
HAL Id: hal-03745034
https://hal.science/hal-03745034v2

Submitted on 23 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Test Amplification for Executable Models
Faezeh Khorram, Erwan Bousse, Jean-Marie Mottu, Gerson Sunyé, Pablo

Gómez-Abajo, Pablo C Cañizares, Esther Guerra, Juan de Lara

To cite this version:
Faezeh Khorram, Erwan Bousse, Jean-Marie Mottu, Gerson Sunyé, Pablo Gómez-Abajo, et al.. Au-
tomatic Test Amplification for Executable Models. MODELS ’22: ACM/IEEE 25th International
Conference on Model Driven Engineering Languages and Systems, Oct 2022, Montreal, Canada.
pp.109-120, �10.1145/3550355.3552451�. �hal-03745034v2�

https://hal.science/hal-03745034v2
https://hal.archives-ouvertes.fr

Automatic Test Amplification for Executable
Models

Faezeh Khorram
Erwan Bousse

Jean-Marie Mottu
Gerson Sunyé

faezeh.khorram@imt-atlantique.fr
erwan.bousse@ls2n.fr

jean-marie.mottu@ls2n.fr
gerson.sunye@ls2n.fr

IMT Atlantique, Nantes Université
Nantes, France

Pablo Gómez-Abajo
Pablo C. Cañizares

Esther Guerra
Juan de Lara

Pablo.GomezA@uam.es
Pablo.Cerro@uam.es

Esther.Guerra@uam.es
Juan.deLara@uam.es

Universidad Autónoma de Madrid
Madrid, Spain

ABSTRACT
Behavioral models are important assets that must be thoroughly veri-
fied early in the design process. This can be achieved with manually-
written test cases that embed carefully hand-picked domain-specific
input data. However, such test cases may not always reach the de-
sired level of quality, such as high coverage or being able to localize
faults efficiently. Test amplification is an interesting emergent ap-
proach to improve a test suite by automatically generating new test
cases out of existing manually-written ones. Yet, while ad-hoc test
amplification solutions have been proposed for a few programming
languages, no solution currently exists for amplifying the test cases
of behavioral models.

In this paper, we fill this gap with an automated and generic
approach. Given an executable DSL, a conforming behavioral model,
and an existing test suite, our approach generates new regression
test cases in three steps: (i) generating new test inputs by applying a
set of generic modifiers on the existing test inputs; (ii) running the
model under test with new inputs and generating assertions from the
execution traces; and (iii) selecting the new test cases that increase
the mutation score. We provide tool support for the approach atop the
Eclipse GEMOC Studio1 and show its applicability in an empirical
study. In the experiment, we applied the approach to 71 test suites
written for models conforming to two different DSLs, and for 67 of
the 71 cases, it successfully improved the mutation score between
3.17 % and 54.11 % depending on the initial setup.

CCS CONCEPTS
• Software and its engineering → Software testing and debug-
ging; Model-driven software engineering.

1 Link to the tool: https://doi.org/10.5281/zenodo.7007576

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MODELS ’22, October 23–28, 2022, Montreal, QC, Canada
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9466-6/22/10. . . $15.00
https://doi.org/10.1145/3550355.3552451

KEYWORDS
Test Amplification, Regression Testing, Executable Model, Exe-
cutable DSL

ACM Reference Format:
Faezeh Khorram, Erwan Bousse, Jean-Marie Mottu, Gerson Sunyé, Pablo
Gómez-Abajo, Pablo C. Cañizares, Esther Guerra, and Juan de Lara. 2022.
Automatic Test Amplification for Executable Models. In ACM/IEEE 25th
International Conference on Model Driven Engineering Languages and
Systems (MODELS ’22), October 23–28, 2022, Montreal, QC, Canada. ACM,
New York, NY, USA, 12 pages. https://doi.org/10.1145/3550355.3552451

1 INTRODUCTION
Many Domain-Specific Languages (DSLs) are used for describing
the dynamic behavior of systems as behavioral models (e. g. state
machines [39], activity diagrams [40], and process models [7, 38]).
They are used in dedicated environments with tool support that
includes dynamic Verification and Validation (V&V) techniques,
enabling the user (i. e. the domain expert) to assess the correctness
of the modeled behavior as early as possible [16]. Dynamic V&V
techniques require the execution of the models, hence their applica-
tion is restricted to DSLs with translational or operational semantics,
(i. e. compilation or interpretation, respectively). We focus on DSLs
with operational semantics, referred to as executable DSLs (xDSLs).

Testing is a popular dynamic V&V technique that involves ex-
ecuting systems and observing whether they act as expected. Cur-
rently, several testing approaches are proposed for xDSLs, some
tailored for specific ones [25, 29, 33, 37], while some others pro-
vide generic solutions that are applicable to a wide range of xD-
SLs [10, 27, 28, 36, 54]. They allow the domain experts to write and
execute test cases for behavioral models. However, writing test cases
with a high level of quality (e. g. having high coverage or being able
to localize faults efficiently) is a difficult manual task.

In the realm of software testing, a test case generation technique
called test amplification has recently emerged [12]. This technique is
able to improve an existing manually-written test suite by generating
new test cases towards a specific goal (e. g. improve coverage or
increase the accuracy of fault localization). In a nutshell, a test
amplifier creates small variations in existing test cases in order to
put the system in unexplored states, and then generates new oracles

https://www.acm.org/publications/policies/artifact-review-and-badging-current#reusable
https://www.acm.org/publications/policies/artifact-review-and-badging-current#available
https://doi.org/10.5281/zenodo.7007576
https://doi.org/10.1145/3550355.3552451
https://doi.org/10.1145/3550355.3552451

MODELS ’22, October 23–28, 2022, Montreal, QC, Canada Khorram, et al.

in a way adapted to the chosen goal — e. g. oracles directly based
on the execution traces to strengthen regression testing [12, 55].

So far, several test amplification solutions have been proposed
for specific programming languages, grounded in their support-
ing testing frameworks (e. g. Java [13], Pharo Smalltalk [1], and
Python [44]). Bringing test amplification to xDSLs could greatly
help domain experts to create satisfying test suites for their behav-
ioral models. Yet, in a context where there are plenty of xDSLs to
define behavioral models [7, 38–40] and the engineering of new
ones is recurrent [35], developing a test amplification approach for
each and every xDSL is costly and potentially repetitive.

In this paper we propose a generic, automated approach for ampli-
fying test suites of executable models. We focus on regression testing
as a goal for test case generation, and use as a starting point our
earlier testing framework [28], which supports the definition and exe-
cution of test cases for any executable model using the standard Test
Description Language (TDL) [34]. Given an xDSL, a conforming
behavioral model, and a TDL test suite for this model, our proposed
approach amplifies this test suite in three steps. First, new test input
data is generated by applying a set of modifiers to the input data of
existing test cases. For primitive data, we adapt modifiers suggested
for JUnit test cases [11, 13], and for more complex data related to
the modeling nature of the tested system, we propose a set of new
modifiers. The output of this phase is a set of new test cases but
without any assertions. Second, each newly generated test case is
executed, and the resulting trace captured. From this trace, all possi-
ble assertions for the new test cases are generated. Third, mutation
analysis [15, 24] is used to select only the new test cases improving
the mutation score of the original test case. This ensures that only
the most efficient test cases are proposed to the domain expert.

We implemented the proposed framework for the GEMOC Stu-
dio [9], a language and modeling workbench for xDSLs. We ran an
experimentation with 71 test suites written for 71 models conform-
ing to two different xDSLs, which successfully generated 244 new
test cases improving the original mutation scores. Mutation analysis
showed that on 12.481 mutants generated for the 71 models, the
amplification approach improved the mutation score for 67 of the 71
test suites, ranging from 3.17 % to 54.11 % depending on the initial
setup. This result reveals the effectiveness of test amplification in
the context of executable model testing.
Paper organization. Section 2 provides the background and a running
example. The proposed approach is then introduced in Section 3 and
its supporting tool is explained in Section 4. Section 5 presents the
evaluation of our approach. Finally, the related work is provided in
Section 6 and Section 7 concludes the paper.

2 BACKGROUND
This section introduces a running example that will be used across
the paper (Section 2.1), provides a definition of executable DSLs
(Section 2.2) and their testing support (Section 2.3), and a definition
of test amplification (Section 2.4). The section finishes with a discus-
sion of the motivation and the objectives of this paper (Section 2.5).

detect(InfraRedSensor) press(PushButton)
release(PushButton) execute(Sketch)
execute(ModuleAssignment) execute(If)
changeLevel(DigitalPin)

<<imports>>Execution Rules

a

b

<<implementedBy>>
c

Figure 1: An excerpt of an Arduino xDSL (called xArduino)

2.1 Running Example: Arduino
Arduino2 is an open-source company that offers hardware boards
with embedded CPUs, and with different modules (e. g. sensors,
LEDs, actuators) that can be attached to a board. An Integrated
Development Environment (IDE) is available to develop programs
(called sketches) for such boards in C or C++. We consider as a
running example a sample executable DSL aiming at easing the mod-
eling and early simulation of Arduino boards along their sketches.
Figure 1 shows an excerpt of the definition of such Arduino xDSL3,
which is further introduced in the following sections. From now on,
we refer to this xDSL as xArduino.

2.2 Executable DSL (xDSL)
In this paper, we target xDSLs that are composed of at least (i) an
abstract syntax specifying the domain concepts; (ii) an operational
semantics enabling the execution of the models conforming to the
xDSL [9]; and (iii) a behavioral interface defining how to interact
with a running model [31].

2.2.1 Abstract Syntax. We consider the abstract syntax of an xDSL
to be defined by an Ecore metamodel [48]. This is a set of meta-
classes, each containing a set of features, i. e., either an attribute with

2 https://www.arduino.cc/
3 Inspired from https://github.com/mbats/arduino

https://github.com/mbats/arduino

Automatic Test Amplification for Executable Models MODELS ’22, October 23–28, 2022, Montreal, QC, Canada

if button1 == 1

if infrared sensor == 1
else

buzzer = 1 buzzer = 0 buzzer = 1 buzzer = 0white LED = 1 white LED = 0

Figure 2: An example xArduino model

primitive type or a reference to another metaclass. Figure 1(a) shows
the abstract syntax of xArduino. The class Project is its root and may
contain several Board and Sketch elements. A Board represents a
physical board, containing several DigitalPins, each one of them as-
sociated with a Module such as LED, InfraRedSensor, PushButton,
and Buzzer. DigitalPin has a level integer attribute, which represents
the state of its Module. For example, when the level for a DigitalPin
connected to a PushButton is equal to 1, it means the button is be-
ing pressed. Sketch elements represent the board’s behavior. They
may contain a Block with Instructions such as ModuleAssignment
for changing the state of a Module, and Control instructions for
conditional behaviors (e. g. using If or While).

Figure 2 shows an example xArduino model in concrete syntax.
Four Module instances including a PushButton, an InfraRedSensor,
a white LED, and a Buzzer are connected to different DigitalPins of
an Arduino Board (on the top). The board’s behavior, modeled on
the bottom of Figure 2 using a Sketch element, is: “if button1 is
pressed, the white LED turns on (i. e. activating the system) and then
if the infrared sensor detects an obstacle, the buzzer alternates
between noise/silence periods twice (i. e. reporting an intrusion).
Otherwise, the white LED turns off”.

2.2.2 Operational Semantics. The operational semantics of an xDSL
defines how to execute a model conforming to the xDSL’s abstract
syntax. It should include two parts: the definition of the possible
runtime states of a running model, and a set of execution rules that
change such runtime state over time.

We assume that the runtime state is defined in the metamodel in
the form of additional dynamic attributes and references. For ex-
ample, in Figure 1(a), the level attribute of the DigitalPin, shown
in bold, represents the runtime state of its associated Module since
changing its value at runtime puts an xArduino model in different
states. Next, for each metaclass of the abstract syntax that has a
runtime behavior, an execution rule is needed to implement such a
behavior and the execution rules may call each other to complement
the model execution. Figure 1(b) lists an excerpt of the xArduino ex-
ecution rules. For example, the detect rule implements the behavior
of detecting an obstacle by an InfraRedSensor. Note that this paper
only considers xDSLs with discrete-event operational semantics (i. e.
not continuous) and with deterministic behavior. This guarantees
that for the same input, the execution result is always the same.

Test
Component

SUT
(xArduino model)

sensor_detected (infrared sensor)

pin_level_changed (buzzer == 1)
pin_level_changed (buzzer == 0)

button_pressed (button1)
pin_level_changed (white LED == 1)

pin_level_changed (buzzer == 1)
pin_level_changed (buzzer == 0)

Figure 3: A TDL test case for the xArduino model of Figure 2

2.2.3 Behavioral Interface. The behavioral interface of an xDSL
defines how a conforming model is able to interact with its environ-
ment through events, and must be implemented by the execution
rules of the operational semantics [31]. Figure 1(c) presents a be-
havioral interface for xArduino. It comprises a set of events, each
containing parameters conforming to the xDSL’s abstract syntax.
Considering a running model, accepted events indicate kinds of
requests that the model accepts, and exposed events determine the
observable reactions of the model. This means the execution trace of
an executable model can be defined as a sequence of exposed event
instances. For example, when executing an xArduino model, it is
possible to simulate the pressing and releasing of a button (using
button_pressed and button_released events, respectively), and
the detection of an obstacle by a sensor (using IRSensor_detected
event). Whenever the level of a DigitalPin changes, it will be ex-
posed by instantiating the Pin_level_changed event for the related
DigitalPin. This paper assumes the accepted events are processed
synchronously–often referred to as a run-to-completion semantics.

2.3 Testing Support for xDSLs
An xDSL with testing support enables domain experts to test con-
forming behavioral models early in the design phase. In [28], we
proposed a generic testing framework for xDSLs using the standard
Test Description Language (TDL) [34]. Given an xDSL, the frame-
work generates an xDSL-specific TDL library that provides facilities
to define test cases and test data for the conforming models based
on the xDSL definition, and then executing them and obtaining the
result. It also supports xDSLs with behavioral interfaces, meaning
that it is possible to write event-driven test cases in which the test
case interacts with a running model under test based on what the
behavioral interface offers. In such test cases, test input data and ex-
pected output (i. e. used in the assertions) are defined as a sequence
of accepted event and exposed event instances, respectively.

For example, Figure 3 shows a TDL test case for the xArduino
model from Figure 2. The test case is defined as a scenario of
exchanging messages between the test component—i. e. the test
executor—and the System Under Test (SUT)—in our case the xAr-
duino model. When the sender is the test component, the exchanged
message carries test input data i. e., an accepted event instantiated
from the behavioral interface of the xArduino DSL. Messages from
the SUT are assertions and their carried data is the expected output

MODELS ’22, October 23–28, 2022, Montreal, QC, Canada Khorram, et al.

if button1 == 1

if infrared sensor == 1
else

buzzer = 1 buzzer = 0 buzzer = 1 buzzer = 0white LED = 1 white LED = 1

Figure 4: Part of a mutant generated for the xArduino model of
Figure 2 by changing the assignment of the else part

i. e., the exposed event instances. The values of the events’ parame-
ters are elements of the xArduino model with values of their runtime
features (such as white LED with level == 1). This test case val-
idates whether the white LED turns on when button1 is pressed,
and then whether the buzzer alternates between noise/silence pe-
riods when the Infrared sensor detects an obstacle. Therefore,
the test case is checking the Sketch shown in the bottom part of the
xArduino model from Figure 2, except for the else part. As shown
by the green arrows in Figure 3, the test case is a success.

2.4 Test Amplification
Test amplification refers to all the existing techniques aiming at
enhancing manually-written test cases based on a specific goal, such
as improving the coverage of changes or increasing the accuracy
of fault localization [12]. A subset of these techniques is focused
on improving manually-written test cases to avoid regression faults.
Given a test suite for a system, such techniques create new test cases
by modifying the test input data of existing test cases, and then run
the system with this modified data to put the system in unexplored
states. For each new test case, an oracle is generated by inferring
assertions from the resulting execution trace of the system. As new
test cases are based on the current behavior of the system, these
techniques can effectively strengthen regression testing [13, 55].

Since test amplification may generate large amounts of test cases,
it is important to keep only the relevant ones. When the goal is to
increase test case effectiveness in detecting regression faults, an
efficient technique for identifying relevant test cases is mutation
analysis [15]. This technique injects artificial faults in the SUT, and
then measures the degree to which an existing test case detects
them. Artificial faults are modeled via mutation operators, which
perform small modifications (e.g. flipping ’>’ by ’<’ in an expression,
changing the value of constants) on the source code. These operators
are systematically applied to the SUT to produce sets of mutants. For
example, Figure 4 shows part of a mutant for the model of Figure 2,
generated by changing a constant within the else part.

Mutants can be used to evaluate the quality of the test cases. If the
original program and the mutant produce different outputs, then the
test suite has detected the fault, and we say that the mutant has been
killed. For example, if we run the test case of Figure 3 on the mutant
of Figure 4, the output will be the same as running it on the original
model of Figure 2. Thus, this test case is not able to kill the mutant.
The mutation score—the percentage of killed mutants—provides a
measure of test suite quality [6]. We use mutation analysis to check
the degree of improvement that test amplification provides, and as
selection criterion for the most effective amplified test cases.

2.5 Motivation and Objectives
As described above, amplifying tests for improving regression testing
involves manipulating test data. Indeed, test amplification consists of
modifying test input data in conformance to the SUT and generating
new assertions from the system execution traces. Both tasks require
working with system-specific data which could shape very differently
depending on the language the system is implemented with. Hence,
all the existing test amplification solutions are dedicated to specific
programming languages and grounded on their supporting testing
frameworks (e. g. Java [13], Pharo Smalltalk [1], and Python [44]).

In the context of this paper, the SUT is an executable model
defined by an xDSL. Since there are plenty of xDSLs in different
domains [7, 38–40] and as engineering new ones is recurrent [35],
there is a strong incentive to provide a generic test amplification ap-
proach applicable to any xDSL. Such an approach must be adaptable
for every given xDSL since each one of them has its own definition
of data, which could highly differ from one to another. It must also
be founded on a generic testing framework that supports the same
kind of xDSLs (according to the definitions given in Section 2.2).

In the next section, we propose a generic test amplification ap-
proach for xDSLs. We base it on our earlier testing framework [28]
since it supports the xDSLs considered in the context of this paper.

3 APPROACH
In this section, we first present an overview of the proposed approach
(Section 3.1) and then detail its main components (Sections 3.2–3.4).

3.1 Overview
Figure 5 shows an overview of the proposed approach, which in-
volves two roles. First, a language engineer (on the top center) who
defines an xDSL according to the definitions given in Section 2.2.
Additionally, we assume the availability of a set of mutation oper-
ators for the xDSL. Second, a domain expert (on the top left) who
defines a model (using the xDSL) and a TDL test suite for them.

The first component of the approach is the Test Case Modifier (on
the left side). It takes the manually-written test suite and the model
under test, and generates new test cases by modifying the given test
suite (label 1). This modification involves changing the test input
data and removing the existing assertions since they are no longer
valid due to the data changes. As the test input data are specific to
the xDSL that the tested model conforms to, this component uses the
xDSL definition for performing the modification. The new test cases
are then given to the Test Runner (on the bottom left) which is the
TDL test execution engine proposed in [28]. The engine executes the
test cases on the model and produces their execution traces (label 2).

Our second component is called Assertion Generator (on the
bottom right) and follows the idea of regression oracle checking [55].
In this technique, assertions are generated based on the execution
traces to improve the strength of the regression testing. Accordingly,
after running each new test case, our proposed component analyzes
the execution trace of the model under test to generate assertions
for the test case based on the model’s reaction to the new test input
data. Again, as the execution trace comprises data conforming to
the xDSL that the model conforms to, this component also uses the
abstract syntax and the behavioral interface of the xDSL definition,

Automatic Test Amplification for Executable Models MODELS ’22, October 23–28, 2022, Montreal, QC, Canada

this time for generating assertions. At the end, its output is a set of
new test cases with assertions for regression testing (label 3).

The Test Case Selector is the third component of the approach
(on the right side). It is in charge of filtering the generated test cases
based on some given criteria. Currently, we consider the ability of
new test cases in improving the fault localization capability. Ac-
cordingly, this component uses an existing mutant generator that
produces mutants out of the model under test if the language engi-
neer provides a set of mutation operators for the xDSL (on the top
center). It then runs the new test cases on the mutants (using the test
runner) and keeps those improving the initial mutation score (i. e.
the mutation score of the given manually-written TDL test suite).
The process can be iterated on the selected new test cases based on
some stop criteria such as reaching a 100 % mutation score (label 4).

3.2 Test Case Modification
The first step of our test amplification process is the modification
of existing test cases. This involves performing two tasks on each
test case of the considered test suite: modifying the test input data
and removing the assertions. The former aims at putting the model
under test in unexplored runtime states, and the latter is required
since changing the input data makes the existing assertions invalid.

For the former task, we call modifier an operator that, when
applied to a specific element of an existing test case, generates a
new test case that is identical to the former one but for a single
modification. A modifier can be applied multiple times on the same
test case, yielding a different result depending on the chosen element
of the test case. As some modifiers may produce too many different
new test cases from a single test case, each modifier may possess

Test Case
Modifier

Existing
Tool

Le
ge
nd User-Provided

Artifact

specific to

Manually-Written
TDL Test Suite

New test cases
(without assertions)

New test cases
(with assertions)

if mutation score <1

added to

Selected amplified
TDL test cases

Model
Under Test

Test
Runner

Assertion
Generation

Execution
traces

Generated
Artifact

Intermediate
Artifact

Proposed
Tool

Assertion
Generator

data flow

Domain
Expert

xDSL

Abstract
Syntax

imports

Operational
Semantics

implemented by

Behavioral
Interface

Language
Engineer

defines

uses

Mutant
Generator

imports

Mutation
Operators

reads

reads

Test Case Selector
conforms to

defines

dependency

2

1 3

4

Regression
TDL test suite

Test
Runner

reads

reads

Figure 5: Approach Overview

its own application policy, which tells on which elements and how
many times the modifier will be applied on each test case.

In the proposed approach, we use the following sets of modifiers.

3.2.1 Modification of Primitive Data. We adapt two existing sets
of modifiers for modifying test input data that comprise primitive
values: (1) the operators proposed by Danglot et al. in [13] for the
amplification of JUnit test cases, and (2) the modifiers used by the
Pitest mutation testing tool [11] for putting Java programs in new
runtime states. The resulting modifiers as follows:

• A numeric value n is replaced by either 1, −1, 0, n + 1, n−1,
n×2, n÷2, or with another existing value of the same type.

• A string value is modified by either adding a random char-
acter, removing one of its characters randomly, arbitrarily
replacing one of its characters with a random character, or
replacing the string with a random string of the same size.

• A boolean value is negated.

Each of these modifiers is applied as many times as possible on
each considered test case. For instance, the integer modifier will be
applied 16 times on a test case containing an event occurrence with
two integer parameter (2×8 possibilities).

3.2.2 Modification of Event Sequences. As explained in Section 2.3,
the test input data of a TDL test case written for a model is com-
posed of a sequence of event occurrences. According to the xDSL
the tested model conforms to, such occurrences are instances of
the accepted events of the xDSL’s behavioral interface. Each event
occurrence may have a set of parameters pointing to the model el-
ements. Following these considerations, we propose the following
modifiers to generate new test cases by modifying the input event
sequences of a given test case.

• Event Duplication: Duplicate an existing event occurrence.
Applied on each possible event occurrence of the test case.

• Event Deletion: Removes an event occurrence. Applied on
each possible event occurrence of the test case.

• Event Permutation: Performs a random permutation of two
input event occurrences to generate a new test case.

• Event Creation: Creates a new event occurrence in the test
case. First, the available accepted events of the xDSL’s be-
havioral interface that are not used in the test input data of
the given test case are collected. The availability is verified
by analyzing whether for the unused event occurrences, a
value can be set to their parameters using information from
the model under test. If possible, this operator adds new event
occurrences to the input event sequences by creating all the
possible instances of the available accepted events. In par-
ticular, it generates one new test case per event addition as
well as a new test case containing all the new instantiated
event occurrences. In the later case, when several new event
occurrences are added, this new input is modified using other
operators such as event duplication, event deletion, and event
permutation to generate more new test cases.

• Event Modification: Analyzes the model under test to find
alternative values for the parameters of the events (i. e. other
values of the same type). If any are found, the values of the
event parameters are replaced with the alternatives. With each
possible modification, it generates a new test case.

MODELS ’22, October 23–28, 2022, Montreal, QC, Canada Khorram, et al.

Test
Component

SUT
(xArduino model)

sensor_detected (infrared sensor)

pin_level_changed (buzzer == 1)
pin_level_changed (buzzer == 0)

button_pressed (button1)
pin_level_changed (white LED == 1)

pin_level_changed (buzzer == 1)
pin_level_changed (buzzer == 0)

button_released (button1)
pin_level_changed (white LED == 0)

Figure 6: Amplified TDL test case generated from the initial test
case of Figure 3 by applying the event creation modifier. The last
message unsatisfies the assertion then the test case fails, killing
the mutant of Figure 4 and improving the initial mutation score

The output of this step is a set of new test cases but still without
any assertion. As mentioned in Section 3.1, our approach requires
execution traces to generate regression assertions. Accordingly, we
execute each new test case on the model under test using the TDL
test runner [28] to capture an execution trace (label 2 in Figure 5).

3.3 Assertion Generation
As explained in Section 2.2.3, the execution trace of an executable
model comprises a sequence of exposed event instances, according
to the behavioral interface of the xDSL the model conforms to. Since
the test cases are implemented in TDL, the assertions must be gener-
ated in TDL as well. Thus, the main role of the assertion generator
is to transform the exposed event instances to TDL elements. This
transformation uses the definition of both the behavioral interface
and the abstract syntax of the xDSL because event instances conform
to the behavioral interface and may carry EObjects of the model
under test, which conform to the abstract syntax metamodel.

For example, Figure 6 illustrates a test case generated by our
amplification approach from the initial test case shown in Figure 3.
In the test case modification phase, the Event Creation modifier
added a new event, button_released (button1), to the input
event sequence. Then, in the assertion generation phase, a new asser-
tion with expected output pin_level_changed (white LED == 0)
is generated because according to Figure 2, by releasing the button
the else part of the Sketch will be executed which changes the level
of the white LED to 0.

3.4 Test Case Selection
Up to this step, a set of new test cases has been generated, but not
necessarily all of them improve the quality of the test suite. In this
step, we rely on mutation analysis to evaluate whether a generated
test case improves the quality of the test suite. Figure 7 shows the
test case selection process. First, the original model under test is
mutated using a set of mutation operators for the xDSL (step 1).
Then, the original test suite is evaluated on the mutants (step 2) to

Figure 7: Selecting test cases using mutation analysis

yield a mutation score (step 3). We also keep track of the set of killed
and alive mutants.

Next, the process evaluates each amplified test case on the live
mutants (step 4) to check whether it fails on any of them (i. e. kills
some mutant, step 5) or succeeds (i. e. does not distinguish the mutant
from the original model). The amplified test case is selected if it kills
at least one live mutant. In such a case, the process incorporates the
new killed mutants to the existing set of killed mutants, increasing
the mutation score (step 6), and iterates the process on the selected
amplified test cases (step 7). The process finishes based on some
given stop criteria. Currently, we iterate up to three times while the
mutation score is less than 100 %.

For example, the new test case of Figure 6 executed on the xAr-
duino mutant (Figure 4) fails. This means that the test case is able
to detect the injected fault, and therefore that the mutant has been
killed, which increases the mutation score. Hence, the test case is
added to the regression TDL test suite of the xArduino model.

4 TOOL SUPPORT
We implemented our proposed approach as part of the GEMOC
studio [9], a language and modeling workbench for xDSLs defined
on top of the Eclipse Modeling Framework (EMF) [48]. We conve-
niently reused our earlier testing framework [28], which is also part
of the GEMOC studio and provides support for TDL, as explained
in Section 2.3.

For the test case selection using mutation analysis, we exploit
WODEL-Test [22], a tool that is also based on EMF technologies.
This tool offers a dedicated DSL that can be used to define sets of
mutation operators for any DSL defined by an Ecore metamodel.
The tool helps in evaluating the coverage of such set for the lan-
guage by providing coverage metrics of the operators w. r .t the
metamodel [21]. Once the operator set is designed, the tool can
systematically apply those operators on initial models, to create sets
of mutants. The tool can also perform mutation analysis, applying
test cases on the sets of mutants, and calculating the mutation score.

Overall, using the provided tool, a domain expert can select an
existing TDL test suite and run the amplification process on it. This
generates two files: one containing the new test cases and another
reporting their mutation analysis results including the initial mutation
score, the final mutation score, the mutants killed by each of them,

Automatic Test Amplification for Executable Models MODELS ’22, October 23–28, 2022, Montreal, QC, Canada

and the mutants that are still alive despite the amplification. The
source code is available on Zenodo repository4.

5 EVALUATION
Next, we evaluate our proposed approach, aiming to answer the
following research questions (RQs):

RQ1 How much genericity is provided by the framework in terms
of the supported xDSLs?

RQ2 To what extent do the generated test cases increase the muta-
tion score of the original, manually-written, test cases?

RQ3 To what extent do the size and the quality of the original test
suites impact the amplification result?

In the following, we describe the experiment setup (Section 5.1),
answer the RQs (Section 5.2) and describe threats to validity of the
experiments (Section 5.3). The evaluation data is also accessible
from the Zenodo repository5.

5.1 Experiment Setup
Setup for RQ1. For the first research question, we intend to eval-

uate the applicability of our approach to two different xDSLs. The
first xDSL is xArduino, already presented in Section 2.2. The sec-
ond is xDSL is xPSSM, an executable DSL for simulating systems
with discrete-event behavior using the Precise Semantics of UML
State Machines (PSSM) standard of the Object Management Group
(OMG) [39]. Table 1 summarizes the size of these two xDSLs by
reporting on the number of classes of their abstract syntax, the num-
ber of Lines of Code (LoC) of their operational semantics, and the
number of events of their behavioral interface.

As our approach relies on mutation analysis, we defined a set of
mutation operators for each xDSL using the WODEL framework [22].
We created 36 operators for xArduino, which only mutate the be-
havior part of the models, ignoring the physical-related concepts.
For xPSSM, we defined 28 mutation operators, based on previous
work on state machine mutation [17, 22, 32, 41, 46]. Overall, the
metamodel footprint [26] of the mutation operators covers 69.56 %
of the xArduino metamodel and 50 % of the xPSSM metamodel.

For each xDSL, we prepared a set of models of different sizes,
summarized in Table 1. Specifically, we manually defined 6 xAr-
duino models with sizes ranging from 18 to 59 objects and 5 xPSSM
models with sizes between 48 and 154 objects. For xPSSM, the
PSSM standard provides a set of UML state machine models, each
one with a small test suite (one test case per model) for asserting that
a given PSSM implementation executes the models in compliance
with the standard [39]. Within this set, we identified a subset of
models and test cases that focus on the event-driven behavior of state
machines, as expected in the xDSLs considered in our approach.
This subset comprises 60 models with sizes between 13 and 69.
Hence, overall we considered a total of 65 xPSSM models (5+60).

Setup for RQ2. The second research question aims to assess the
ability of the proposed approach for improving manually-written
test cases. For this, we manually wrote a set of TDL test cases for
each considered model. Cumulatively, we wrote 22 test cases for the
xArduino models and 216 test cases for the xPSSM models, where

4 https://doi.org/10.5281/zenodo.7007576
5 https://doi.org/10.5281/zenodo.7007576

Table 1: Evaluation Setup

xArduino xPSSM

xDSLs

Abstract syntax size (#EClasses) 59 39

Operational semantics size (LoC) 768 975

Behavioral interface size (#Events) 7 4

#mutation operators 36 28

xModels
&
Tests

Number of tested models 6 65

Size range of xModels (#EObjects) 18-59 13-154

Initial test suite size (#test cases) 22 216

#generated mutants 394 12,087

60 of them were the TDL versions of the test cases provided by the
standard PSSM test suite [39].

As explained in Section 3, our approach relies on mutation analy-
sis to measure the degree of achieved improvement on the test suite
quality. Accordingly, we used the WODEL mutant generator [20]
to apply the defined mutation operators on the considered models.
WODEL generated 394 and 12,087 mutants for the xArduino and the
xPSSM models, respectively.

Setup for RQ3. The third research question aims to investigate
whether the size and the quality of the initial test suite impacts the
amplification result. In this regard, we classified our provided TDL
test suites into 4 categories:

(1) Small Size Medium Quality (SSMQ): having one test case
with mutation score < 80 %

(2) Small Size High Quality (SSHQ): having one test case with
mutation score ≥ 80 %

(3) Medium Size Medium Quality (MSMQ): having more than
one test case with mutation score < 80 %

(4) Medium Size High Quality (MSHQ): having more than one
test case with mutation score ≥ 80 %

The rationale for selecting 80 % as the threshold to classify a test
suite as having medium or high quality is because improving the
mutation score beyond 80 % is time consuming for developers [47].

For every category and xDSL, Table 2 presents the number of
original test cases (column 3), the number of generated mutants
(column 4), the number of mutants killed by the original test cases
(column 5), and the original mutation score (column 6). The provided
numbers are cumulative numbers, and the scores are the average
scores considering all provided models and test suites. It should be
noted that, when possible, we intentionally reduced the mutation
score of a MSHQ test suite to have a new version of it as MSMQ or
SSMQ (i. e. if reducing the mutation score had resulted in keeping
only one test case in the new version of the test suite).

5.2 Evaluation Result
Answering RQ1. The purpose of the first research question is

to assess whether the approach can amplify test cases for various
xDSLs. To answer this question, we used the prototype presented
in Section 4 for the two considered xDSLs, and executed the test
amplification tool on the 71 test suites. For 67 of them, new test

https://doi.org/10.5281/zenodo.7007576
https://doi.org/10.5281/zenodo.7007576

MODELS ’22, October 23–28, 2022, Montreal, QC, Canada Khorram, et al.

Table 2: Evaluation result for amplifying test suites with different sizes and qualities

#
O

ri
g.

te
st

ca
se

s

#
G

en
er

at
ed

m
ut

an
ts

#
K

ill
ed

m
ut

an
ts

by
or

ig
.t

es
tc

as
es

O
ri

g.
m

ut
at

io
n

sc
or

e

#
N

ew
am

pl
.t

es
tc

as
es

#
N

ew
ki

lle
d

m
ut

an
ts

by
am

pl
.t

es
ts

M
ut

at
io

n
sc

or
e

im
pr

ov
em

en
t

R
eg

re
ss

io
n

te
st

su
ite

si
ze

(#
or

ig
.+

#
am

pl
.)

R
eg

re
ss

io
n

te
st

su
ite

gl
ob

al
sc

or
e

(o
ri

g.
+

im
pr

ov
.)

SSMQ
xArduino 4 148 60 44.08% 8 65 42.85% 12 86.93%

xPSSM 43 5,653 4,022 71.99% 101 400 8.69% 144 80.68%

SSHQ
xArduino 1 15 13 86.67% 1 2 13.33% 2 100.00%

xPSSM 18 2,205 1,873 84.38% 36 133 7.13% 54 91.51%

MSMQ
xArduino 2 231 106 45.89% 3 125 54.11% 5 100.00%

xPSSM 44 4,229 3,385 74.23% 55 459 14.26% 99 88.49%

MSHQ
xArduino 6 241 222 91.10% 3 19 8.90% 9 100.00%

xPSSM 156 4,453 4,249 93.28% 47 88 3.17% 203 96.45%

cases were successfully generated—a total of 244—improving their
original mutation score between 3.17 % and 54.11 % on average,
based on the initial setup (detailed results are given shortly after
while answering the next research questions). Therefore, we can
conclude that the approach does provide a certain level of genericity,
i. e. the approach is not solely dedicated to a single specific xDSL,
and can be applied on at least two different ones.

It is also worth mentioning that, to support an additional xDSL
with our test amplification approach, the only additional cost for
the language engineer is to define a set of mutation operators for
the xDSL. These operators are defined once and can be reused for
other purposes, such as test quality measurement [15, 24] and fault
localization based on mutation analysis [53].

Answering RQ2. To answer the second research question, we
must evaluate the degree of improvement provided by the generated
test cases. Figure 8 presents the results for the selected 71 test suites
using bar charts. Figure 8(a) displays the result for the 11 test suites
of manually defined models, that is, 6 xArduino models (A bars)
and 5 xPSSM models (P bars). We have obtained mutation score im-
provements for all test suites, ranging from 4.06 % (P4) to 55.10 %
(A4). Additionally, the final mutation score for 5 test suites (A1-A4
and A6) reaches 100 % after amplification. Figure 8(b) shows the
result for the 60 test suites from the PSSM standard [39]; where
each test suite has only one test case. Except for 4 cases (bars 37, 45,
50 and 53), the mutation score is improved, reaching 100 % for 2
test suites (bars 9 and 47). This also means that, even when starting
from small test suites with just one test case, the approach is able
to provide improvement. These results reveal the success of our
test amplification approach in improving the mutation score of the
models’ test suites. However, the rate of improvement is different
case by case, as we will discuss while answering RQ3.

Answering RQ3. Given a test suite to be amplified, its size (i. e.
number of test cases) and quality (i. e. mutation score) may influence
the level of improvement that our approach provides. The third

research question targets this matter and to answer it, we run the

0.00%

25.00%

50.00%

75.00%

100.00%

A1 A2 A3 A4 A5 A6 P1 P2 P3 P4 P5

mutation score improvement initial mutation score

(a) Mutation score improvement for manually-provided data set

0.00%

25.00%

50.00%

75.00%

100.00%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

mutation score improvement initial mutation score

(b) Mutation score improvement for existing data set

Figure 8: Mutation score improvement by test amplification

Automatic Test Amplification for Executable Models MODELS ’22, October 23–28, 2022, Montreal, QC, Canada

experiment in four different setups. Table 2 lists detailed numbers
related to our experiment. First, we compare the results for the test
suites of the same size but with different qualities (SSMQ vs SSHQ,
and MSMQ vs MSHQ). As can be seen, the number of new test cases
(column 7) and the average improvement (column 9) for high-quality
tests is less than the one of medium-quality tests. This is due to the
fact that high-quality test suites need less improvement. However,
the final mutation score of the regression test suite (last column) –
the sum of the original score and the score improvement – is higher
for high-quality tests. For example, for xArduino, the mutation score
of SSMQ test suites is improved from 44.08 % to 86.93 %, but for
the SSHQ ones, it is improved from 86.67 % to 100 %. Note that
the scores refer to the average score of all considered test suites in
each category. Also for xPSSM, the mutation score for the SSMQ
test suites improves from 71.99 % to 80.68 %, and for the SSHQ
ones from 84.38 % to 91.51 %. This could imply that, when the
original test cases have higher quality, there is more room for test
amplification. By amplifying high-quality tests, it is more probable
to generate new effective test cases.

Second, we compare the results for the test suites with different
sizes but similar qualities (SSMQ vs MSMQ, and SSHQ vs MSHQ).
According to the numbers in the last column, the final mutation
score is higher when the original test suite has more test cases. For
instance, comparing the final mutation score of the xArduino test
suites, for SSMQ is 86.93 % while for MSMQ is 100 %, and for both
SSHQ and MSHQ is 100 %. Likewise, for the xPSSM test suites, the
final mutation score is 80.68 % for SSMQ but 88.49 % for MSMQ,
and 91.51 % for SSHQ but 96.45 % for MSHQ. Therefore, for test
suites with more test cases, it appears that there is more chance to
generate new test cases improving the mutation score. A possible
explanation is that our approach runs the amplification on every test
case of the original test suite, each time by applying all the possible
modifiers to generate as many new test cases as possible. Hence, the
more available initial test cases, the more generated test cases, and
the more chances for improving of the test suite quality.

5.3 Threats to Validity
We listed multiple threats to the validity of our experiment. Although
we tried to apply the approach on two xDSLs from very different
domains, there is still an external threat on the genericity of our
approach. Therefore, we would like to apply our approach on more
xDSLs in the future. Following the same direction, as the granularity
of the behavioral interface of the xDSLs has a direct impact on the
diversity of the test cases, we plan to explore the approach on xDSLs
with more complex behavioral interfaces.

We iterated the amplification process while there is a progress,
meaning that the input for the next iteration is the output of the cur-
rent iteration, i. e. only those new test cases improving the mutation
score (label 4 in Figure 5). Without this test case selection criterion
(i. e. iterating from label 3 of Figure 5), the number of generated test
cases increases exponentially after a few iterations. However, the
non-effective test cases (i. e. test cases not contributing in improving
the mutation score in the current iteration) might become effective
in the next iterations since a combination of several modifiers are
applied on them. It is also worth mentioning that we experimented
the tool for up to 3 iterations while the mutation score is less than

100 % to avoid a huge experimentation time; nonetheless, we may
reach higher mutation scores with more iterations. Hence, the users
of the tool are allowed to change this stop criterion.

For test case modification, we used the modifiers presented in
Section 3.2. Other more complex modifiers could be devised, which
may show more effectiveness in fault localization. We plan to in-
vestigate this in future work, but we have shown that our proposed
modifier set is enough to find effective amplified test cases.

As discussed in Section 3, we assume that a set of mutation oper-
ators has been provided for each considered xDSL. Depending on
the quality of these operators (e. g. their metamodel footprint) the
diversity of the generated mutants would differ, leading to variations
in the effectiveness of the test amplification tool. It would be inter-
esting to consider other test case selection criteria such as increasing
coverage, which is left to our future work.

Usually, amplified test cases must be approved by the developers
who wrote the original test cases. Accordingly, there is a need for a
user-centric evaluation to assess the value of the generated TDL test
cases from the user’s perspective.

6 RELATED WORK
This section provides an overview of related research regarding test
input data modification (Section 6.1), test amplification for regres-
sion testing (Section 6.2) and test case generation for behavioral
models (Section 6.3), identifying the innovations of our approach.

6.1 Test Input Data Modification
Data mutation testing [45] is a method inspired by the classical
mutation testing for generating large test suites from a seed of a
small set of test cases. The difference lies in how and where the
mutation operators are applied. In mutation testing, the mutation
operators are applied to the source code of a program to measure the
adequacy of the test suite. Instead, data mutation applies mutation
operators to the input data for generating test cases.

In the last years, this method has been applied for different pur-
poses [49, 56, 58]. Sun et al. [49] propose a methodology for gener-
ating metamorphic relations. These relations are created by applying
data mutation in the input relation. Then, a combination of constraint
validation and generic mapping rules is used to generate output rela-
tions. Similarly, Zhu [58] introduces JFuzz, an automated framework
for Java unit testing that combines data mutation and metamorphic
testing for deriving and expressing metamorphic relations. Xuan et
al. [56] present a proposal for detecting program failures by repro-
ducing crashes through data mutation. In contrast to the previous
approaches, their work does not focus on generating new test cases,
but on updating the existing ones for triggering crashes on the pro-
gram under study and therefore, finding errors.

Generating input test cases is also essential for fuzzy testing [57],
which consists of generating random input data as a test case, and
monitor the program for crashes or failing assertions. Fuzzers–
the programs generating the inputs–can generate new inputs from
scratch or modify existing ones using data mutation.

Innovation of our approach. Compared to these approaches, our
input modifiers consider both primitive data and event sequences,
where in addition, event parameters are model objects.

MODELS ’22, October 23–28, 2022, Montreal, QC, Canada Khorram, et al.

6.2 Test Amplification for Regression Testing
Several approaches use test amplification for regression testing.
Xie [55] presents a framework for augmenting test suites with regres-
sion oracle checking. This proposal is supported by a tool, called
Orstra, which focuses on asserting the behavior of JUnit test cases.
For this purpose, Orstra amplifies automatically generated test suites
by systematically adding assertions for improving their capability of
avoiding regression faults. DSpot [13] targets the automatic amplifi-
cation of JUnit test cases. It combines input space exploration [50]
with regression oracle generation [55] techniques. The former is ap-
plied for putting the program under test in never explored states, and
the latter aims at generating assertions for those new states. Given a
set of manually-written JUnit test cases, DSpot generates variants
of them which improve the mutation score. On the basis of DSpot,
Abdi et al. [1] propose Small-Amp, an amplification approach for
the Pharo Smalltalk ecosystem. Ebert et al. [13][44] provide a test
amplification tool for Python. To this aim, the authors rely on the
DSpot design, combining with Small-Amp features to alleviate the
shortcomings related to dynamically typed languages.

Assis et al. [14] present an approach for test amplification of cross-
platform applications. For this, the authors use four test patterns that
analyze well-known features of a mobile application. Similarly to
our approach, the test input data is a sequence of events that is
exchanged with the SUT, but their input modifiers are defined using
a set of test patterns specific to mobile applications.

Innovation of our approach. In general, all existing amplification
tools target programs implemented by general-purpose languages
such as Java [13], Pharo Smalltalk [1], and Python [44]. In contrast,
our proposal supports executable models defined by xDSLs.

6.3 Test Case Generation for Behavioral Models
Some researchers have used model-driven engineering (MDE) or
other automated means to generate test cases from modeling artifacts,
most notably from requirement models, use cases, or activity dia-
grams [5, 30, 43, 52]. Most of these efforts follow one of two main
approaches for test case generation: path/coverage analysis [30, 43],
or category partition [43, 52]. The former approach is based on
analyzing all possible paths of behavior in the source model, and
the latter partitions the requirements under test and generates test
cases for combinations of such partitions. Differently from us, these
efforts are specific for models of system functional requirements,
they do not assume an initial set of test cases, and do not propose
any test case improvement technique.

Outside requirements modeling, test case generation for behav-
ioral models has been handled using different methods. For example,
Frolich and Link [18] generate test cases from Statecharts by translat-
ing the Statecharts into a planning problem, and using a planning tool
to find test cases as solutions to the problem. Ahmadi and Hili [3]
present an approach for automatically test components of UML-RT
models with respect to a set of properties defined by state machines,
and apply slicing to reduce the size of the components with respect
to the properties. Rocha et al. [42] generate JUnit test cases from
sequence diagrams via a transformation of the latter into extended
finite state machines. From fUML activity diagrams, Iqbal et al. [25]
generate test cases with input data to cover all executable paths of
the diagrams, together with their expected output. The interested

reader can consult [2] for a recent survey on model-based testing
using activity diagrams, including test case generation. In summary,
test case generation for behavioral models has been tackled in the
literature, but the proposals are normally language-specific, while
our approach aims to be generic. Moreover, these proposals do not
target test amplification (i. e. improving an existing test suite).

Also in the modeling area, some research efforts focus on test
case generation for model transformations, or transformation mod-
els. A test case in this scenario comprises an input model to the
transformation and an oracle function. For example, Giron et al. [19]
use software product lines and input metamodel coverage to gen-
erate a reduced set of test cases for transformations; Guerra and
Soeken [23] use constraint solving to generate test models and partial
oracles from declarative transformation specifications; Al-Azzoni
and Iqbal [4] apply test case prioritization for regression of transfor-
mations based on an analysis of the transformation rules’ coverage;
and Troya et al. [51] infer likely metamorphic relations for ATL
transformations, which can be used for metamorphic testing. In a
similar way as we analyze the test execution traces to derive test
assertions, Troya et al. rely on the traces of the transformation ex-
ecutions to derive the metamorphic relations. However, their goal
(metamorphic testing) and ours (amplification) are different.

Innovation of our approach. Altogether, we find a variety of ap-
proaches for test case generation in the modeling area, but to our
knowledge, ours is the first one targeting test case improvement for
xDSLs. Our test amplification proposal can be used as a complement
to these existing test case generation approaches to improve the
quality of their generated test suites for regression testing.

7 CONCLUSION AND FUTURE WORK
In this paper, we have presented an approach for amplifying test
cases of executable models. The method targets the regression test-
ing of models built using xDSLs, where TDL is used to describe
test cases. The method is generic and applicable to any xDSL. We
propose tool support atop the GEMOC studio and report on an eval-
uation on two different xDSLs that shows the benefits of the method
in terms of the improved effectiveness of the amplified test cases, as
given by the mutation score.

As future work, we would like to expand our tool support. For
example, input modifiers changing event sequences may need to
create dynamic objects following certain criteria. We envision using
search-based techniques, e. g. based on MOMoT [8] for this pur-
pose. Moreover, the whole amplification process could be recast
as a search process, e. g. based on genetic algorithms. This way,
crossover operators for the TDL test cases would need to be de-
fined, input modifiers would be used as mutation operators, and the
fitness function would be driven by mutation score improvement.
We would also like to make explicit and extensible the set of input
modifiers, possibly via a dedicated DSL. Another interesting exten-
sion would be to consider coverage as a criterion for our test case
selector component. With regards to the evaluation, we would like
to expand our experiments to be able to answer other interesting
research questions, such as which are the most effective modifiers,
or which kind of mutants are killed by each used modifier. Finally,
given the promising results obtained so far, we aim at investigating
test case amplification for other purposes than regression testing.

Automatic Test Amplification for Executable Models MODELS ’22, October 23–28, 2022, Montreal, QC, Canada

ACKNOWLEDGMENTS
This project has received funding from the European Union’s Hori-
zon 2020 research and innovation program under the Marie Skłodow-
ska Curie grant agreement No 813884, the Spanish Ministry of Sci-
ence (PID2021-122270OB-I00) and the R&D programme of Madrid
(P2018/TCS-4314).

REFERENCES
[1] Mehrdad Abdi, Henrique Rocha, and Serge Demeyer. 2019. Test amplification in

the pharo smalltalk ecosystem. In Proceedings IWST 2019 International Workshop
on Smalltalk Technologies. ESUG.

[2] Tanwir Ahmad, Junaid Iqbal, Adnan Ashraf, Dragos Truscan, and Ivan Porres.
2019. Model-based testing using UML activity diagrams: A systematic mapping
study. Computer Science Review 33 (2019), 98–112. https://doi.org/10.1016/j.
cosrev.2019.07.001

[3] Reza Ahmadi, Nicolas Hili, and Juergen Dingel. 2018. Property-Aware Unit
Testing of UML-RT Models in the Context of MDE. In Proceedings of the 14th
European Conference on Modelling Foundations and Applications (ECMFA)
(Lecture Notes in Computer Science, Vol. 10890). Springer, 147–163.

[4] Issam Al-Azzoni and Saqib Iqbal. 2021. A Framework for the Regression Testing
of Model-to-Model Transformations. e-Informatica Software Engineering Journal
15, 1 (2021), 65–84.

[5] Sai Chaithra Allala, Juan P. Sotomayor, Dionny Santiago, Tariq M. King, and
Peter J. Clarke. 2019. Towards Transforming User Requirements to Test Cases
Using MDE and NLP. In 43rd IEEE Annual Computer Software and Applications
Conference (COMPSAC). IEEE, 350–355.

[6] J.H. Andrews, L.C. Briand, Y. Labiche, and A.S. Namin. 2006. Using Mutation
Analysis for Assessing and Comparing Testing Coverage Criteria. IEEE Transac-
tions on Software Engineering 32, 8 (2006), 608–624. https://doi.org/10.1109/
TSE.2006.83

[7] Reda Bendraou, Benoit Combemale, Xavier Crégut, and Marie-Pierre Gervais.
2007. Definition of an eXecutable SPEM 2.0. In 14th Asia-Pacific Software
Engineering Conference (APSEC). IEEE Computer Society, Nagoya, Japan, 390–
397. https://hal.archives-ouvertes.fr/hal-00371555

[8] Robert Bill, Martin Fleck, Javier Troya, Tanja Mayerhofer, and Manuel Wimmer.
2019. A local and global tour on MOMoT. Software and Systems Modeling 18, 2
(2019), 1017–1046. https://doi.org/10.1007/s10270-017-0644-3

[9] Erwan Bousse, Thomas Degueule, Didier Vojtisek, Tanja Mayerhofer, Julien
Deantoni, and Benoit Combemale. 2016. Execution framework of the GEMOC
Studio (tool demo). In Proceedings of the 2016 ACM SIGPLAN International
Conference on Software Language Engineering. 84–89.

[10] Pablo C. Cañizares, Pablo Gómez-Abajo, Alberto Núñez, Esther Guerra, and
Juan de Lara. 2021. New ideas: automated engineering of metamorphic testing
environments for domain-specific languages. In SLE ’21: 14th ACM SIGPLAN
International Conference on Software Language Engineering, Chicago, IL, USA,
October 17 - 18, 2021. ACM, 49–54.

[11] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and Anthony
Ventresque. 2016. PIT: A Practical Mutation Testing Tool for Java (Demo). In Inter-
national Symposium on Software Testing and Analysis (ISSTA) (Saarbrücken,
Germany). ACM, 449–452. https://doi.org/10.1145/2931037.2948707 See also
https://pitest.org/quickstart/mutators, https://github.com/hcoles/pitest.

[12] Benjamin Danglot, Oscar Vera-Perez, Zhongxing Yu, Andy Zaidman, Martin
Monperrus, and Benoit Baudry. 2019. A snowballing literature study on test
amplification. Journal of Systems and Software 157 (2019), 110398. https:
//doi.org/10.1016/j.jss.2019.110398

[13] Benjamin Danglot, Oscar Luis Vera-Pérez, Benoit Baudry, and Martin Monperrus.
2019. Automatic Test Improvement with DSpot: a Study with Ten Mature Open-
Source Projects. Empirical Software Engineering 24, 4 (2019), 1–35. https:
//doi.org/10.1007/s10664-019-09692-y

[14] Thiago Botti de Assis, Andre Augusto Menegassi, and André Takeshi Endo. 2019.
Amplifying Tests for Cross-Platform Apps through Test Patterns. In The 31st
International Conference on Software Engineering and Knowledge Engineering,
SEKE 2019, Hotel Tivoli, Lisbon, Portugal, July 10-12, 2019, Angelo Perkusich
(Ed.). KSI Research Inc. and Knowledge Systems Institute Graduate School,
55–74. https://doi.org/10.18293/SEKE2019-076

[15] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. 1978. Hints
on Test Data Selection: Help for the Practicing Programmer. IEEE Computer 11,
4 (1978), 34–41.

[16] Sebastian Erdweg, Tijs van der van der Storm, Markus Voelter, Laurence Tratt,
Remi Bosman, William R. Cook, Albert Gerritsen, Angelo Hulshout, Steven
Kelly, Alex Loh, Gabriël Konat, Pedro J. Molina, Martin Palatnik, Risto Pohjonen,
Eugen Schindler, Klemens Schindler, Riccardo Solmi, Vlad Vergu, Eelco Visser,
Kevin van der van der Vlist, Guido Wachsmuth, and Jimi van der van der Woning.
2015. Evaluating And Comparing Language Workbenches: Existing Results And

Benchmarks For The Future. Computer Languages, Systems and Structures 44,
Part A (2015), 24 – 47. https://doi.org/10.1016/j.cl.2015.08.007

[17] S.C.P.F. Fabbri, J.C. Maldonado, and M.E. Delamaro. 1999. Proteum/FSM: a tool
to support finite state machine validation based on mutation testing. In Proceedings.
SCCC’99 XIX International Conference of the Chilean Computer Science Society.
96–104.

[18] Peter Fröhlich and Johannes Link. 2000. Automated Test Case Generation from
Dynamic Models. In Proceedings of the 14th European Conference on Object-
Oriented Programming (ECOOP) (Lecture Notes in Computer Science, Vol. 1850),
Elisa Bertino (Ed.). Springer, 472–492.

[19] Alexandre A. Giron, Itana Maria de Souza Gimenes, and Edson OliveiraJr. 2018.
Evaluation of Test Case Generation based on a Software Product Line for Model
Transformation. Journal of Computer Science 14, 1 (2018), 108–121. https:
//doi.org/10.3844/jcssp.2018.108.121

[20] Pablo Gómez-Abajo, Esther Guerra, Juan de Lara, and Mercedes G. Merayo.
2018. A tool for domain-independent model mutation. Science of Computer
Programming 163 (2018), 85–92. https://doi.org/10.1016/j.scico.2018.01.008

[21] Pablo Gómez-Abajo, Esther Guerra, Juan de Lara, and Mercedes G. Merayo. 2020.
Systematic Engineering of Mutation Operators. Journal of Object Technology 19,
3 (2020), 3:1–16. https://doi.org/10.5381/jot.2020.19.3.a5

[22] Pablo Gómez-Abajo, Esther Guerra, Juan de Lara, and Mercedes G Merayo. 2021.
Wodel-Test: a model-based framework for language-independent mutation testing.
Software and Systems Modeling 20, 3 (2021), 767–793. https://doi.org/10.1007/
s10270-020-00827-0

[23] Esther Guerra and Mathias Soeken. 2015. Specification-driven model trans-
formation testing. Software and Systems Modeling 14, 2 (2015), 623–644.
https://doi.org/10.1007/s10270-013-0369-x

[24] Richard G. Hamlet. 1977. Testing Programs with the Aid of a Compiler. IEEE
Transactions on Software Engineering 3, 4 (1977), 279–290. https://doi.org/10.
1109/TSE.1977.231145

[25] Junaid Iqbal, Adnan Ashraf, Dragos Truscan, and Ivan Porres. 2019. Exhaustive
Simulation and Test Generation Using fUML Activity Diagrams. In Proceedings of
the 31st International Conference on Advanced Information Systems Engineering
(CAiSE) (Lecture Notes in Computer Science, Vol. 11483). Springer, 96–110.

[26] Cédric Jeanneret, Martin Glinz, and Benoit Baudry. 2011. Estimating footprints of
model operations. In 2011 33rd International Conference on Software Engineering
(ICSE). IEEE, 601–610.

[27] Faezeh Khorram, Erwan Bousse, Jean-Marie Mottu, and Gerson Sunyé. 2021.
Adapting TDL to Provide Testing Support for Executable DSLs. Journal of Object
Technology 20, 3 (2021), 6:1–15.

[28] Faezeh Khorram, Erwan Bousse, Jean-Marie Mottu, and Gerson Sunyé. 2022.
Advanced Testing and Debugging Support for Reactive Executable DSLs. Software
and Systems Modeling (2022). https://hal.archives-ouvertes.fr/hal-03723920

[29] Tomaz Kos, Marjan Mernik, and Tomaz Kosar. 2016. Test automation of a
measurement system using a domain-specific modelling language. Journal of
Systems and Software 111 (2016), 74 – 88.

[30] Stefan Kriebel, Matthias Markthaler, Karin Samira Salman, Timo Greifenberg,
Steffen Hillemacher, Bernhard Rumpe, Christoph Schulze, Andreas Wortmann,
Philipp Orth, and Johannes Richenhagen. 2018. Improving model-based testing
in automotive software engineering. In Proceedings of the 40th International
Conference on Software Engineering: Software Engineering in Practice (ICSE-
SEIP). ACM, 172–180.

[31] Dorian Leroy, Erwan Bousse, Manuel Wimmer, Tanja Mayerhofer, Benoit Combe-
male, and Wieland Schwinger. 2020. Behavioral interfaces for executable DSLs.
Software and Systems Modeling 19, 4 (2020), 1015–1043.

[32] Jin-hua Li, Geng-xin Dai, and Huan-huan Li. 2009. Mutation Analysis for Testing
Finite State Machines. In 2009 Second International Symposium on Electronic
Commerce and Security. 620–624.

[33] Daniel Lübke and Tammo van Lessen. 2017. BPMN-Based Model-Driven Testing
of Service-Based Processes. In Enterprise, Business-Process and Information
Systems Modeling. Springer, 119–133.

[34] Philip Makedonski, Gusztáv Adamis, Martti Käärik, Finn Kristoffersen, Michele
Carignani, Andreas Ulrich, and Jens Grabowski. 2019. Test descriptions with
ETSI TDL. Software Quality Journal 27, 2 (2019), 885–917.

[35] Tanja Mayerhofer and Benoit Combemale. 2018. The Tool Generation Challenge
for Executable Domain-Specific Modeling Languages. In Software Technologies:
Applications and Foundations, Martina Seidl and Steffen Zschaler (Eds.). Springer
International Publishing, Cham, 193–199.

[36] Bart Meyers, Joachim Denil, István Dávid, and Hans Vangheluwe. 2016. Au-
tomated testing support for reactive domain-specific modelling languages. In
Proceedings of the 2016 ACM SIGPLAN International Conference on Software
Language Engineering. Association for Computing Machinery, 181–194.

[37] Stefan Mijatov, Tanja Mayerhofer, Philip Langer, and Gerti Kappel. 2015. Testing
Functional Requirements in UML Activity Diagrams. In Tests and Proofs, Jas-
min Christian Blanchette and Nikolai Kosmatov (Eds.). Springer International
Publishing, Cham, 173–190.

[38] OASIS. 2007. Web Services Business Process Execution Language Version 2.0.

https://doi.org/10.1016/j.cosrev.2019.07.001
https://doi.org/10.1016/j.cosrev.2019.07.001
https://doi.org/10.1109/TSE.2006.83
https://doi.org/10.1109/TSE.2006.83
https://hal.archives-ouvertes.fr/hal-00371555
https://doi.org/10.1007/s10270-017-0644-3
https://doi.org/10.1145/2931037.2948707
https://pitest.org/quickstart/mutators
https://github.com/hcoles/pitest
https://doi.org/10.1016/j.jss.2019.110398
https://doi.org/10.1016/j.jss.2019.110398
https://doi.org/10.1007/s10664-019-09692-y
https://doi.org/10.1007/s10664-019-09692-y
https://doi.org/10.18293/SEKE2019-076
https://doi.org/10.1016/j.cl.2015.08.007
https://doi.org/10.3844/jcssp.2018.108.121
https://doi.org/10.3844/jcssp.2018.108.121
https://doi.org/10.1016/j.scico.2018.01.008
https://doi.org/10.5381/jot.2020.19.3.a5
https://doi.org/10.1007/s10270-020-00827-0
https://doi.org/10.1007/s10270-020-00827-0
https://doi.org/10.1007/s10270-013-0369-x
https://doi.org/10.1109/TSE.1977.231145
https://doi.org/10.1109/TSE.1977.231145
https://hal.archives-ouvertes.fr/hal-03723920

MODELS ’22, October 23–28, 2022, Montreal, QC, Canada Khorram, et al.

[39] Object Management Group (OMG). 2019. Precise Semantics of UML State
Machines. https://www.omg.org/spec/PSSM/1.0/About-PSSM/. (last accessed in
April 2022).

[40] Object Management Group (OMG). 2021. Semantics of a Foundational Subset
for Executable UML Models. https://www.omg.org/spec/FUML/. (last accessed
in April 2022).

[41] S.C. Pinto Ferraz Fabbri, M.E. Delamaro, J.C. Maldonado, and P.C. Masiero. 1994.
Mutation analysis testing for finite state machines. In Proceedings of 1994 IEEE
International Symposium on Software Reliability Engineering. 220–229.

[42] Mauricio Rocha, Adenilso Simão, and Thiago Sousa. 2021. Model-based test case
generation from UML sequence diagrams using extended finite state machines.
Software Quality Journal 29, 3 (2021), 597–627. https://doi.org/10.1007/s11219-
020-09531-0

[43] Javier Jesus Gutiérrez Rodriguez, María José Escalona Cuaresma, and
Manuel Mejías Risoto. 2015. A Model-Driven approach for functional test
case generation. Journal of Systems and Software 109 (2015), 214–228. https:
//doi.org/10.1016/j.jss.2015.08.001

[44] Ebert Schoofs, Mehrdad Abdi, and Serge Demeyer. 2021. AmPyfier: Test
Amplification in Python. CoRR abs/2112.11155 (2021). arXiv:2112.11155
https://arxiv.org/abs/2112.11155

[45] Lijun Shan and Hong Zhu. 2009. Generating Structurally Complex Test Cases By
Data Mutation: A Case Study Of Testing An Automated Modelling Tool. Comput.
J. 52, 5 (2009), 571–588. https://doi.org/10.1093/comjnl/bxm043

[46] Faezeh Siavashi, Dragos Truscan, and Jüri Vain. 2018. Vulnerability Assessment
of Web Services with Model-Based Mutation Testing. In 2018 IEEE International
Conference on Software Quality, Reliability and Security (QRS). 301–312.

[47] Ben H Smith and Laurie Williams. 2009. On guiding the augmentation of an
automated test suite via mutation analysis. Empirical software engineering 14, 3
(2009), 341–369.

[48] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. 2008. EMF:
eclipse modeling framework. Pearson Education.

[49] Chang-ai Sun, Yiqiang Liu, Zuoyi Wang, and W. K. Chan. 2016. μMT: A Data
Mutation Directed Metamorphic Relation Acquisition Methodology. In Proceed-
ings of the 1st International Workshop on Metamorphic Testing (Austin, Texas)
(MET ’16). Association for Computing Machinery, New York, NY, USA, 12–18.

https://doi.org/10.1145/2896971.2896974
[50] Paolo Tonella. 2004. Evolutionary Testing of Classes. In Proceedings of the

2004 ACM SIGSOFT International Symposium on Software Testing and Analysis
(Boston, Massachusetts, USA) (ISSTA ’04). Association for Computing Machinery,
New York, NY, USA, 119–128. https://doi.org/10.1145/1007512.1007528

[51] Javier Troya, Sergio Segura, and Antonio Ruiz Cortés. 2018. Automated inference
of likely metamorphic relations for model transformations. Journal of Systems
and Software 136 (2018), 188–208. https://doi.org/10.1016/j.jss.2017.05.043

[52] Marlon Vieira, Johanne Leduc, William M. Hasling, Rajesh Subramanyan, and
Jürgen Kazmeier. 2006. Automation of GUI Testing Using a Model-driven Ap-
proach. In Proceedings of the 2006 International Workshop on Automation of
Software Test (AST). ACM, 9–14.

[53] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
survey on software fault localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707–740.

[54] Hui Wu, Jeff Gray, and Marjan Mernik. 2009. Unit Testing for Domain-Specific
Languages. In Domain-Specific Languages, Walid Mohamed Taha (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 125–147.

[55] Tao Xie. 2006. Augmenting Automatically Generated Unit-Test Suites with
Regression Oracle Checking. In ECOOP 2006 - Object-Oriented Programming,
20th European Conference, Nantes, France, July 3-7, 2006, Proceedings (Lecture
Notes in Computer Science, Vol. 4067), Dave Thomas (Ed.). Springer, 380–403.
https://doi.org/10.1007/11785477_23

[56] Jifeng Xuan, Xiaoyuan Xie, and Martin Monperrus. 2015. Crash Reproduction
via Test Case Mutation: Let Existing Test Cases Help. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering (Bergamo, Italy)
(ESEC/FSE 2015). Association for Computing Machinery, New York, NY, USA,
910–913. https://doi.org/10.1145/2786805.2803206

[57] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian
Holler. 2021. The Fuzzing Book. CISPA Helmholtz Center for Information
Security. https://www.fuzzingbook.org/ Retrieved 2021-10-26 15:30:20+02:00.

[58] Hong Zhu. 2015. JFuzz: A Tool for Automated Java Unit Testing Based on
Data Mutation and Metamorphic Testing Methods. In 2015 Second International
Conference on Trustworthy Systems and Their Applications. 8–15. https://doi.org/
10.1109/TSA.2015.13

https://www.omg.org/spec/PSSM/1.0/About-PSSM/
https://www.omg.org/spec/FUML/
https://doi.org/10.1007/s11219-020-09531-0
https://doi.org/10.1007/s11219-020-09531-0
https://doi.org/10.1016/j.jss.2015.08.001
https://doi.org/10.1016/j.jss.2015.08.001
https://arxiv.org/abs/2112.11155
https://arxiv.org/abs/2112.11155
https://doi.org/10.1093/comjnl/bxm043
https://doi.org/10.1145/2896971.2896974
https://doi.org/10.1145/1007512.1007528
https://doi.org/10.1016/j.jss.2017.05.043
https://doi.org/10.1007/11785477_23
https://doi.org/10.1145/2786805.2803206
https://www.fuzzingbook.org/
https://doi.org/10.1109/TSA.2015.13
https://doi.org/10.1109/TSA.2015.13

	Abstract
	1 Introduction
	2 Background
	2.1 Running Example: Arduino
	2.2 Executable DSL (xDSL)
	2.3 Testing Support for xDSLs
	2.4 Test Amplification
	2.5 Motivation and Objectives

	3 Approach
	3.1 Overview
	3.2 Test Case Modification
	3.3 Assertion Generation
	3.4 Test Case Selection

	4 Tool Support
	5 Evaluation
	5.1 Experiment Setup
	5.2 Evaluation Result
	5.3 Threats to Validity

	6 Related Work
	6.1 Test Input Data Modification
	6.2 Test Amplification for Regression Testing
	6.3 Test Case Generation for Behavioral Models

	7 Conclusion and Future Work
	Acknowledgments
	References

