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Bayesian games offer a suitable framework for games where the utility degrees are additive in 
essence. This approach does nevertheless not apply to ordinal games, where the utility degrees do 
not capture more than a ranking, nor to situations of decision under qualitative uncertainty. The 
present paper proposes a representation framework for ordinal games under possibilistic incomplete 
information and extends the fundamental notions of pure and mixed Nash equilibrium to this 
framework. We show that deciding whether a pure Nash equilibrium exists is a difficult task (NP-
hard) and propose a Mixed Integer Linear Programming (MILP) encoding of the problem; as to the 
problem of computing a possibilistic mixed equilibrium, we show that it can be solved in 
polynomial time. An experimental study based on the GAMUT game generator confirms the 
feasibility of the approach.

1. Introduction

Game theory [1,2] proposes a simple but powerful framework to capture decision problems involving several agents: in 
a game with complete information, each agent (or “player”) chooses an action among a set of possible actions, and the final 
outcome depends on the actions chosen by all the players.

The preferences of the players among the outcomes are captured by utility functions. The term “payoff” is often used 
to designate their utility levels- this terminology targets problems where the satisfaction can be expressed on a cardinal, 
additive, scale, typically a monetary scale. But there are situations where the assumption of cardinality can be questioned, 
hence the development of ordinal games (see, e.g., [3–6]). Such ordinal approaches cohere with many fundamental notions 
of game theory which are basically ordinal notions: the notions of pure Nash equilibrium, secure strategy, dominance, for 
instance, do not require the utilities to be cardinal payoffs.

A cardinal notion is invoked in two cases at least: (i) when the game is repeated (and outcomes are “collected” and 
their utilities are additive and can compensate each other), and (ii) when the outcomes depend on a probabilistic event (for 
example, in the prisoner’s dilemma if the verdict does not only depend on the confession of the prisoners, but also on the 
uncertain result of the trial). To capture such situations, Bayesian games have been proposed by Harsanyi [7]. In these games, 
the players’ knowledge about the game is assumed to be probabilistic. This approach does not apply to ordinal games, where 
the utility degrees capture no more than a ranking, nor to situations of decision under qualitative uncertainty. Following the 



seminal work of [8] on possibilistic Boolean games, we propose to use possibility theory [9] to model qualitative uncertainty 
in ordinal games since it offers a natural and flexible model to represent and handle uncertainty information, especially 
qualitative uncertainty, and total ignorance. Unlike [8], we do not develop a complex representation language. We stay at 
the semantic level and work out the idea of possibilistic games, extending the notion of pure Nash equilibrium, (possibilistic) 
mixed Nash equilibrium to such games.

The paper1 is organized as follows: Section 2 presents the basic notions on which the paper relies, namely possibility 
theory on the one hand, and ordinal game theory on the other hand. Section 3 proposes a possibilistic model for ordinal 
games with incomplete information, including the definition of pure and mixed equilibria. Section 4 is devoted to the search 
of such strategies - we show that deciding the existence of a pure equilibrium is a NP-complete problem and propose a 
Mixed Integer Linear Programming (MILP) formulation of this problem; as to mixed equilibrium strategies, we show that 
their computation is tractable and provide a polytime algorithm. Finally, experiments are reported in Section 5.

2. Background

2.1. Possibility theory

The basic building block in possibility theory [9] is the notion of possibility distribution. A possibility distribution π is a 
mapping from a set of states S to an ordered scale � (in the remaining, we consider that � is a subset of [0, 1], but any 
ordered scale with lowest and greatest elements and order-reversing function may be used). π(s) = 1 means that state s is 
totally plausible, π(s) = 0 means that s is impossible and π(s) > π(s′) means that s is more plausible than s′ . π is assumed 
to be normalized, i.e. there is at least one totally possible state (∃s, π(s) = 1).

From π , one can compute the possibility �(E) and the necessity N(E) of any event E ⊆ S: �(E) = max
s∈E

π(s) evaluates 

to what extent E is consistent with the knowledge represented by π while N(E) = 1 − �(Ē) = 1 − max
s/∈E

π(s) corresponds 

to the extent to which Ē is inconsistent and thus evaluates at which level E is implied by the knowledge.

Considering qualitative (possibilistic) problems of decision under uncertainty, where each decision is evaluated by a 
utility function μ : S �→ �, [11,12] have proposed two dual utilities measures:

U pes(π) = min
s∈S

max(1− π(s),μ(s)). (1)

Uopt(π) = max
s∈S

min(π(s),μ(s)). (2)

The so-called pessimistic qualitative utility, U pes , generalizes the Wald criterion and estimates to what extent it is certain 
(i.e., necessary according to measure N) that μ reaches a good utility while the optimistic qualitative utility, Uopt , estimates 
to what extent it is possible that μ reaches a good utility. Uopt is rather unnatural (too adventurous), while U pes conve-

niently models the behavior of uncertainty adverse decision-makers (see [11,12] for more details). As many other models, 
this model makes a commensurability assumption between the utility levels and the levels of likelihood. This assumption 
is common to all the models which consider that the agent’s preference relation is complete and transitive (this is the case 
in many models, be they qualitative or quantitative: expected utility [13,1], multi-prior non expected utility [14], Sugeno 
integrals [15], etc.).

In the following, we shall also use the notion of conditional possibility measure proposed by [16,17] in order to stay in 
a purely ordinal framework.2 Formally, for any events E and F ⊆ S the possibility of E given F is defined by:

�(E|F ) =
{
1 if �(E ∩ F ) = �(F )

�(E ∩ F ) otherwise.
(3)

This means that the event E is totally possible, knowing that F occurred, if at least one of the most plausible states 
making F true also makes E true. Otherwise, �(E|F ) is the possibility degree of the most plausible state making both E
and F true.

2.2. Normal form games, ordinal games and possibilistic mixed equilibria

A standard normal form game (SNF) is classically defined as follows [1]:

Definition 1 (Standard normal form game). A standard normal form game is a triple G = 〈N, A, μ〉, where:

• N = {1, . . . , n} is a finite set of players;

1 This paper is an extended version of [10]. It presents additional notions e.g. possibilistic mixed equilibrium and provide equilibria computation algo-
rithms. It also includes an experimental study.
2 For a discussion about the alternative definitions of conditional possibilities, see [18].



Table 1
The landlord-tenant SNF game.

Landlord

C C

Tenant
P 1 , 1 0 , 0.25

P 0.25 , 0 0 , 0.75

• A = ×i∈N Ai , where Ai is a finite set of actions available to player i ∈ N;

• μ = {(μi)i∈N } is a set of utility functions μi on A.

In cardinal games, the utility function of a player associates a payoff, that takes its values in a subset of R, to every joint
action a ∈ A - this suits problems where the satisfaction can be expressed on an additive scale, typically a monetary scale. 
But, as mentioned above, there are instances where the assumption of additivity can be questioned, hence the development 
of ordinal games (see, e.g., [3–6]). In such games, the utility functions range in a totally ordered scale � (the higher μi(a), 
more satisfied player i) - no other assumption is made than � being totally ordered.

Example (The landlord and tenant game). A landlord L can lend a house to a tenant T . She can Confirm (C) or not (C), i.e., 
AL = {C, C} and the tenant can Pay the landlord (P ) or not (P ), i.e., AT = {P , P }. In this example we consider the utility 
scale � = {0, 0.25, 0.5, 0.75, 1} (such that 0 means: “completely dissatisfied”, 1: “completely satisfied”, 0.5: “neutral”, 0.25: 
“dissatisfied” and 0.75: “satisfied”.). For instance, the tenant is completely satisfied, i.e., she gets a utility equal to 1, if she 
pays the rent and the landlord confirms. The utilities of both players are given in Table 1.

A joint (pure) strategy is a vector a = (a1, . . . , ai, . . . , an) ∈ A. In the following for any action a ∈ A, we will denote 
a−i = (a1, . . . , ai−1, ai+1, . . . , an) ∈ A−i = × j �=i A j its restriction to all the players but i and denote “.” the concatenation (e.g., 
∀(a′

i, a−i), a′
i .a−i = (a1, . . . , ai−1, a′

i, ai+1, . . . , an)).
When a player i knows the strategy a−i of the other players, the principle of rationality leads her to choose an action 

that maximizes her utility. Such actions are called the “Best responses” of i to a−i . Formally:

Definition 2 (Best response). For any game G = 〈N, A, μ〉, an action ai ∈ Ai is a best response of player i to a−i , iff ∀a′
i ∈ Ai :

μi(ai .a−i) ≥ μi(a
′
i .a−i). (4)

Note that the best response of player i to a−i is not necessarily unique.
Generally each player responds in the best way when knowing the other players’ actions. A joint strategy where each 

player responds best to the actions of the other players is a pure Nash equilibrium [19]. In other terms, a joint strategy a∗ is 
a pure Nash equilibrium (PNE) iff no player can improve her utility by unilaterally modifying her strategy:

Definition 3 (Pure Nash equilibrium). For any game G = 〈N, A, μ〉, the strategy profile a∗ ∈ A is a pure Nash equilibrium 
(PNE), iff ∀i ∈ N, ∀a′

i ∈ Ai :

μi(a
∗
i .a

∗
−i) ≥ μi(a

′
i .a

∗
−i). (5)

It is easily checked that the above definition is equivalent to writing that, in a pure Nash equilibrium, all players choose 
their best response to other players’ best responses.

Example. In the landlord-tenant game (Table 1), the best response of the landlord when the tenant pays the rent (plays 
P ) is C , indeed: μL(P .C) = 1 ≥ μL(P .C) = 0.5. On the other hand, the best response of the tenant to the landlord who 
confirms is P , since μT (P .C) = 1 > μT (P .C) = 0.25

So, in situation (P , C) the tenant has no incentive to deviate from P and the landlord has no interest to move from C to 
C : (P , C) is a pure Nash equilibrium.

Notice that the notion of pure Nash equilibrium is purely ordinal - nothing more sophisticated than an ordinal ranking of 
the outcomes is needed. The notion of (possibilistic) mixed strategy proposed in [20,21,6] remains in the ordinal framework. 
A possibilistic mixed strategy for a player i is indeed a normalized distribution υi : Ai �→ �, that is a ranking on her set of 
actions. This ranking has a dual interpretation in terms of preference on the one hand and likelihood on the other hand. 
Indeed, for player i distribution υi models the ranking in terms of preference or commitment. Under this interpretation, 
υi(ai) = 1 means that action ai is fully satisfactory/conceivable to player i, while υi(ai) = 0 means that it is absolutely not 
an option for her.

However, the other players may interpret the preference ranking υi as a likelihood. Assuming that player i is rational, 
υi(ai) = 1 is interpreted, by other players, as “action ai is a completely plausible play of player i” while υi(ai) = 0 means 
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that ai is an impossible play of player i. This dual preference/likelihood interpretation is natural in game theory: according 
to the other players, the most preferred alternatives of player i should be the most likely to be played by player i.

The joint non-correlated strategy (υ1, . . . , υn) defines a possibility distribution over the action profiles. Since the joint 
action a = (a1, . . . , an) is played iff each player i plays action ai , the possibility that a is played is computed in a conjunctive 
way, i.e., as the minimum of the υi(ai):

∀a = (a1, . . . ,an) ∈ A,υ(a) = min
i∈N

υi(ai). (6)

By abuse of notation υ designates both the above joint possibility distribution and the list (υ1, . . . , υn) of individual 
players’ possibility distributions. Notice that υ is normalized since all the υi are assumed to be normalized: there exists 
a∗ = (a∗

1, . . . , a
∗
n) such that υ(a∗) = 1.

Following [6] the players evaluate the merit of a strategy by its pessimistic utility:

U
pes
i (υ) = min

a∈A
max(1− υ(a),μi(a)). (7)

A possibilistic mixed strategy is a mixed equilibrium if no player has an incentive to deviate from her υi - hence the 
following definition:

Definition 4 (Possibilistic mixed equilibrium). υ∗ = (υ∗
1 , . . . , υ∗

n ) is a possibilistic mixed equilibrium (�ME) in G = 〈N, A, μ〉
iff, ∀i ∈ N , ∀υ ′

i on Ai :

U
pes
i (υ∗

i .υ∗
−i) ≥ U

pes
i (υ ′

i .υ
∗
−i). (8)

[6] have shown that an ordinal game always admits at least one mixed equilibrium - and generally admits a full range
of more or less specific mixed equilibria. They put the emphasis on the least specific of them, claiming that, as soon as a 
player plays one of her best response (and there may be several sharing the same level of pessimistic utility), the responses 
which lead to the least commitment are preferable for her. Formally:

Definition 5 (Specificity relation). Given two possibility distributions υ and υ ′ over some set A, υ is more specific than υ ′ , 
denoted by υ ≺ υ ′ iff (i) ∀a ∈ A, υ(a) ≤ υ ′(a) and (ii) ∃a ∈ A, υ(a) < υ ′(a).

Definition 6 (Least-specific possibilistic mixed equilibrium). υ∗ = (υ∗
1 , . . . , υ∗

n ) is a least-specific possibilistic mixed equilibrium 
for G = 〈N, A, μ〉 iff υ∗ is a �ME for G and there exists no �ME υ , s.t. υ∗ ≺ υ .

Example. Let υ = (υT .υL) be the possibilistic mixed strategy defined by:

υT (P ) = 1, υT (P ) = 1, υL(C) = 0.75, υL(C) = 1

The utilities of both players for υ are μpes
T (υ) = 0 and μpes

L (υ) = 0.25.

υ is a �ME since:

• ∀υ ′ �= υ: U pes
T (υ ′

T .υL) ≤ U
pes
T (υT .υL) = 0;

• ∀υ ′ �= υ: U pes
L (υ ′

L .υT ) ≤ U
pes
L (υL .υT ) = 0.25.

It can be shown that υ is a least-specific �ME. Indeed, one can check that U pes
T (υ) ≤ max(1 − υT ( P̄ ), 1 − υL(C), μT ( P̄ ,

C)). So, since 1 −υP ( P̄ ) = 0 < μT ( P̄ , C) = 0.25 ≤ 1 −υL(C) = 0.25, U pes
T (υ) ≤ 1 −υL(C). Then, if we increase υL(C) so as to

get a less specific mixed strategy (for player L), we decrease the utility of L. On the other hand, the mixed strategy of player 
T is already the least-specific possible. υ is thus a least-specific �ME .

3. Possibilistic games with incomplete information

The classical framework of games under complete information assumes that every player knows everything about the
game: the players, the actions available to all players, all their utilities, etc. What is not known by a player are the decisions 
of the other ones, but the game itself is assumed to be perfectly known by everyone (hence the name “perfect information”).

This assumption cannot always be satisfied. In the real world indeed, players are not so well informed, and the knowledge 
about the game is often incomplete. For instance, if we consider the classical battle of sexes example, a person who has 
doubts about the faithfulness of his/her partner has some uncertainty about his/her priorities (being together or missing the 
date).

Bayesian games [7] offer a suitable framework for cardinal games under incomplete knowledge. In these games, the 
players’ knowledge about the game is assumed to be probabilistic. This probabilistic knowledge is common to all the players, 
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but each player may receive some private information, her personal view of the game: Bayes’ rule of conditioning is used 
to derive the knowledge of each player, hence the denomination “Bayesian” game.

Bayesian games assume that the utility degrees are additive in essence and that the knowledge of the players can be 
quantified in a probabilistic way. This kind of approach does not apply to ordinal games, where the utility degrees do not 
capture more than a ranking, nor to situations of decision under qualitative uncertainty. We propose in the following a 
model for (ordinal) games under possibilistic information.

3.1. Possibilistic games with incomplete information: the framework

Following Harsanyi’s seminal work [7], a game with incomplete information can be first understood as a set S of states 
of nature, each state corresponding to a classical game. The utility μi of a player i does not depend only on the actions of 
the other players but also on the game played, i.e., the actual state. Originally, none of the players knows which is the real 
state, but all of them share a common knowledge about it. Just before playing, each player i will receive some information 
τi(s) about the real state, i.e., τi maps any s ∈ S to an element θi ∈ �i called the set of “types” of player i. After having 
observed τi(s), player i knows more about the game played, but several games may still remain plausible. The player thus 
conditions her knowledge on τi(s).

The set of possible types of player i, �i , can be considered as a local state space and � = �1 × · · · × �n as the global 
state space.3 The idea of Harsanyi when defining types was that a player’s local state can encapsulate all the information to 
which the player has access: it contains not only the status of the external world that the player has observed but also her 
introspective mental state.4 Harsanyi shows that any game under incomplete information can be described on the space of 
types (underlying worlds are omitted).

Now, in such a game, the action of a player i only depends on the information θi ∈ �i she receives. A joint pure strategy 
σ = (σ1, . . . , σn) is thus a vector of functions σi that map possible information (each type θi ∈ �i) to an action in Ai : σi(θi)

specifies the action that player i will execute when receiving the private information θi .

Definition 7 (Pure strategy). A pure strategy is a vector σ = (σ1, . . . , σn) of functions σi : �i → Ai .

Given a pure strategy σ and a configuration of the players’ types θ ∈ �, σ(θ) = (σ1(θ1), . . . , σn(θn)) denotes the joint 
action (the element of A) prescribed by strategy σ when θ occurs. In the following, 
i denotes the set of all functions from 
�i to Ai and 
 = 
1 × · · · × 
n the set of all joint strategies.

We follow Harsanyi’s approach based on types and define a possibilistic game with incomplete information as follows:

Definition 8 (�-game). A possibilistic game with incomplete information (�-game) G is a tuple 〈N, A, �, π, μ〉 where:

• N is a finite set of n players {1, ..., n};
• A = ×i∈N Ai where Ai is the set of actions of player i;
• � = ×i∈N�i , where �i is the set of types of player i;
• π : � → � is a joint normalized possibility distribution over �;

• μ = {(μi)i∈N } where μi : A × � → � is the utility function of player i.

Possibility distribution π captures the common knowledge of the players. The information that the players have about
the real world corresponds to a θ ∈ � but is not common: player i does not know θ , but only θi (θi is the private knowledge 
of player i). π(.|θi) captures the knowledge that player i has when learning θi . On the other hand, utility μi(a, θ) (utility of 
the joint action a for player i when learning θ ) will be obtained once all players have learned their types and played their 
actions - that is why μi depends on the whole θ and not only on θi .

A �-game G can be equivalently defined as a set of |�| normal form games with the same set of players N and the 
same set of actions A. More precisely, for each θ ∈ �, there is a normal form game Gθ = 〈N, A, {μθ

i }i∈N 〉 where ∀i ∈ N:

μθ
i (.) = μi(., θ) and π(Gθ ) = max

θ ′∈�, s.t., Gθ ′=Gθ

π(θ ′). (9)

Example (The landlord and tenant �-game). We consider a �-game variant version of the landlord and tenant game intro-
duced in Section 2. In this extension of the complete information game, the tenant can be honest (H) or dishonest (D), i.e., 
�T = {H, D}. The landlord does not know the type of the tenant but makes investigations and can conclude the tenant is 
honest (I H) or dishonest (I D), i.e., �L = {I H, I D}. Generally, the tenant is honest and the landlord is informed about this. 

3 We use the same notations for the projection and concatenation of vectors as the ones used in the previous sections: for any θ = (θ1, . . . , θi , . . . , θn) ∈ �, 
θi is the type of i in θ and θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn); ∀ θ, θ ′ ∈ �, θ ′

i .θ−i belongs to �). Likewise �−i = × j �=i� j .
4 See [22–26] for the links between belief states and types, and more generally for further developments about epistemic game theory. This kind of

interpretation also complies with the run-based semantics of epistemic logic [27].
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Table 2
A landlord-tenant �-game with 4 types combinations.

landlord
I H ID

t

e

n

a

n

t

H

C C C C

P 1 , 1 0 , 0.5 P 1 , 1 0 , 0.5

P 0.25 , 0 0 , 0.5 P 0.25 , 0.25 0 , 0.5

π(H, I H) = 1 π(H, I D) = 0.25

D

C C C C

P 0.25 , 1 0.25 , 0.5 P 0.25 , 1 0.25 , 0.5

P 1 , 0 0.25 , 0.5 P 1 , 0.25 0.25 , 0.5

π(D, I H) = 0.5 π(D, I D) = 0.75

But the tenant may be dishonest and the landlord well informed. There is a low possibility that the landlord is informed 
that the tenant is honest while it is not the case. Finally, it cannot be excluded that the landlord is informed that the tenant 
is dishonest while she is honest. This knowledge is captured by the following possibility distribution π :

π(H, I H) = 1, π(D, I D) = 0.75, π(D, I H) = 0.5, π(H, I D) = 0.25.

The projections of π on �T and �L lead to:

π(H) = 1, π(D) = 0.75, π(I H) = 1, π(I D) = 0.75.

As to the utility degrees, scale � is used with the same meaning as previously. When the landlord does not confirm to rent, 
the utility of the tenant is equal to 0 if honest and equal to 0.25 if dishonest. When the landlord confirms, the tenant’s 
utility of P (resp. P ) is equal to 1 (resp. 0.25) when she is dishonest and equal to 0.25 (resp. 1) when she is honest. The 
utility of the landlord is neutral (0.5) when not confirming. When confirming, the landlord’s utility is high (1) when the 
tenant pays, low when she does not pay (0 if the landlord believes that the tenant is honest, 0.25 otherwise).

There are four combinations of types, and thus four possible games (see Table 2) the possibility degrees of which are:

π(GH,I H ) = π(H, I H) = 1, π(GH,I D) = π(H, I D) = 0.25,

π(GD,I H ) = π(D, I H) = 0.5, π(GD,I D) = π(D, I D) = 0.75.

Clearly, �-games properly generalize classical games (with complete information). Indeed:

Proposition 1. Any classical normal form game G = 〈N, A, μ〉 is a �-game with |�i| = 1, ∀i ∈ N.

�-games and Boolean games with incomplete information �-games can be related to the framework proposed by [8] as

a semantics for possibilistic Boolean games where the prior knowledge of each player i can be captured by a distinct
possibility distribution πi (the knowledge is not common in [8]) and the players do not receive any private information

(there is no type). In [8] the knowledge of each player i is captured by a possibility distribution πi . Then the authors
assume, mainly for simplicity and because of the ordinal nature of the πi , that the fusion of the πi ’s leads to a unique
distribution. π = min

i∈N
πi over the joint types of players. The possibility and the necessity of a given profile of actions being

a PNE is then computed. The approach of [8] considers the problem from the external point of view of an observer who 
proceeds to the fusion of these distributions and deduces a unique possibility distribution over the types of the players. The 
likelihood of an equilibrium is computed ex-ante, on the basis of this prior possibility distribution.

Adapting these notions to �-games, where the prior knowledge is common, we can compute, for any profile a of actions:

�(a is a PNE) = max
θ,a is PNE for Gθ

π(θ). (10)

N(a is a PNE) = 1− max
θ,a is not a PNE for Gθ

π(θ). (11)

The concepts proposed in [8] are based on the definition of strategies as profiles of actions - each agent selects one and 
only one action. This assumes that no more information about θ can be acquired and thus that each player computes her 
ex-ante utility.

The notion of type present in our framework allows to handle the knowledge that each player i has when receiving some 
private information θi , i.e., adopt an ex-interim point of view.5 Then, the possibility (resp. necessity) that a is a NE can be 
different between players - in our ex-interim framework, equations (10) and (11) are replaced by:

5 For a discussion of the merits of the ex-ante, ex-interim and ex-post approaches of incomplete information games, see [7,28].
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�i(a is a PNE|θi) = min
θ−i ,a is a PNE for Gθi .θ−i

π(θ−i|θi).
Ni(a is a PNE|θi) = 1− max

θ−i ,a is not a PNE for Gθi .θ−i

π(θ−i|θi).

3.2. Nash equilibria in possibilistic games

When making her decision on the basis of the information she receives (θi ), the knowledge of player i becomes π(.|θi)
- player i then defines her strategy for θi , according to this posterior knowledge. Let us first consider pure strategies - the

case of mixed possibilistic strategies will be developed later.

Pure Nash equilibrium in �-games As in any incomplete information game, a pure strategy σ specifies an action for each 
player i for each θi . Using possibilistic qualitative decision theory, the utility of σ(θi) is evaluated by its possibilistic pes-
simistic utility (we assume that the player is cautious).

Definition 9 (Utility of an action, Utility of a pure strategy). The utility of player i ∈ N of type θi ∈ �i for an action ai ∈ Ai in 
the context of σ−i is:

U
pes
i (ai,σ−i, θi) = min

θ−i∈�−i

max
(
1− π(θ−i|θi),μi

(
ai .σ−i(θ−i), θi .θ−i

))
. (12)

The utility of the pure strategy σ ∈ 
 to player i ∈ N of type θi ∈ �i is:

U
pes
i (σ , θi) = U

pes
i

(
σi(θi),σ−i, θi

)
. (13)

Note that U pes
i (σi(θi), σ−i, θi) is independent of the choices of player i when her type is different from θi .

A best response for player i of type θi is computed knowing the provisional strategies of the other players, i.e., knowing 
σ−i . This is the action ai which maximizes U pes

i (ai, σ−i, θi).

Definition 10 (Best response in a �-game). The best response of player i ∈ N of type θi ∈ �i to σ−i in G = 〈N, A, �, π, μ〉 is:

BRi(σ−i, θi) = argmax
ai∈Ai

U
pes
i (ai,σ−i, θi). (14)

σ is a PNE when no player i has interest to deviate from σi(θi) for some θi , given π(.|θi) and σ−i , i.e., every player plays 
her best response to the other players’ best strategies.

Definition 11 (Pure Nash Equilibrium in a �-game). σ is a pure Nash equilibrium (PNE) in G = 〈N, A, �, π, μ〉 iff: ∀i ∈ N, ∀θi ∈
�i, ∀a′

i ∈ Ai :

U
pes
i (σi(θi),σ−i, θi) ≥ U

pes
i (a′

i,σ−i, θi). (15)

This definition is consistent with the case of complete information (Definition 3), which is recovered when |�| = 1

(only one possible type per player). As a consequence, a pure Nash equilibrium may not exist for a �-game (a complete 
information game does not always admit a PNE).

Example. Let us first compute the conditional possibility distributions:

π(H|I H) = π(I H|H) = 1, π(D|I H) = π(I H|D) = 0.5,

π(H|I D) = π(I D|H) = 0.25, π(D|I D) = π(I D|D) = 1.

For instance, when the landlord learns that the tenant is honest, i.e., when the landlord is of type I H , the most plausible 
type for the tenant is H .

Consider the joint strategy where the tenant pays if she is honest, and does not pay otherwise, and the landlord confirms 
iff learning that the tenant is honest:

σ ∗
T (H) = P , σ ∗

T (D) = P , σ ∗
L (I H) = C, σ ∗

L (I D) = C .

We have, U pes
T (P , σ ∗

L , H) = 0.75 and U pes
T (P , σ ∗

L , H) = 0.25. Hence, the best response to σ ∗
L for the honest tenant is P .

It can be checked that strategy σ ∗ is a PNE. Indeed, as we have seen, the best response of the honest tenant to strategy 
σL

∗ is to pay. Moreover, the dishonest tenant is indifferent between P and P (U T
pes

(P , σL
∗, D) = U T

pes
(P , σL

∗, D) = 0.25); the
informed honest (I H) landlord is indifferent between C and C (U L

pes
(C, σT

∗, I H) = U L
pes

(C, σT
∗, I H)) = 0.5); and finally, the

informed dishonest (I D) landlord prefers C to C (since U L
pes

(C, σT
∗, I D) = 0.25 is lower than U L

pes
(C, σT

∗, I H)) = 0.5). So, 
whatever her type, no player has any incentive to change her strategy: σ ∗ is a Nash equilibrium.



Mixed Nash equilibrium in �-games Let us now extend the notion of possibilistic mixed joint strategy to �-games: in such 
a game, a mixed strategy will be a tuple υ = (υ1, ..., υn) where υi : �i �→ �i maps each type of player i to a mixed 
possibilistic strategy in �i (�i is the set of normalized possibility distributions over actions in Ai ). Formally:

Definition 12 (Possibilistic mixed strategy in a �-game). A possibilistic mixed joint strategy is a vector υ = (υ1, . . . , υn) of 
functions υi : �i → �i where �i = {π : Ai → �} is the set of the normalized possibility distributions over Ai .

For the sake of readability, let υi(ai |θi) = υi(θi)(ai) denote the possibility that player i plays action ai when her type is θi .

Assuming that player i is rational and of type θi , the common knowledge and rationality assumptions mean that 
υi(ai |θi) = 1 may be interpreted by other players as ai being a completely plausible play of player i, while υi(ai |θi) = 0

means that ai is an impossible play. Therefore, the ranking over strategies induced by υi(·|θi) may be interpreted as a 
plausibility ranking by other players.

Example. We shall for instance consider the joint mixed strategy (υT .υL) defined by:

υT (P |H) = 1, υT (P |H) = 0.5, υT (P |D) = 0.25, υT (P |D) = 1,

υL(C |I H) = 1, υL(C |I H) = 0.75, υL(C |I D) = 0.25, υL(C |I D) = 1.

In short, the honest tenant prefers to pay (υT (.|H)), the dishonest tenant prefers not to pay (υT (.|D)), the informed honest 
landlord generally confirms (υL(.|I H)) and the informed dishonest landlord prefers not no (υL(.|I D))

According to [6], when the configuration of types is θ , the joint possibility distribution over the profiles of actions is 
defined as the minimum of the individual players’ possibility distributions over individual actions. Formally:

υ(a|θ) = min
i∈N

υi(ai|θi). (16)

Let πυ(a, θ−i |θi) be the possibility distribution on A × �−i defined by υ , given the type θi and prior knowledge π : � → �. 
πυ(a, θ−i |θi) is defined as the minimum over π(θ−i |θi) and the joint possibility distribution over a6:

πυ(a, θ−i |θi) = min(π(θ−i |θi),υ(a|θi .θ−i)). (17)

Let us now study the evaluation of mixed strategies. In order to stay in accordance with the previous assumptions of 
cautiousness and ordinality, strategies will be evaluated using the pessimistic possibilistic utility.

Definition 13 (Utility of a mixed strategy). The pessimistic utility for player i ∈ N of type θi ∈ �i of the mixed strategy υ in 
G = 〈N, A, �, π, μ〉 is:

U
pes
i (υ, θi) = min

θ−i∈�−i

min
a∈A

max
(
1− πυ(a, θ−i |θi),μi(a, θ)

)
. (18)

It can be checked that:

Proposition 2.

U
pes
i (υ, θi) = min

θ−i∈�−i

max
(
1− π(θ−i |θi),min

a∈A
max

(
1− υ(a|θi .θ−i),μi(a, θ)

))
. (19)

Thus, U pes
i (υ, θi) can be written as:

Proposition 3. The pessimistic utility for player i ∈ N of type θi ∈ �i of the mixed strategy υ in G = 〈N, A, �, π, μ〉 is:

U
pes
i (υ, θi) = min

ai∈Ai

max
(
1− υi(ai|θi),U pes

i (ai,υ−i, θi)
)

(20)

where: U pes
i (ai, υ−i, θi) =

min
a−i∈A−i

min
θ−i∈�−i ,

max
(
1− π(θ−i |θi),1 − υ−i(a−i|θ−i),μi(ai .a−i, θi .θ−i)

)
. (21)

6 By the possibilistic chaining rule.



A possibilistic mixed Nash equilibrium in a �-game is a mixed strategy υ∗ = (υ∗
1 , ..., υ∗

n ) where no player i of type θi
can improve her pessimistic utility by changing her mixed strategy υi . Formally:

Definition 14 (Possibilistic mixed Nash equilibrium in a �-game). υ∗ is a possibilistic mixed Nash equilibrium (�-MNE) in a 
�-game G = 〈N, A, �, π, μ〉 iff:

∀i ∈ N,∀θi ∈ �i,∀υ ′
i ,U

pes
i (υ∗, θi) ≥ U

pes
i (υ ′

i .υ
∗
−i, θi). (22)

Example. Consider the following joint mixed strategy υ∗ = (υ∗
T .υ∗

L ):

υ∗
T (P |H) = 1, υ∗

T (P |H) = 1,υ∗
T (P |D) = 1, υ∗

T (P |D) = 1,

υ∗
L (C |I H) = 0.5, υ∗

L (C |I H) = 1, υ∗
L (C |I D) = 0.5, υ∗

L (C |I D) = 1.

The pessimistic utilities of both players are:

U
pes
T (υ∗, H) = min

(
max

(
1− υ∗

T (P |H),U
pes
T (P ,υ∗

L , H)
)
,

max
(
1− υ∗

T (P |H),U
pes
T (P ,υ∗

L , H)
))

.

Since U pes
T (P , υ∗

L , H)
)

= 0, then: U pes
T (υ∗, H) = 0.

Similarly, U pes
T (υ∗, D) = 0.25, U pes

L (υ∗, I H) = 0.5, U pes
L (υ∗, I D) = 0.5.

It can be checked that υ∗ is a �-MNE of the �-game:

• ∀υ ′
T (.|H) �= υ∗

T (.|H), U pes
T (υ∗, H) = U

pes
T (υ ′

T (.|H).υ∗
L , H) = 0. Thus, the honest tenant has no incentive to deviate to

another strategy;
• ∀υ ′

T (.|D) �= υ∗
T (.|D), U pes

T (υ∗, D) ≥ U
pes
T (υ ′

T (.|D).υ∗
L , D). Thus, the dishonest tenant has no incentive to deviate to an-

other mixed strategy;
• ∀υ ′

L(.|I H) �= υ∗
L (.|I H), U pes

L (υ∗, I H) ≥ U
pes
L (υ∗

T .υ ′
L(.|I H), I H). Thus, the informed honest landlord has no incentive to

deviate;

• ∀υ ′
L(.|I D) �= υ∗

L (.|I D), U pes
L (υ∗, I D) ≥ U

pes
L (υ∗

T .υ ′
L(.|I D), I D). Thus, the informed dishonest landlord has no incentive to

deviate.

3.3. Transforming a �-game into an equivalent ordinal normal form game

In this Section, we show that any incomplete information game can be transformed into an equivalent normal form game 
with complete information, such that its strategies and equilibria are in bijection with the ones of the original �-game. This 
result is a qualitative counterpart of Harsanyi’s result about the transformation of Bayesian games into normal form games 
under complete information [7]. We consider as many players as the number of pairs (i, θi) in the transformed game, each 
player (i, θi) having set of available actions Ai . A pure strategy in the �-game associates an action to each type θi of each 
player i. In the “Complete information game representation” of the �-game, a pure strategy associates an action to each 
player (i, θi):

Definition 15 (Complete standard normal form representation of a �-game). The complete standard normal form representation 
(C-SNF-representation) of �-game G = 〈N, A, �, π, μ〉 is the SNF game G̃ = 〈Ñ, Ã, μ̃〉, where:

• Ñ = {
(i, θi), i ∈ N, θi ∈ �i

}
;

• Ã(i,θi) = Ai , ∀(i, θi) ∈ Ñ;

• μ̃(i,θi)(ã) = U
pes
i (σ , θi), ∀ã ∈ Ã, ∀(i, θi) ∈ Ñ , where σi(θi) = ã(i,θi), ∀(i, θi) ∈ Ñ .

Definition 16 (Complete standard normal form representation of a pure strategy). Let σ be a pure strategy in G = 〈N, A, �, π, μ〉. 
The C-SNF-representation of σ in G̃ is the profile of actions ã defined by:

∀(i, θi) ∈ Ñ, ã(i,θi) = σi(θi). (23)

It is easy to see that ã is a profile of actions of G̃ and that the strategies of G and G̃ are in bijection. It follows that:

Proposition 4. The pure strategy σ is a PNE for G = 〈N, A, �, π, μ〉 iff ã is a PNE in its C-SNF representation G̃ = 〈Ñ, Ã, μ̃〉.



Example. The C-SNF-representation of the landlord and tenant game, G̃ , has 4 players: Ñ = {(T , H), (T , D), (L, I H), (L, I D)}, 
with Ã(T ,H) = Ã(T ,D) = {P , P }, Ã(L,I H) = Ã(L,I D) = {C, C}.

The joint action ã∗ = (P .P .C .C) in G̃ is the C-SNF representation of the joint pure strategy σ ∗ of G defined by σ ∗
T (H) = P , 

σ ∗
T (D) = P , σ ∗

L (I H) = C , σ ∗
L (I D) = C .

The utilities of ã∗ in G̃ are:

μ̃(T ,H)(ã
∗) = U

pes
T (σ ∗, H) = 0.75, μ̃(T ,D)(ã

∗) = U
pes
T (σ ∗, D) = 0.25,

μ̃(L,I H)(ã
∗) = U

pes
L (σ ∗, I H) = 0.5, μ̃(L,I D)(ã

∗) = U
pes
L (σ ∗, I D) = 0.5.

Finally, every mixed strategy in the �-game G has an equivalent mixed strategy in its C-SNF-representation G̃ and the 
mixed equilibria of the two games are in bijection.

Definition 17 (Complete normal form representation of a mixed strategy). Let υ be a mixed strategy in G = 〈N, A, �, π, μ〉. The 
C-SNF-representation of υ is the mixed strategy υ̃ such that:

∀(i, θi) ∈ Ñ, υ̃(i,θi)(ã(i,θi)) = υi(ai |θi). (24)

It is easy to show that: υ̃(ã) = υ(a|θ).

As a consequence of Definition 17, we get:

Proposition 5. The mixed strategy υ is a �MNE for G = 〈N, A, �, π, μ〉 iff υ̃ is a �ME in G̃ = 〈Ñ, Ã, μ̃〉.

Regarding the complexity of the transformation, consider that the original game is extensively represented by tables (the 
game is in standard normal form). The transformed game contains ñ = ∑

i=1,n |�i | utility functions of size ∏(i,θi)∈Ñ | Ã(i,θi)| =
i=1,n θi∈�i

|Ai | = i=1,n |Ai ||�i | .
For simplification purpose, let |Ai | = d and |�i | = t , ∀i ∈ N (i.e., the number of actions and the number of types are 

the same for all players). A game containing n utility functions of size (d · t)n is transformed into a game containing 
ñ = n · t utility functions of size dñ = (dn)t , since the number of players ñ in the transformed game is equal to (n · t). This 
transformation is exponential in time and space.

So, except when the number of types is very small, the transformation does not provide a convenient way to solve the 
game. Proposition 5 is, as in the Bayesian case, more a representation result than a solving tool.

3.4. Complexity results

In the previous Section (Section 3.3), we have shown that a �-game can be transformed into an equivalent normal form 
game with complete information. Since it is not guaranteed to get a PNE in a normal form game, it is also not guaranteed 
that a �-game admits a PNE.

In the following, we study the complexity of the problem of deciding whether a �-game admits a PNE.

Definition 18 (PNE problem). The PNE problem consists in determining whether any given �-game G = 〈N, A, �, π, μ〉 G

admits a pure Nash equilibrium.

Deciding the existence of a pure Nash equilibrium in a �-game is a difficult problem as stated by the following propo-
sition:

Proposition 6. PNE is NP-Hard, even in symmetric7 2-player games where π corresponds to total ignorance, i.e., ∀θ1 ∈ �1 and 
∀θ2 ∈ �2, π(θ1, θ2) = 1.

Finally, in [6], authors have shown that an ordinal SNF game admits at least one �-MNE. Since any �-game can be 
transformed into an equivalent SNF game with complete information (this is the result of the previous Section), it follows 
that a �-game always admits at least one �-MNE. We show in Section 4.2 that such an equilibrium can be computed in 
polynomial time.

7 A game is symmetric if all players have the same set of actions, and the utilities of playing a given action depends only on the actions being played, 
not on who plays them.



4. Computing equilibria in �-games

4.1. Finding a pure Nash equilibrium: a MILP formulation

Taking advantage of the efficiency of modern solvers, we propose a Mixed Integer Linear Programming (MILP) formulation 
of the problem of finding, if it exists, a PNE in a �-game (we follow in this the idea explored by [29] for solving Bayesian 
games).

• the main decision variables are Boolean variables encoding the strategy searched for: each σi,ai ,θi is a Boolean variable
indicating whether action ai is prescribed for type θi of player i: ∀i ∈ N, ∀ai ∈ Ai, ∀θi ∈ �i : σi,ai ,θi ∈ {0, 1};

• the utilities are encoded by continuous variables: Ui,ai ,θi is the utility (according to σ−i) of player i if action ai is chosen
for type θi (i.e., if σi(θi) = ai ): ∀i ∈ N, ∀ai ∈ Ai, ∀θi ∈ �i : Ui,ai ,θi ∈ [0, 1].

• We will also use Boolean variables to constrain the Ui,ai ,θi to be equal to the minθ−i∈�−i
of max

(
1 −π(θ−i |θi), μi(a, θ)

)
(and not only lower than the min): ∀i ∈ N, ∀ai ∈ Ai, ∀θ ∈ � : Mi,ai ,θ ∈ {0, 1}.

The MILP formulation we propose is the following:

∀i ∈ N,∀θi ∈ �i,
∑
ai∈Ai

σi,ai ,θi = 1. (25)

∀i ∈ N,∀ai,a′
i ∈ Ai , s.t, ai �= a′

i,∀θi ∈ �i,Ui,ai ,θi − Ui,a′
i
,θi

≥ σi,ai ,θi − 1. (26)

∀i ∈ N, ∀a ∈ A, ∀θ ∈ �,

Ui,ai ,θi ≤ max
(
1− π(θ−i|θi),μi(a, θ)

) +
∑

j∈N, j �=i

(1− σ j,a j ,θ j
). (27)

∀i ∈ N, ∀a ∈ A, ∀θ ∈ �,

Ui,ai ,θi + Mi,ai ,θ +
∑

j∈N, j �=i

(1− σ j,a j ,θ j
) ≥ max(1 − π(θ−i |θi),μi(a, θ)). (28)

∀i ∈ N,∀ai ∈ Ai,∀θi ∈ �i,
∑

θ−i∈�−i

(1− Mi,ai ,θi .θ−i
) = 1. (29)

• Constraints (25) ensure that the strategy σ searched for specifies exactly one action per type, for each player i.
• Constraints (26) require that σ is a PNE: when σi,ai ,θi = 1, this constraint requires Ui,ai ,θi ≥ Ui,a′

i
,θi
, i.e., that player i

has no incentive to deviate from ai . When action ai is not chosen for θi , (σi,ai ,θi = 0) the constraint is always satisfied 
(Ui,ai ,θi − Ui,a′

i
,θi

is always greater than −1).

• Constraints (27) implement Definition (9). They ensure that the utility of player i playing σ(θi) = ai is lower than all,
i.e., the minimum over the θ−i of the max(1 − π(θ−i |θi), μi(ai .σ−i(θ−i), θ)). Indeed, for any profile of action a that

does not correspond to what is prescribed by σ , 
 j �=i(1 − σ j,a j ,θ j
) ≥ 1, the constraint is always satisfied (Ui,ai ,θi ≤ 1). 

If a−i is chosen for θ−i , then σ j,a j ,θ j
= 1, ∀ j �= i and 
 j �=i(1 − σ j,a j ,θ j

) = 0: the constraint becomes Ui,ai ,θi ≤ max(1 −
π(θ−i |θi), μi(a, θ)).

• Constraints (28) and (29) ensure that Ui,ai ,θi is equal to the min over θ−i of max(1 −π(θ−i |θi), μi(a, θ)): If a−i does not
correspond to σ−i , 
 j �=i(1 − σ j,a j ,θ j

) is at least equal to 1 and the constraints (28) are always satisfied. Otherwise, (a−i

correspond to σ−i) the sum is equal to 0 and does not annihilate the constraint. The min is reached if Ui,ai ,θi = max(1 −
π(θ−i |θi), μi(a, θ)). Whenever Mi,ai ,θ = 1, Equation (28) holds, and Equation (29) ensures that (28) is an equality for 
one θ−i (minimizing max(1 − π(θ−i |θi), μi(a, θ))).

The above formulation is linear (the max operator which appears in constraints (27) and (28) deals with constants only). 
Furthermore, it does not lead to a combinatorial explosion of the required space. Recall that the size of the original problem 
is n · |�| · |A| +|�|. Let us denote d (resp. t) the number of actions (resp. types) of each player. The MILP formulation contains: 
O (n · t · d) continuous variables Ui,ai ,θi ; O (n · t · d) Boolean variables σi,ai ,θi ; O (n · d · tn) Boolean variables Mi,ai ,θ ; O (n · t)
constraints (25), each involving O (a) variables; O (n · t · d · (d − 1)) constraints (26), each involving 3 variables; O (n · tn · dn)
constraints (27) each involving O (n) variables; O (n · tn · dn) constraints (28) each involving O (n + 1) variables; O (n · d · t)
constraints (29) each involving O ( t

n

d
) variables. The size of the MILP encoding is thus in O (n2 · |�| · |A|) (polynomial in the

size of the original size of the problem (i.e., n · |�| · |A| + |�|)).

4.2. Building a possibilistic mixed Nash equilibrium

We have seen in Section 3.3 that any �-game G can be transformed into an equivalent C-SNF-representation G̃ (Def-

inition 15) and that a mixed strategy π in G̃ corresponds to a unique mixed strategy υ in G (Definition 17). So, it is 
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Algorithm 1 Improve.
Data: G = 〈N, A, �, π, μ〉, υ , i, θi
Result: υ ′ = (υ1, . . . , υi−1, υ ′

i , υi+1, . . . , υn)

D̃(i,θi ) ← ∅
forall ai ∈ Ai do

if U
pes
i (ai , υ−i , θi) ≤ U

pes
i (υ, θi) then D̃(i,θi ) ← D̃(i,θi ) ∪ {ai}

if ∀ai ∈ Ai \ D̃(i,θi ) , υi(ai |θi) < 1 then υ ′ ← υ
else

forall ai ∈ Ai do
if ai ∈ D̃i,θi then υ ′

i (ai |θi) ← max
{
α ∈ �;α < 1− U

pes
i (υ, θi)

}
else υ ′

i (ai |θi) ← υi(ai |θi)
return υ ′

Algorithm 2 Finding a least-specific �-MNE in �-game.

Data: G = 〈N, A, �, π, μ〉
Result: υ∗ = (υ∗

1 , . . . , υ∗
n ), a �-MNE

υ0 ← (υ0
1 , . . . , υ0

n ) /* υ0
i (θi , ai) = 1, ∀i ∈ N, ∀ai ∈ Ai , ∀θi ∈ �i */

t ← 0

repeat
υloc ← υt

forall i ∈ N do
forall θi ∈ �i do υloc ← Improve

(
G,υloc, i, θi

)
υt+1 ← υloc

t ← t + 1
until υt = υt−1

υ∗ ← υt

return υ∗

theoretically possible to apply the algorithm proposed by [6]. This algorithm is guaranteed to return a �MNE of G̃ , π∗ , 
in time polynomial in the expression of G̃ . And from π∗ , we immediately get an equilibrium strategy for G as expressed 
above. But, as noted in Section 3.3, the size of μ̃ is exponential in that of the initial �-game. Thus, if we actually construct 
G̃ , the algorithm of [6] will converge to a �MNE, but in time exponential in the size of G .

We explore here a more direct (and polynomial time) approach. The algorithm we present (Algorithms 1 and 2) is a 
generalization of the one proposed in [6]. In this iterative process, at each step, each player i of type θi tries to maximize 
her pessimistic utility by moving her mixed strategy to a more specific one. We can indeed show that when a player moves 
to a more specific mixed strategy her pessimistic utility cannot decrease.

Proposition 7. Let υ and υ ′ be two mixed strategies such that υ ′ � υ . Then: ∀i ∈ N, ∀θi ∈ �i, U
pes
i (υ, θi) ≤ U

pes
i (υ ′, θi).

Algorithm 2 mimics a negotiation process. At each stage (each t), given the joint mixed strategy, every player i tries to 
improve her pessimistic utility by changing her mixed strategy υloc

i . Thanks to Proposition 7 changing to a more specific 
mixed strategy never decreases the utility of any of the players. When no player has any more incentive to make her 
strategy more specific, the result of the negotiation leads to a least specific mixed equilibrium.

We first show that Algorithm 2, which performs iterations over the Improve procedure, converges, and convergence 
occurs in time polynomial in the size of the �-game G .

Proposition 8 (Convergence). Let G = 〈N, A, �, π, μ〉 be a �-game. Algorithm 2 converges in a finite number of steps

Proposition 9 (Complexity of Algorithm 1). Improve runs in time polynomial in the size of the input �-game. The whole complexity 
of the Improve function is: O (dn+1 × tn−1)

Algorithm 2 calls N × t times Algorithm 1. Thus, thanks to Proposition 9, we get:

Corollary 1 (Complexity of Algorithm 2). The whole complexity of algorithm is 2: O (n ×tn ×|�| ×d ×dn ×n) = O (n2 ×tn ×|�| ×dn).

We finally show that the algorithm converges towards a possibilistic mixed equilibrium of the �-game G .

Proposition 10 (Soundness). Algorithm 2 converges towards a least-specific possibilistic mixed equilibrium of G = 〈N, A, �, π, μ〉.



Fig. 1. Avg. execution time, MILP-PNE, |Ai | = 2, |�i | ∈ [2,10], n ∈ [2,4].

5. Experimental study

The goal of this experimental study is to evaluate the efficiency and feasibility of the algorithms described in the previous
Section. To this end, we adapted the GAMUT game generator [30] to generate �-games (GAMUT produces exclusively normal 
form games with complete information). In the present Section, we detail this �-game generator, the experimental protocol 
and our experimental results.

5.1. A �-game generator

Our generator is based on the idea that every �-game can be equivalently defined as a set of |�| normal form games 
with the same set of players N and actions A, following the approach of [29] for the generation of Bayesian games. The idea 
is to generate, using GAMUT, for each combination of types θ ∈ � a normal form game Gθ and a possibility distribution 
over the combinations of types. For the sake of simplicity, we assume that the number of actions and types are equal for 
all players, i.e., ∀i, j ∈ N, |Ai | = |A j | = d and ∀i, j ∈ N, |�i | = |� j | = t .

To generate a �-game, G = 〈N, A, �, π, μ〉, we need as inputs: (1) the class and the name of the game, (2) the number 
of players, (3) the number of degrees in �, (4) the number of types per player and (5) the number of actions per player. 
Then, we ask GAMUT to generate |�| normal form games of the class given in input, the range of utility of which is �
and we generate a normalized distribution π : � �→ � (a randomly selected θ receives degree 1; the degrees of the other 
elements of � are selected in � following a uniform distribution). Finally, the utility μi(a, θ) is simply the utility of the 
joint action a for player i in the normal form game Gθ = 〈N, A, {{μθ

i }i∈N }〉.

5.2. Experimental protocol

In our experiments, we set � = {0, 0.25, 0.5, 0.75, 1} and let the number of players vary from 2 to 10, the number of 
types from 2 to 10 and the number of actions from 2 to 10. For each combination of parameters, 100 instances are generated 
and the times necessary to get (i) a pure equilibrium (or a negative result) and (ii) a possibilistic mixed equilibrium, are 
measured.

We present results for 3 classes of games: Minimum Effort game, Random game and Travelers Dilemma game. In our evalu-
ation, we bounded the execution time for a single game to 10 minutes, as in [31,32].

All experiments were conducted on an Intel Xeon E5540 processor and 64 GB RAM workstation. We used CPLEX [33] as 
a MILP solver and Java 8 as a programming language. The implementation of the transformation of the �-game as a normal 
form game and the MILP solver are available online.8

5.3. Experimental results: pure Nash equilibria

Globally the experiments based on the MILP formulation of Section 4.1 confirm the feasibility of the qualitative approach 
for incomplete information games. In the experiment reported on Figs. 1 and 2, we let the number of types vary from 2 to 
10 and n vary from 2 to 6 - setting the number of actions to 2. Unsurprisingly, the CPU time increases with the number of 
players and the number of types. This is explained by the fact that when the number of types and players increases, |�|
and |A| increase directly (as in any incomplete information games). Thus, the size of the MILP increases.

However, we note a non-monotonic behavior for the Minimum Effort game: the average execution time for 6 players 
is lower than 5 players (in the case of |�i | = 5, ∀i ∈ N). This can be explained by the fact that among the 100 games 
randomly generated at each point, some may have no PNE. Indeed, from Figs. 3 and 4 showing the average execution time 
for games that admit at least a PNE and for those that do not admit a PNE, respectively, we can see that the existence of a 
PNE in a game highly impacts the time needed to solve it. In particular, for the Minimum Effort game, with 5 players and 5 
types per player, the average execution time to solve 100 games is around 300s (see Fig. 2), this value is obtained from 63 

8 https://www.irit .fr /~Helene .Fargier /PossibilisticGames .html.



Fig. 2. Avg. execution time (s), MILP-PNE, |Ai | = 2, n ∈ [2,6], |�i | ∈ [2,5].

Fig. 3. Avg. execution time (s), MILP-PNE, for the games that admit a PNE, |Ai| = 2, n ∈ [2, 6], |�i | ∈ [2, 5]. Missing configurations (e.g. 6 players/5 types for 
the three categories of games) are configurations where no game with a PNE was found.

Fig. 4. Avg. execution time (s), MILP-PNE for the games that do not admit a PNE, |Ai| = 2, n ∈ [2, 6], |�i | ∈ [2, 5]. Missing configurations (e.g. every 2 player 
games for the three categories of games) are configurations where all games admitted a PNE.

games that admit a PNE with an average time of around 460s (see Fig. 3) and 37 games that do not admit a PNE with an 
average time around 27s (see Fig. 4). Moreover, for Minimum Effort game, with 6 players and 5 types per player, the decrease 
of the average execution time to solve 100 games (in Fig. 2) is due to the non-existence of a PNE for all instances. The 
increasing of the number of players has a twofold effect: the size of the game grows, leading hence to the growth of the 
MILP formulation - finding a PNE becomes harder when it exists. On the other hand, the MILP formulation becomes more 
constrained, and for the instances without PNE, the solver detects inconsistent instances faster.

5.4. Experimental results: possibilistic mixed equilibria

In this experimentation of Algorithm 2, we start by setting the number of players equal to 2 and varying the number 
of actions from 2 to 10 and the number of types from 2 to 10. The execution time needed to find one of the least specific 
�-MNE is presented in Figs. 5 and 6, respectively. Then, we set the number of types per player equal to 2 and let the
number of players and action vary - see Fig. 7.

The results show that, for the 3 classes of games, Algorithm 2 can return the least specific �-MNE in a reasonable time 
(less than 0.4 seconds when the number of players is equal to 2 and the number of actions and types are equal to 10). 
The number of players in a �-game is the “main” parameter that influences the average execution time needed to find a 
�-MNE. Fig. 7 shows that if the number of actions per player is equal to 4 and the number of types per player is equal to
2, the average execution time needed to find the least specific �-MNE in a Minimum Effort game with 5 players is around
to 2 s. When the number of players is equal to 6 (resp., 7) the average execution time is around to 30 s (resp., 115 s).

The results empirically confirm the complexity analysis of the algorithm - its  complexity is polynomial in the size of the 
game, which is itself exponential in the number of players.



Fig. 5. Avg. execution time (s) to find a �-MNE, n = 2, |�i | ∈ [2,10], |Ai | ∈ [2,8].

Fig. 6. Avg. execution time (s) to find a �-MNE, n = 2, |Ai | ∈ [2,10], |�i | ∈ [2,8].

Fig. 7. Avg. execution time (s) to find a �-MNE, |�i | = 2, n ∈ [2, 7], |Ai | ∈ [2, 4].

6. Conclusion

In this paper, possibilistic games have been proposed as a new representation framework for ordinal games under pos-
sibilistic incomplete information. The notions of pure and mixed ordinal equilibria have been defined for such games and 
we have shown that determining whether a pure Nash equilibrium exists in a �-game is a NP-complete problem. Instead, 
the problem can be solved in polynomial time when mixed equilibria are considered. The theoretical time needed to reach 
a mixed equilibrium increases linearly with the size of the input (of the game), which is itself exponential in the number 
of players (n · (t · a)n). Because the size of the game is highly impacted by the number of players, experiments show that 
the average execution time increases drastically when the number of players increases. This is observable for all the classes 
of games we considered in our experiments: Minimum Effort game, Random game and Travelers Dilemma game. This confirms 
the theoretical results of this paper.

There are several possible followings to this work. The first one would be to define succinct forms of possibilistic games. 
Indeed, it is even more crucial in incomplete information game than in complete information ones, to offer the possibility 
of succinct expressions of utility tables, since they depend on joint types in addition to joint actions. The natural extensions 
would be to consider games where the interactions are local, i.e. where the utility of a player depends only on a subset of 
players. To explore this path of research, we may extend the polymatrix [34], graphical [35], hypergraphical [36] (complete 
information) games frameworks to the possibilistic, incomplete information case.

A longer term perspective would be to consider studying sequential possibilistic games. In the probabilistic, quantitative 
framework, competitive Markov decision processes (MDP) [37] extend  both (MDP) [38] and cardinal games, to sequential 
games under uncertainty. Partially observed stochastic games [39], on their side, extend both partially observed MDP [40] 
and cardinal games, to sequential incomplete information games. Possibilistic MDP (and POMDP) have been introduced 
by [41,42], in the possibilistic framework. A fruitful avenue for new research would be to extend possibilistic MDP/POMDP 
and possibilistic complete/incomplete information games, so as to define possibilistic competitive MDP and to develop a 
possibilistic version of partially observed stochastic games.



7. Proofs

Proof of Proposition 1. Let G = 〈N, A, �, π, μ〉 be a �-game where ∀i ∈ N , |�i| = 1. Then it exists a unique type combina-

tion θ ∈ �, i.e., |�| = 1 ⇒ there is one possible game Gθ such that π(Gθ ) = 1 since π is normalized. Thus G is equal to 
classical normal form game, i.e., G = Gθ = 〈N, A, {{μθ

i }i∈N}〉. �
Proof of Proposition 2.

U
pes
i (υ, θi) = min

θ−i∈�−i , a∈A
max

(
1− πυ(a, θ−i |θi),μi(a, θ)

)
.

Based on Equation (17):

U
pes
i (υ, θi) = min

θ−i∈�−i , a∈A
max

(
1−min(π(θ−i |θi),υ(a|θi .θ−i)),μi(a, θ)

)
.

U
pes
i (υ, θi) = min

θ−i∈�−i , a∈A
max

(
1− π(θ−i |θi),1 − υ(a|θi .θ−i),μi(a, θ)

)
.

U
pes
i (υ, θi) = min

θ−i∈�−i

max
(
1− π(θ−i |θi),min

a∈A
max

(
1− υ(a|θi .θ−i),μi(a, θ)

))
. �

Proof of Proposition 3.

U
pes
i (υ, θi) = min

θ−i∈�−i

max
(
1− π(θ−i |θi),min

a∈A
max

(
1− υ(a|θ),μi(a, θ)

))
U

pes
i (υ, θi) = min

θ−i∈�−i

max
(
1− π(θ−i |θi),

min
a∈A

max
(
1−min(υi(ai |θi),υ−i(a−i|θ−i)),μi(a, θ)

))
.

U
pes
i (υ, θi) = min

θ−i∈�−i

max
(
1− π(θ−i |θi),min

a∈A

max
(
1− υi(ai|θi),1 − υ−i(a−i|θ−i),μi(a, θ)

))
.

U
pes
i (υ, θi) = min

θ−i∈�−i ,a∈A

max
(
1− π(θ−i |θi),1 − υi(ai |θi),1 − υ−i(a−i |θ−i),μi(a, θ)

)
.

U
pes
i (υ, θi) = min

ai∈Ai

max(1− υi(ai |θi),U pes
i (ai,υ−i, θi)). �

Proof of Proposition 4. ⇒ Assume that a is a PNE in G̃ . Then,

μ̃(i,θi)(a
′
i .a−i) ≤ μ̃(i,θi)(a),∀i, θi,a′

i .

But, since μ̃(i,θi)(a) =def U
pes
i (aσ , θi), we get U pes

i (a′
i, a

σ
−i, θi) ≤ U

pes
i (aσ , θi).

Thus, aσ is a PNE of G .
⇐ Now, let σ be a PNE of G , define G̃ and joint action a: a(i,θi ) = σi(θi), ∀(i, θi). Then, again, μ̃(i,θi)(a) = U

pes
i (σ , θi). And 

since σ is a PNE in G , we get U pes
i (a′

i, σ−i, θi) ≤ U
pes
i (σ , θi), ∀i, θi, a′

i and, ∀i, θi, a′
i

μ̃(i,θi)(a
′
(i,θi)

.a−(i,θi)) ≤ μ̃(i,θi)(a).

Thus, a is a PNE of G̃ . �
Proof of Proposition 5. First, note that the transformation υ → υ̃ (Definition 17) between the sets of mixed strategies in 
games G and G̃ is bijective. Thus, in order to prove that mixed equilibria are the same in both games, it is enough to show 
that

U
pes
i (υ, θi) = μ

pes
i,θi

(υ̃),∀(i, θi). (30)

To do so, first note that:
U

pes
i (υ, θi) = min

θ−i∈�−i ,a∈A
max(1 − πυ(a, θ−i |θi), μi(a, θ)), by Definition 13,

πυ(a, θ−i |θi) = min(π(θ−i |θi), υ(a|θ)), by Equation (17),

and υ̃(ã) = υ(a|θ), by Definition 17.



Thus,

U
pes
i (υ, θi) =min

a∈A
max(1− υ̃(ã), min

θ−i∈�−i

max(1− π(θ−i |θi),μi(a, θ))).

Note that, by Definition 9,

U
pes
i (σ , θi) = min

θ−i∈�−i

max(1− π(θ−i |θi),μi(σ (θ), θ)),

where σ is the unique pure strategy in G , defined from any pure strategy a in G̃ .
Then,

U
pes
i (υ, θi) =min

a∈A
max(1− υ̃(ã),U

pes
i (σ , θi)),

U
pes
i (υ, θi) =min

a∈A
max(1− υ̃(ã), μ̃(i,θi)(a)), by Definition 15,

U
pes
i (υ, θi) = μ

pes
i,θi

(υ̃), by Eq. (7).

Thus, Proposition 5 holds. �
Proof of Proposition 6. Membership. We prove the membership in NP for the more general case of N unbounded. In this 
case, the size of the input is exponential in the number of players n. The PNE can be solved by guessing a strategy σ , i.e., 
guessing an action for each pair player/type, then checking whether σ is a PNE or not. More precisely: For each player i
and for each type θi ∈ �i :

- compute U pes
i (σ , θi) and

- for each action ai ∈ Ai , compute U pes
i (ai, σ−i, θi).

Then check if i has incentive to deviate from σi(θi), i.e., we should compare U pes
i (σ , θi) and U pes

i (ai, σ−i, θi). Under the
assumption that π is represented by a table of |�| lines, the complexity of computing U pes

i (σ , θi) is in O (|�−i |), from
Definition 9. Thus the whole complexity is polynomial O (n × |�i | × |�−i | × |Amax|) = O (n × |�| × |Amax|) where |Amax| =
max(|A1|, ..., |An|).

Algorithm 3 details this process:

Algorithm 3 Check_Equilibrium.

Data: G = 〈N, A, �, π, μ〉, σ
Result: IsPNE (Boolean)
IsPNE ← true

forall i in N do
forall θi ∈ �i do

Compute U
pes
i (σ , θi)

forall ai ∈ Ai do
Compute U

pes
i (ai , σ−i , θi)

if U
pes
i (ai , σ−i , θi) > U

pes
i (σ , θi) then IsPNE← false;

return IsPNE

σ is a PNE using Algorithm 3 is in O (n × |�| × |Amax|).
Hardness.9 The hardness proof uses a reduction from the SET-COVER problem:

Definition 19 (SET-COVER (SC) problem). Given a set S = {s1, ..., sn}, subsets {S1, S2, ..., Sm} of S with ∪1≤i≤mSi = S and 
an integer K ≤ m. We are asked whether there exists a subset of {S1, S2, ..., Sm} of size K whose union equals S , i.e., 
Sc1 , ..., ScK such that ∪1≤i≤K Sci = S .

We reduce an arbitrary SC = 〈
S, {S1, S2, ..., Sm}, K 〉 instance to a PNE instance: Let �-game GSC = 〈N, A, �, π, μ〉

where:

• N = {1, 2}
• A = A1 × A2 where A1 = A2 = {S1, ..., Sm, s1, ..., sn}

9 The proof of hardness is inspired from [43].



• � = �1 × �2 where �1 = �2 = {t1, ..., tK } (both players belong to one of K types)

• ∀θ1 ∈ �1, θ2 ∈ �2, π(θ1, θ2) = 1 (π reflects total ignorance).
• We assume utility functions that do not depend on a specific type θ ∈ �. They are as follows:

(i) μ1(Si .S j) = μ2(S j .Si) = 0.25 ∀Si, S j

(ii) μ1(Si .s j) = μ2(s j .Si) = 0.25 + j
4n+1

∀Si , ∀s j /∈ Si
(iii) μ1(Si .s j) = μ2(s j .Si) = 0.5 ∀Si, ∀s j ∈ Si
(iv) μ1(si .s j) = μ2(s j .si) = 0 ∀si, s j
(v) μ1(s j .Si) = μ2(Si .s j) = 0.75 ∀Si, ∀s j /∈ Si
(vi) μ1(s j .Si) = μ2(S j .si) = 0 ∀Si, ∀s j ∈ Si

Note that a Set-Cover instance SC can be represented in space O (mn log(n)). The size of the �-game GSC is the size
required to represent π, μ1 and μ2. Assuming that π is represented as a table (which is obviously not the most concise 
way to represent it), |π | = O (K 2) = O (n2) and |μ1| = |μ2| = O ((m + n)2). The latter size may become O ((m + n)2K 2) if 
we store μi(σ , θ) even though utilities are independent of θ . Thus, GSC requires space polynomial in that of SC to be 
represented. And since every π(θ) and μi(σ , θ) require constant time to be computed, the transformation is polynomial 
(time).

Note that, in �-game with 2 players and π corresponding to total ignorance, the utility of the 2 players are computed 
as follows:

U
pes
1 (σ , θ1) = min

θ2∈�2

max
(
1− π(θ2|θ1),μ1(σ1(θ1).σ2(θ2))

)
Since π(θ2|θ1) = 1, thus:

U
pes
1 (σ , θ1) = min

θ2∈�2

μ1(σ1(θ1).σ2(θ2)).

In the same way, U pes
2 (σ , θ2) = min

θ1∈�1

μ2(σ1(θ1).σ2(θ2)).

Now we show that G admits a PNE ⇔ SC admits a SET-COVER.

SC admits a SET-COVER ⇒ G admits a �-PNE First suppose there exist Sc1 , ..., ScK such that ∪1≤i≤K Sci = S . Suppose both 
players i = {1, 2} play Scθi when their type is θi , i.e., ∀θ1 ∈ �1, σ1(θ1) = Scθ1 and ∀θ2 ∈ �2, σ2(θ2) = Scθ2 . We claim that 
〈σ1.σ2〉 is a PNE.

Player 1 (resp. 2) supposes that player 2 (resp. 1) employs this strategy. Then, note that for any s j , there is at least 
one Sci such that s j ∈ Sci , since SC admits a SET-COVER {Sc1 , . . . , ScK }. So, if player 1 of type θ1, for example, changes her 
strategy by replacing Scθ1 with some s j , this will decrease her utility from 0.25 (i) to 0 (vi), since s j is covered by some 
Scθ2 played by player 2 of type θ2. Of course, the same holds for the other player, so that no player has interest to deviate 
from the SET-COVER play. It follows that playing any of the S j is optimal. So there is a PNE.

G admits a PNE ⇒ SC admits a SET-COVER Suppose that G admits a PNE σ ∗ . We are going to show by contradiction that 
{σ ∗

1 (θ1)}θ1∈�1 and {σ ∗
2 (θ2)}θ2∈�2

form Set covers of SC .

1. Assume player 1 plays some σ1(θ1) ∈ S for some θ1 ∈ �1. We show that we have σ2(θ2) ⊆ S, ∀θ2 ∈ �2. Indeed, if
any σ2(θ2) ∈ S for some θ2 ∈ �2, then U pes

2 (σ , θ2) = μ2(σ1(θ1), σ2(θ2)) = 0 while U pes
2 (σ ′, θ2) = 0.25 if σ2(θ2) ∈ S is

replaced with any σ ′
2(θ2) = Sc .

2. Now, forget about Player 1 and assume that σ2(θ2) ⊆ S, ∀θ2 ∈ �2 and that S \ ∪θ2σ2(θ2) is non-empty. Then, obviously,
σ1(θ1) ∈ S \ ∪θ2σ2(θ2), ∀θ1 ∈ �1, since this provides utility 0.75 to player 1 of any type θ1. However, let s j∗ be the state
with minimum index for which there exists θ1 s.t. σ1(θ1) = s j∗ . s j∗ is not “covered” by any σ2(θ2) (so, U pes

2 (σ , θ2) =
0.25 + j∗

4n+1
). However, considering (ii), Player 2 of any type θ2 will be better off trading σ2(θ2) for some Sc such that

s j∗ ∈ Sc , since this will increase the smallest index of uncovered states.
Thus, we have a contradiction, and ∪θ2σ2(θ2) = S .

3. The final step is the following: In step 1 we proved that, when G admits a PNE, if for some θ1 ∈ �1, σ1(θ1) ∈ S , then
σ2(θ2) ⊆ S, ∀θ2 ∈ �2. Then, in step 2 we proved that if σ2(θ2) ⊆ S, ∀θ2 ∈ �2, then ∪θ2σ2(θ2) = S . However, it may be
that σ1(θ1) ⊆ S, ∀θ1 ∈ �1. But in this case, symmetrically to step 2, we can show that ∪θ1σ1(θ1) = S . In this case too,
we have proved that there exists a set cover. �

Proof of Proposition 7. The Improve function defined in [6] relies on the computation of a set D̃(i,θi ) ⊆ Ã(i,θi) = Ai of dom-

inated actions in G̃: D̃(i,θi) =
{
ã(i,θi) ∈ Ã(i,θi), s.t., U

pes
(i,θi)

(
ã(i,θi),π−i

) ≤ U
pes
(i,θi)

(π)
}
.

This definition will be useful in the next proofs. Note first that due to the correspondence of utility functions in �-games 
ad their SNF representation, we have:



D̃(i,θi) =
{
ai ∈ Ai, s.t., U

pes
i (ai,υ−i, θi) ≤ U

pes
i (υ, θi)

}
.

To prove the current Proposition, note first that if D̃i,θi = ∅, then υ ′ = υ . Algorithm 1 Does not modify the current 
strategy.

Then, for a given i, if D̃i,θi �= ∅, then, by application of Proposition 3, we have, ∀υ, θi :

U
pes
i (υ, θi) = min

ai∈D̃i,θi

1 − υi(ai|θi).

Now, if υ ′
i (ai |θi) ← max

{
α ∈ �;α < 1− U

pes
i (υ, θi)

}
, we get

1 − υ ′
i (ai|θi) > U

pes
i (υ, θi),∀ai ∈ D̃i,θi .

Thus, U pes
i (υ ′, θi) = minai∈D̃i,θi

1 − υ ′
i (ai |θi) > U

pes
i (υ, θi).

In the case where υi(ai |θi) < 1 − U
pes
i (υ, θi), υ ′

i (ai |θi) ← υi(ai |θi). �
Proof of Proposition 8. Algorithm 2 performs iterated calls to function υ ′ ← Improve (G,υ, i, θi) ⇔ π ′ ← Improve

(
G̃, π,

(i, θi)
)
.

By analogy with [6] it is easy to check that the number of calls to the Improve function is finite. Furthermore, it is 
bounded by n × tn × |�| × d, thus is polynomial in the size of G . �
Proof of Proposition 9. Note that if calling π ′ ← Improve

(
G̃,π, (i, θi)

)
requires to compute G̃ , which is of size exponential 

in that of G , on the other hand, computing υ ′ ← Improve (G,υ, i, θi) only requires a polynomial size input, (G,υ, i, θi).

It then remains to check that the computation of υ ′ ← Improve (G,υ, i, θi) is polynomial in the size of G . To do so, recall 
that the Improve function defined in [6] relies on the computation of the set D̃(i,θi ) ⊆ Ã(i,θi) = Ai of dominated actions in G̃: 
D̃(i,θi) =

{
ã(i,θi) ∈ Ã(i,θi), s.t., U

pes
(i,θi)

(
ã(i,θi),π−i

) ≤ U
pes
(i,θi)

(π)
}
.

But, due to the correspondence of utility functions in both games, we have:
D̃(i,θi) =

{
ai ∈ Ai, s.t., U

pes
i (ai,υ−i, θi) ≤ U

pes
i (υ, θi)

}
.

The first expression takes polynomial space to compute since we do not actually need to store μ̃ to compute U pes
(i,θi)

(π), for 
any fixed π . However, it takes exponential time.

On the other hand, U pes
i (υ, θi) = min

ai∈Ai

max
(
1− υi(ai |θi),U pes

i (ai,υ−i, θi)
)
can be computed in time polynomial in the

size of G and it is also the case for U pes
i (ai, υ−i, θi), of course.

Thus, the only step of the Improve function of [6] that could potentially take exponential time in the size of G (compu-

tation of D̃(i,θi )) can actually be performed in polynomial time.

Under the assumption that π is represented by a table of |�| lines, the complexity of computing {U pes
i (ai, υ−i, θi)}

∀i ∈ N, ∀ai ∈ Ai, ∀θi ∈ �i is in O (d(n−1) × t(n−1)) and the complexity of computing U pes
i (υ, θi) is in O (d × d(n−1) × t(n−1)) = 

O (dn × t(n−1)).

Thus the whole complexity of Algorithm 1 is polynomial in the size of the �-game: O (dn+1 × t(n−1)). �
Proof of Proposition 10. Since υ∗ has been obtained after convergence of Algorithm 2, which can only make mixed strate-
gies more specific at every step, it verifies:
υ∗ = Improve(G, υ, i, θi), ∀i ∈ N, ∀θi ∈ �i . This implies that ∀i ∈ N, ∀θi ∈ �i, ∀υi(θi),

U
pes
i (υ∗, θi) ≥ U

pes
i (υi(θi).υ

∗
−i, θi), that is, υ

∗ is a possibilistic mixed Nash Equilibrium. Furthermore, the definition of
the Improve procedure ensures that, whenever it computes a new strategy of player i, it improves over every least-specific 
strategy of this player. It results that the fixed-point strategy obtained is a least specific equilibrium. �
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