations. To generate insights into 
children’s learning and their mathematical thinking, each lesson was video recorded, and framed as 
the basis for data analysis using “Qualitative Content Analysis” (Mayring, 2015).  

The pairs of children analysed are, as far as possible, unchanged, so that conclusions can be drawn 
regarding the progress of their learning. Furthermore, “Assessment of Teaching-Learning-Situations 
in Mathematics of the Early Grades” (Steinweg, 2010) is used for data analysis, as an additional level 
of analysis. Steinweg’s idea of dimensions focuses on the teachers’ possibilities for action in First 
and Second Grade. The combination of both gives indications for (further) development of the 
substantial learning environments.  

The questions guiding the paper are: (1) Do the analysed transcripts of the substantial learning 
environments based on part-whole thinking indicate any difficulties of understanding for many 
children and/or a particular group of children with certain arithmetical knowledge? (2) Are there 
difficulties in teaching the substantial learning environments based on part-whole thinking; and if so, 
are these observed in several scenes?  

Preliminary results 
It should be made clear that it is not the intention of the author to draw conclusions from specific 
scenes or class observations. The idea is not that a learning activity should be done just once in a class 
or that all children should be able to solve the arithmetic task (at the same time). Thus, the dimensions 
of Steinweg (2010) – consistent with the author’s intention – are considered ‘competence-oriented’, 
that is to say, the (analysing) focus is more on the teacher’s achievements than on their failings. When 
Steinweg’s dimensions are used in a way that several scenarios of teachers’ actions in classes are 
analysed, conclusions can then be drawn to give teachers targeted indications for the work in daily 
classes.  



 

 

Drawing on these ideas, preliminary outcomes of the analysis of some transcripts using “Qualitative 
Content Analysis” (Mayring, 2015) indicates content related problematic areas in early arithmetic 
education: These are problematic areas of arithmetical knowledge that might be common to many 
children and/or a particular group of children. To illustrate by means there are some examples. In 
“Throwing Tiles” children take turns throwing 10 reversible tiles, which have a red side and a blue 
side. Then together they have to match one red with one blue tile, using one-to-one matching without 
counting. They create two rows to identify who has more tiles, and how many more there are of one 
colour compared to the other. Regarding Steinweg’s idea of mathematical dimensions (2010), not all 
teachers were able to foster children’s arithmetical competences and not all teachers were consistently 
able to identify these problematic areas of arithmetical knowledge. In some sequences, for example 
in this sequence “Throwing Tiles”, some teachers did not realize that children require a solid 
understanding for one-to-one-matching up as a basis for further arithmetical strategies. Especially for 
underachieving children in mathematics and children with SEN the understanding and utilization of 
the one-to-one-matching process was consistently difficult in several instances on several days.  

Again, it is the same group of children that seem to have difficulties in the following scenarios: One 
of the advanced activities of “Finger Use” is to work out the 5-plus-x structures of the numbers 6 to 
10. The children play in pairs, and one says a number, for example 7, and the other child, with hands 
underneath the table, without looking at their fingers, has to show the right number of fingers without 
actually counting them, and without extending their fingers one by one.  Their partner then checks 
the solution. In further exercises, they have to describe what they would do, without actually doing 
it. For example, “Seven. I have to show one full hand and two fingers on the other hand; in total that 
makes seven”. Drawing on Steinweg’s idea of mathematical dimensions (2010), even in this activity 
not all teachers were able to foster the use of fingers. For these children it might be worthwhile to 
give more thought-provoking stimuli to acquire part-whole thinking. Thus, the base numbers 5 and 
10 (5 fingers on one hand, 10 fingers on both hands together) should be focused on first.  

Thus, a preliminary indication of the analysed transcripts is that particular attention should be paid 
to the mathematical thinking of underachieving children and to children with SEN, and it is evident 
that teachers seem to find it especially difficult to meet the learning needs of those children.  

Closing remarks 
The current research project on early arithmetical teaching in First Grade, presented in this article, is 
one attempt to face challenges in teaching (arithmetic) inclusively. As has been outlined, the 
substantial learning environments that have been created are based on the TIGER concept 
(Gaidoschik, 2019a). The author of this paper agrees with the ideas of many researchers in the 
relevant mathematics education literature, that children who need special support in learning 
(mathematics) do not learn differently, nor need completely different concepts than are already 
recommended for all children (see Gaidoschik, 2019a, 2019b; Moser Opitz, 2008; van de Walle, 
2004). Thus, their learning behaviour is not completely different from that of their classmates. Of 
course, some mathematical content might be acquired by some children at a later stage than other 
children, but all children should learn them at some point during their mathematical education. From 



 

 

the structure-genetic didactical analysis approach this idea seems logical because the mathematical 
content is the same for all children.  

Nevertheless, empirical evidence (see for example, Pfister et al., 2015), as well as some interim results 
of this research project indicate how difficult it is for teachers to implement already existing concepts 
of mathematics education in their classes, even for those who participate voluntarily in in-service 
development programmes.  

Thus, one conclusion of this research is that it is essential to enhance teachers’ knowledge of relevant 
pedagogical methods and content, so that teachers can then fulfil all pupils’ differing learning 
requirements. The other conclusion is that data analysis has also shown that for teachers to get a 
collective picture of their students’ arithmetical knowledge, it might be worthwhile to identify 
problematic areas of arithmetical knowledge. The awareness of these problematic areas of 
arithmetical knowledge is crucial for quality teaching in inclusive mathematics education. Of course, 
this places high demands on the teacher’s abilities.  

Yet, in further data analysis something that needs to be evaluated is whether such problematic areas 
of arithmetical knowledge involve many children and/or a particular group of children in different 
classes that participated; and whether it was consistently difficult for the teachers to identify these 
problematic areas of arithmetical knowledge and to foster children’s competences. This would allow 
us to develop further indications for the work with teachers and children.  
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