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the utility degrees do not capture more than a ranking, nor to situations of decision under
qualitative uncertainty. The present paper proposes a representation framework for ordinal
games under possibilistic incomplete information and extends the fundamental notions of
pure and mixed Nash equilibrium to this framework. We show that deciding whether a

Iéeé\;;rvl\g)rtz:lse.ory pure Nash equilibrium exists is a difficult task (NP-hard) and propose a Mixed Integer
Ordinal games Linear Programming (MILP) encoding of the problem; as to the problem of computing a
Games with incomplete information possibilistic mixed equilibrium, we show that it can be solved in polynomial time. An
Possibility theory experimental study based on the GAMUT game generator confirms the feasibility of the
Nash equilibrium approach.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Game theory [1,2] proposes a simple but powerful framework to capture decision problems involving several agents: in
a game with complete information, each agent (or “player”) chooses an action among a set of possible actions, and the final
outcome depends on the actions chosen by all the players.

The preferences of the players among the outcomes are captured by utility functions. The term “payoff” is often used
to designate their utility levels- this terminology targets problems where the satisfaction can be expressed on a cardinal,
additive, scale, typically a monetary scale. But there are situations where the assumption of cardinality can be questioned,
hence the development of ordinal games (see, e.g., [3-6]). Such ordinal approaches cohere with many fundamental notions
of game theory which are basically ordinal notions: the notions of pure Nash equilibrium, secure strategy, dominance, for
instance, do not require the utilities to be cardinal payoffs.

A cardinal notion is invoked in two cases at least: (i) when the game is repeated (and outcomes are “collected” and
their utilities are additive and can compensate each other), and (ii) when the outcomes depend on a probabilistic event (for
example, in the prisoner’s dilemma if the verdict does not only depend on the confession of the prisoners, but also on the
uncertain result of the trial). To capture such situations, Bayesian games have been proposed by Harsanyi [7]. In these games,
the players’ knowledge about the game is assumed to be probabilistic. This approach does not apply to ordinal games, where
the utility degrees capture no more than a ranking, nor to situations of decision under qualitative uncertainty. Following the
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seminal work of [8] on possibilistic Boolean games, we propose to use possibility theory [9] to model qualitative uncertainty
in ordinal games since it offers a natural and flexible model to represent and handle uncertainty information, especially
qualitative uncertainty, and total ignorance. Unlike [8], we do not develop a complex representation language. We stay at
the semantic level and work out the idea of possibilistic games, extending the notion of pure Nash equilibrium, (possibilistic)
mixed Nash equilibrium to such games.

The paper! is organized as follows: Section 2 presents the basic notions on which the paper relies, namely possibility
theory on the one hand, and ordinal game theory on the other hand. Section 3 proposes a possibilistic model for ordinal
games with incomplete information, including the definition of pure and mixed equilibria. Section 4 is devoted to the search
of such strategies - we show that deciding the existence of a pure equilibrium is a NP-complete problem and propose a
Mixed Integer Linear Programming (MILP) formulation of this problem; as to mixed equilibrium strategies, we show that
their computation is tractable and provide a polytime algorithm. Finally, experiments are reported in Section 5.

2. Background
2.1. Possibility theory

The basic building block in possibility theory [9] is the notion of possibility distribution. A possibility distribution 7 is a
mapping from a set of states S to an ordered scale A (in the remaining, we consider that A is a subset of [0, 1], but any
ordered scale with lowest and greatest elements and order-reversing function may be used). 77 (s) = 1 means that state s is
totally plausible, 77 (s) = 0 means that s is impossible and 7 (s) > 77 (s’) means that s is more plausible than s’. 7 is assumed
to be normalized, i.e. there is at least one totally possible state (3s, 7w (s) =1).

From 7, one can compute the possibility IT(E) and the necessity N(E) of any event E C S: TI(E) = rr;eei)E( 7 (s) evaluates

to what extent E is consistent with the knowledge represented by 7 while N(E)=1—TI(E) =1 — mg)E( 7 (s) corresponds
N

to the extent to which E is inconsistent and thus evaluates at which level E is implied by the knowledge.
Considering qualitative (possibilistic) problems of decision under uncertainty, where each decision is evaluated by a
utility function u : S+ A, [11,12] have proposed two dual utilities measures:

UPs () =mi§1max(1 —7(8), 1(5)). (1)
se
U () = maxmin(7e (s), 4(s)). (2)
se

The so-called pessimistic qualitative utility, UP®, generalizes the Wald criterion and estimates to what extent it is certain
(i.e., necessary according to measure N) that y reaches a good utility while the optimistic qualitative utility, U%?, estimates
to what extent it is possible that u reaches a good utility. U is rather unnatural (too adventurous), while UP® conve-
niently models the behavior of uncertainty adverse decision-makers (see [11,12] for more details). As many other models,
this model makes a commensurability assumption between the utility levels and the levels of likelihood. This assumption
is common to all the models which consider that the agent’s preference relation is complete and transitive (this is the case
in many models, be they qualitative or quantitative: expected utility [13,1], multi-prior non expected utility [14], Sugeno
integrals [15], etc.).

In the following, we shall also use the notion of conditional possibility measure proposed by [16,17] in order to stay in
a purely ordinal framework.? Formally, for any events E and F C S the possibility of E given F is defined by:

[E|F) = 1 ifl'[(EQF):l‘[(F) @)
I[T(ENF) otherwise.

This means that the event E is totally possible, knowing that F occurred, if at least one of the most plausible states
making F true also makes E true. Otherwise, IT(E|F) is the possibility degree of the most plausible state making both E
and F true.

2.2. Normal form games, ordinal games and possibilistic mixed equilibria
A standard normal form game (SNF) is classically defined as follows [1]:

Definition 1 (Standard normal form game). A standard normal form game is a triple G = (N, A, ), where:

e N={1,...,n} is a finite set of players;

1 This paper is an extended version of [10]. It presents additional notions e.g. possibilistic mixed equilibrium and provide equilibria computation algo-
rithms. It also includes an experimental study.
2 For a discussion about the alternative definitions of conditional possibilities, see [18].
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Table 1
The landlord-tenant SNF game.
Landlord
C C
Tenant 1.1 0.025

025,0 | 0,075

o A= xicnAj, where A; is a finite set of actions available to player i € N;
o 1 ={(iien} is a set of utility functions w; on A.

In cardinal games, the utility function of a player associates a payoff, that takes its values in a subset of R, to every joint
action a € A - this suits problems where the satisfaction can be expressed on an additive scale, typically a monetary scale.
But, as mentioned above, there are instances where the assumption of additivity can be questioned, hence the development
of ordinal games (see, e.g., [3-6]). In such games, the utility functions range in a totally ordered scale A (the higher w;(a),
more satisfied player i) - no other assumption is made than A being totally ordered.

Example (The landlord and tenant game). A landlord L can lend a house to a tenant T. She can Confirm (C) or not (C), i.e.,
A ={C,C} and the tenant can Pay the landlord (P) or not (P), i.e., At = {P, P}. In this example we consider the utility
scale A ={0,0.25,0.5,0.75, 1} (such that 0 means: “completely dissatisfied”, 1: “completely satisfied”, 0.5: “neutral”, 0.25:
“dissatisfied” and 0.75: “satisfied”.). For instance, the tenant is completely satisfied, i.e., she gets a utility equal to 1, if she
pays the rent and the landlord confirms. The utilities of both players are given in Table 1.

A joint (pure) strategy is a vector a = (aj,...,a;,...,0ay) € A. In the following for any action a € A, we will denote
a_j=(a,...,q-1,0qi41,...,0n) € A_j = X jziAj its restriction to all the players but i and denote “.” the concatenation (e.g.,
v(aj,a_), a.a_; =(a,...,ai—1,a;, ait1, ..., 0n)).

When a player i knows the strategy a_; of the other players, the principle of rationality leads her to choose an action
that maximizes her utility. Such actions are called the “Best responses” of i to a_;. Formally:

Definition 2 (Best response). For any game G = (N, A, u), an action @; € A; is a best response of player i to a_;, iff Vaj € A;:
wi(ai.a_;) > pi(a;.a_;). (4)

Note that the best response of player i to a_; is not necessarily unique.

Generally each player responds in the best way when knowing the other players’ actions. A joint strategy where each
player responds best to the actions of the other players is a pure Nash equilibrium [19]. In other terms, a joint strategy a* is
a pure Nash equilibrium (PNE) iff no player can improve her utility by unilaterally modifying her strategy:

Definition 3 (Pure Nash equilibrium). For any game G = (N, A, i), the strategy profile a* € A is a pure Nash equilibrium
(PNE), iff Vi e N, Va; € A;:

wi(a;.a*y) > piai.ay). (5)

It is easily checked that the above definition is equivalent to writing that, in a pure Nash equilibrium, all players choose
their best response to other players’ best responses.

Example. In the landlord-tenant game (Table 1), the best response of the landlord when the tenant pays the rent (plays
P) is C, indeed: puy(P.C) =1> pu(P.C) =0.5. On the other hand, the best response of the tenant to the landlord who
confirms is P, since ur(P.C)=1> ur(P.C) =0.25

So, in situation (P, C) the tenant has no incentive to deviate from P and the landlord has no interest to move from C to
C: (P, () is a pure Nash equilibrium.

Notice that the notion of pure Nash equilibrium is purely ordinal - nothing more sophisticated than an ordinal ranking of
the outcomes is needed. The notion of (possibilistic) mixed strategy proposed in [20,21,6] remains in the ordinal framework.
A possibilistic mixed strategy for a player i is indeed a normalized distribution v; : Aj — A, that is a ranking on her set of
actions. This ranking has a dual interpretation in terms of preference on the one hand and likelihood on the other hand.
Indeed, for player i distribution v; models the ranking in terms of preference or commitment. Under this interpretation,
vi(a;) =1 means that action a; is fully satisfactory/conceivable to player i, while v;(a;) = 0 means that it is absolutely not
an option for her.

However, the other players may interpret the preference ranking v; as a likelihood. Assuming that player i is rational,
vi(a;) =1 is interpreted, by other players, as “action a; is a completely plausible play of player i” while v;(a;) = 0 means
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that a; is an impossible play of player i. This dual preference/likelihood interpretation is natural in game theory: according
to the other players, the most preferred alternatives of player i should be the most likely to be played by player i.

The joint non-correlated strategy (vq,..., V) defines a possibility distribution over the action profiles. Since the joint
action a = (aq, ..., ap) is played iff each player i plays action a;, the possibility that a is played is computed in a conjunctive
way, i.e., as the minimum of the vj;(a;):

Va=(a1,...,an)eA,v(a)=milgvi(ai). (6)
1€

By abuse of notation v designates both the above joint possibility distribution and the list (vq,..., v,;) of individual
players’ possibility distributions. Notice that v is normalized since all the v; are assumed to be normalized: there exists
a*=(aj,...,ay) such that v(a*) =1.

Following [6] the players evaluate the merit of a strategy by its pessimistic utility:
Uf“(v)=mi/§1max(l —v(a), 1i(@)). (7)
ae

A possibilistic mixed strategy is a mixed equilibrium if no player has an incentive to deviate from her v; - hence the
following definition:

Definition 4 (Possibilistic mixed equilibrium). v* = (vf, ..., v;;) is a possibilistic mixed equilibrium (ITME) in G = (N, A, i)
iff, Vi e N, Yu] on A;:

UP® vty = UP% ].u*)). (8)

[6] have shown that an ordinal game always admits at least one mixed equilibrium - and generally admits a full range
of more or less specific mixed equilibria. They put the emphasis on the least specific of them, claiming that, as soon as a
player plays one of her best response (and there may be several sharing the same level of pessimistic utility), the responses
which lead to the least commitment are preferable for her. Formally:

Definition 5 (Specificity relation). Given two possibility distributions v and v’ over some set A, v is more specific than v/,
denoted by v < v’ iff (i) Ya € A, v(a) < v/(a) and (ii) Ja € A, v(a) < V'(a).

Definition 6 (Least-specific possibilistic mixed equilibrium). v* = (v, ..., vy) is a least-specific possibilistic mixed equilibrium
for G = (N, A, u) iff v* is a TIME for G and there exists no I[IME v, s.t. v* < v.

Example. Let v = (vr.v;) be the possibilistic mixed strategy defined by:

vr(P)=1, vr(P)=1, v (C)=0.75 v (C)=1

The utilities of both players for v are u’;es(v) =0 and ufes(v) =0.25.
v is a TIME since:

o VU' £ v UR¥(vf.u) < UR¥ (ur.up) =0;
o VU' £ v: UP*(v].ur) < UP(up.ur) = 0.25.

It can be shown that v is a least-specific [TME. Indeed, one can check that UY**(v) < max(1 — vr(P), 1 — v (C), ur (P,
C)). So, since 1—vp(P) =0 < ur(P,C) =0.25 <1 — v (C) =0.25, UL* (v) <1 — v, (C). Then, if we increase vy (C) so as to
get a less specific mixed strategy (for player L), we decrease the utility of L. On the other hand, the mixed strategy of player
T is already the least-specific possible. v is thus a least-specific [IME.

3. Possibilistic games with incomplete information

The classical framework of games under complete information assumes that every player knows everything about the
game: the players, the actions available to all players, all their utilities, etc. What is not known by a player are the decisions
of the other ones, but the game itself is assumed to be perfectly known by everyone (hence the name “perfect information”).

This assumption cannot always be satisfied. In the real world indeed, players are not so well informed, and the knowledge
about the game is often incomplete. For instance, if we consider the classical battle of sexes example, a person who has
doubts about the faithfulness of his/her partner has some uncertainty about his/her priorities (being together or missing the
date).

Bayesian games [7] offer a suitable framework for cardinal games under incomplete knowledge. In these games, the
players’ knowledge about the game is assumed to be probabilistic. This probabilistic knowledge is common to all the players,
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but each player may receive some private information, her personal view of the game: Bayes’ rule of conditioning is used
to derive the knowledge of each player, hence the denomination “Bayesian” game.

Bayesian games assume that the utility degrees are additive in essence and that the knowledge of the players can be
quantified in a probabilistic way. This kind of approach does not apply to ordinal games, where the utility degrees do not
capture more than a ranking, nor to situations of decision under qualitative uncertainty. We propose in the following a
model for (ordinal) games under possibilistic information.

3.1. Possibilistic games with incomplete information: the framework

Following Harsanyi’s seminal work [7], a game with incomplete information can be first understood as a set S of states
of nature, each state corresponding to a classical game. The utility ©; of a player i does not depend only on the actions of
the other players but also on the game played, i.e., the actual state. Originally, none of the players knows which is the real
state, but all of them share a common knowledge about it. Just before playing, each player i will receive some information
7i(s) about the real state, i.e., 7; maps any s € S to an element 6; € ©; called the set of “types” of player i. After having
observed ti(s), player i knows more about the game played, but several games may still remain plausible. The player thus
conditions her knowledge on T;(s).

The set of possible types of player i, ®;, can be considered as a local state space and ® = ®1 x --- x ©, as the global
state space.’ The idea of Harsanyi when defining types was that a player’s local state can encapsulate all the information to
which the player has access: it contains not only the status of the external world that the player has observed but also her
introspective mental state.* Harsanyi shows that any game under incomplete information can be described on the space of
types (underlying worlds are omitted).

Now, in such a game, the action of a player i only depends on the information 6; € ®; she receives. A joint pure strategy
o =(01,...,0y) is thus a vector of functions o; that map possible information (each type 6; € ®;) to an action in A;: 0;(6;)
specifies the action that player i will execute when receiving the private information 6;.

Definition 7 (Pure strategy). A pure strategy is a vector o = (074, ..., 0oy) of functions o; : ©; — Aj.

Given a pure strategy o and a configuration of the players’ types 60 € ®, o () = (01(01), ..., 0n(6,)) denotes the joint
action (the element of A) prescribed by strategy o when 6 occurs. In the following, ¥; denotes the set of all functions from
®; to A; and ¥ = X x --- x X the set of all joint strategies.

We follow Harsanyi’s approach based on types and define a possibilistic game with incomplete information as follows:

Definition 8 (IT1-game). A possibilistic game with incomplete information (IT-game) G is a tuple (N, A, ®, 7w, u) where:

N is a finite set of n players {1, ...,n};

A = xjeNA; where A; is the set of actions of player i;

O = xicN®;, where ©; is the set of types of player i;

7: ® — A is a joint normalized possibility distribution over ®;

M ={(ui)ien} where p;: A x ® - A is the utility function of player i.

Possibility distribution 7 captures the common knowledge of the players. The information that the players have about
the real world corresponds to a # € ® but is not common: player i does not know 6, but only 6; (6; is the private knowledge
of player i). 7 (.|6;) captures the knowledge that player i has when learning 6;. On the other hand, utility w;(a, 0) (utility of
the joint action a for player i when learning 6) will be obtained once all players have learned their types and played their
actions - that is why u; depends on the whole 6 and not only on 6;.

A TI-game G can be equivalently defined as a set of |®| normal form games with the same set of players N and the
same set of actions A. More precisely, for each 6 € ©, there is a normal form game G? = (N, A, {,u?},-eN) where Vi e N:

wd () = pi(., ) and 7 (G%) = max  w(0'). 9)
0’e®,s.t., GY'=GY

Example (The landlord and tenant I1-game). We consider a I1-game variant version of the landlord and tenant game intro-
duced in Section 2. In this extension of the complete information game, the tenant can be honest (H) or dishonest (D), i.e.,
®1 = {H, D}. The landlord does not know the type of the tenant but makes investigations and can conclude the tenant is
honest (IH) or dishonest (ID), i.e,, ®; = {IH, ID}. Generally, the tenant is honest and the landlord is informed about this.

3 We use the same notations for the projection and concatenation of vectors as the ones used in the previous sections: for any 6 = (61, ...,6;,...,6,) € ©,
0; is the type of i in 0 and 6_; = (61, ...,6i-1,0i41,...,60); ¥V 0,0 €O, 0{.0,,- belongs to ®). Likewise ©_; = x j4®;.

4 See [22-26] for the links between belief states and types, and more generally for further developments about epistemic game theory. This kind of
interpretation also complies with the run-based semantics of epistemic logic [27].
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Table 2
A landlord-tenant IT-game with 4 types combinations.
‘ landlord
IH ID
¢ c C C C
. H [P 1,1 0,05 P 1,1 0,05
n P | 025,0 0,05 P | 025,025 0,05
m(H,IH)=1 m(H,ID)=0.25
4 c T c T
™ 1D [P [025,1] 025,05 P | 025,1 | 025,05
t P 1,0 0.25,0.5 P 1,025 0.25,0.5
7(D,IH)=0.5 7(D,ID)=0.75

But the tenant may be dishonest and the landlord well informed. There is a low possibility that the landlord is informed
that the tenant is honest while it is not the case. Finally, it cannot be excluded that the landlord is informed that the tenant
is dishonest while she is honest. This knowledge is captured by the following possibility distribution 7 :

w(H,IHy=1, =n(D,ID)=0.75, n(D,IH)=0.5, mw(H,ID)=0.25.

The projections of 7 on ®7 and ®; lead to:

n(H)=1, wn(D)=0.75, mw(H)=1, w({D)=0.75.

As to the utility degrees, scale A is used with the same meaning as previously. When the landlord does not confirm to rent,
the utility of the tenant is equal to O if honest and equal to 0.25 if dishonest. When the landlord confirms, the tenant’s
utility of P (resp. P) is equal to 1 (resp. 0.25) when she is dishonest and equal to 0.25 (resp. 1) when she is honest. The
utility of the landlord is neutral (0.5) when not confirming. When confirming, the landlord’s utility is high (1) when the
tenant pays, low when she does not pay (0 if the landlord believes that the tenant is honest, 0.25 otherwise).

There are four combinations of types, and thus four possible games (see Table 2) the possibility degrees of which are:

w(GH My =7 (H, IH) =1, 7 (G™P) =7 (H, D) =0.25,
7(GP-1My — (D, IH) = 0.5, 7 (GP'Py =7 (D, D) =0.75.

Clearly, IT-games properly generalize classical games (with complete information). Indeed:
Proposition 1. Any classical normal form game G = (N, A, u) is a [1-game with |®;| =1, Vi € N.

I1-games and Boolean games with incomplete information TI-games can be related to the framework proposed by [8] as
a semantics for possibilistic Boolean games where the prior knowledge of each player i can be captured by a distinct
possibility distribution 7r; (the knowledge is not common in [8]) and the players do not receive any private information
(there is no type). In [8] the knowledge of each player i is captured by a possibility distribution sr;. Then the authors
assume, mainly for simplicity and because of the ordinal nature of the sj, that the fusion of the 7;’s leads to a unique

distribution. 7w = mil? 7r; over the joint types of players. The possibility and the necessity of a given profile of actions being
1€

a PNE is then computed. The approach of [8] considers the problem from the external point of view of an observer who
proceeds to the fusion of these distributions and deduces a unique possibility distribution over the types of the players. The
likelihood of an equilibrium is computed ex-ante, on the basis of this prior possibility distribution.

Adapting these notions to IT-games, where the prior knowledge is common, we can compute, for any profile a of actions:

[M@isaPNE)y=  max  m(0). (10)
6,a is PNE for G

N(aisaPNE)=1 — max 7 (0). (11)
0.a is not a PNE for G
The concepts proposed in [8] are based on the definition of strategies as profiles of actions - each agent selects one and
only one action. This assumes that no more information about 6 can be acquired and thus that each player computes her
ex-ante utility.
The notion of type present in our framework allows to handle the knowledge that each player i has when receiving some
private information 6;, i.e., adopt an ex-interim point of view.? Then, the possibility (resp. necessity) that a is a NE can be
different between players - in our ex-interim framework, equations (10) and (11) are replaced by:

5 For a discussion of the merits of the ex-ante, ex-interim and ex-post approaches of incomplete information games, see [7,28].
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I1(a is a PNE|§;) = min 7 (0-i|6;).
6_;,a is a PNE for G%i—i

Nj(ais a PNE|G;) =1 — max 7 (0-16;).
0_;,a is not a PNE for Glif—i

3.2. Nash equilibria in possibilistic games

When making her decision on the basis of the information she receives (6;), the knowledge of player i becomes 7 (.|6;)
- player i then defines her strategy for 6;, according to this posterior knowledge. Let us first consider pure strategies - the
case of mixed possibilistic strategies will be developed later.

Pure Nash equilibrium in T1-games As in any incomplete information game, a pure strategy o specifies an action for each
player i for each 6;. Using possibilistic qualitative decision theory, the utility of o (6;) is evaluated by its possibilistic pes-
simistic utility (we assume that the player is cautious).

Definition 9 (Utility of an action, Utility of a pure strategy). The utility of player i € N of type 6; € ®; for an action g; € A; in
the context of o_; is:

U (@i.0-i.0) = min max (1 -7 (O-il6). i(a.0-i0-). 6,.6-7) ). (12)

_i€®_;

The utility of the pure strategy o € X to player i € N of type 6; € ©; is:
U (.60 = U (0161, 0-i, ;). (13)

Note that UP* (67(6;), 0_;, 6;) is independent of the choices of player i when her type is different from 6;.
A best response for player i of type 6; is computed knowing the provisional strategies of the other players, i.e., knowing
o_i. This is the action a; which maximizes U,.pes (aj, 0_i, 6;).

Definition 10 (Best response in a I1-game). The best response of player i € N of type 6; € ®; to o_; in G =(N, A, ®, T, u) is:
BRi(0_i, 6;) = argmax U{* (a;, 0_i. 6y). (14)

a;€A;

o is a PNE when no player i has interest to deviate from o;(6;) for some 6;, given 7 (.|6;) and o_;, i.e., every player plays
her best response to the other players’ best strategies.

Definition 11 (Pure Nash Equilibrium in a I1-game). o is a pure Nash equilibrium (PNE) in G = (N, A, ©, 7, u) iff: Vi e N, V0; €
0;,Va} € A;:

U (0i(6), 0-i, 6) = U (a}, 0_i, 6)). (15)

This definition is consistent with the case of complete information (Definition 3), which is recovered when |®| =1
(only one possible type per player). As a consequence, a pure Nash equilibrium may not exist for a IT-game (a complete
information game does not always admit a PNE).

Example. Let us first compute the conditional possibility distributions:

w(H|IH)=n(IH|H) =1, w(D|IH)=m(IH|D)=0.5,

w(H|ID)=m(ID|H) =0.25, w(D|ID) =m(ID|D)=1.
For instance, when the landlord learns that the tenant is honest, i.e., when the landlord is of type IH, the most plausible
type for the tenant is H.

Consider the joint strategy where the tenant pays if she is honest, and does not pay otherwise, and the landlord confirms
iff learning that the tenant is honest:

of(Hy=P, of(D)=P, of(IH)=C, o/ (ID)=C.

We have, U?es(P, aL*, H)=0.75 and U’T)es(ﬁ, GL*, H) = 0.25. Hence, the best response to o} for the honest tenant is P.

It can be checked that strategy o * is a PNE. Indeed, as we have seen, the best response of the honest tenant to strategy
o} is to pay. Moreover, the dishonest tenant is indifferent between P and P (UY**(P, o}, D) = UL (P, o}, D) = 0.25); the
informed honest (IH) landlord is indifferent between C and C (UY*(C, o7, IH) = U (C, 0, IH)) = 0.5); and finally, the

informed dishonest (ID) landlord prefers C to C (since UP*(C, o7, D) = 0.25 is lower than U} (C, o7, IH)) = 0.5). So,
whatever her type, no player has any incentive to change her strategy: o * is a Nash equilibrium.
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Mixed Nash equilibrium in T1-games Let us now extend the notion of possibilistic mixed joint strategy to IT-games: in such
a game, a mixed strategy will be a tuple v = (v, ..., Uy) where v; : ®; — W; maps each type of player i to a mixed
possibilistic strategy in W; (W; is the set of normalized possibility distributions over actions in A;). Formally:

Definition 12 (Possibilistic mixed strategy in a T1-game). A possibilistic mixed joint strategy is a vector v = (vq,..., Uy) of
functions v; : ®; — ¥; where W; = {7 : A; —> A} is the set of the normalized possibility distributions over A;.
For the sake of readability, let v;(a;|6;) = v;(6;)(a;) denote the possibility that player i plays action a; when her type is 6;.

Assuming that player i is rational and of type 6;, the common knowledge and rationality assumptions mean that
v;j(a;j|6;) = 1 may be interpreted by other players as a; being a completely plausible play of player i, while v;(a;|6;) =0
means that ag; is an impossible play. Therefore, the ranking over strategies induced by vj;(-|¢;) may be interpreted as a
plausibility ranking by other players.

Example. We shall for instance consider the joint mixed strategy (vr.vy) defined by:
vr(PIH)=1, vr(P|H)=0.5, vr(P|D)=0.25, wvr(P|D)=1,
vr(C|IH) =1, v (C|IH)=0.75, vr(C|ID)=0.25, vr(C|ID)=1.

In short, the honest tenant prefers to pay (vr(.|H)), the dishonest tenant prefers not to pay (vr(.|D)), the informed honest
landlord generally confirms (v (.|]IH)) and the informed dishonest landlord prefers not no (v;(.|ID))

According to [6], when the configuration of types is 6, the joint possibility distribution over the profiles of actions is
defined as the minimum of the individual players’ possibility distributions over individual actions. Formally:

v(alf) = min v;(a;|6;). (16)
ieN

Let 7y, (a, 6_;]6;) be the possibility distribution on A x ®_; defined by v, given the type 6; and prior knowledge 7 : ® — A.
Ty (a,6_;|6;) is defined as the minimum over 7 (6_;|0;) and the joint possibility distribution over ab

my(a, 0-i|6;) = min(mr (6;16;), v(al6;.0-i)). (17)

Let us now study the evaluation of mixed strategies. In order to stay in accordance with the previous assumptions of
cautiousness and ordinality, strategies will be evaluated using the pessimistic possibilistic utility.

Definition 13 (Utility of a mixed strategy). The pessimistic utility for player i € N of type 6; € ®; of the mixed strategy v in
G=(N,A, 0,7, u)is:

UP*(v,6) = min minmax (1 — 7y (a, 0_;|6)), pi(@, 0)). (18)

6_;c®_jacA
It can be checked that:

Proposition 2.

UP*(v,6) = min max(l—n(e_i|9i),mi£max(1—U(a|9i.9_i),u,-(a,49))). (19)
ae

6_ie®_;
Thus, U/**(v, 6;) can be written as:
Proposition 3. The pessimistic utility for player i € N of type 0; € ©; of the mixed strategy v in G = (N, A, ©, 7, ) is:
Ul w,6) = énellgl max (1 — vj(a;|6y), UP* (ai, v_i, 6)) (20)

where: Ul.pes(ai, v_j, 0) =

min  min max (1 — (6116, 1 — v_i(a_il0_1), ri(ai.a_i, ei.e_i)). 1)
a_jeA_j0_je®_;,

6 By the possibilistic chaining rule.
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A possibilistic mixed Nash equilibrium in a I1-game is a mixed strategy v* = (v, ..., v;) where no player i of type 6;
can improve her pessimistic utility by changing her mixed strategy v;. Formally:

Definition 14 (Possibilistic mixed Nash equilibrium in a T1-game). v* is a possibilistic mixed Nash equilibrium (IT-MNE) in a
[T-game G = (N, A, ©, 7, u) iff:
Vi e N,V6; € ©;,Vu], U (v*, 6) > UP* (v].v*,, 6)). (22)

Example. Consider the following joint mixed strategy v* = (vf.v[):
vr(PIH) =1, vi(P[H)=1,v§(PID)=1, v}(P|D)=1,
vy (C|IH) =0.5, UZ‘(EUH):L v/ (C|ID) =0.5, Uf(fllD):l.

The pessimistic utilities of both players are:

U?eS(U*’ H) = min(max (l — vF(P[H), U?“(P, e H)),

max (1 - v} (PIH), U (P, vy, H))).

Since UE(P, v?, H)) =0, then: UE*(v*, H) =0.

Similarly, UY** (v*, D) = 0.25, UY** (v*, IH) = 0.5, UY* (v*, ID) = 0.5.
It can be checked that v* is a IT-MNE of the IT-game:

e VUL(|H) # VE(IH), UP*(v*, H) = UP* (U} (.|H).vf, H) = 0. Thus, the honest tenant has no incentive to deviate to
another strategy;

e VUL(.ID) # vE(.ID), UP*(v*, D) > UF*(u;(.ID).v}, D). Thus, the dishonest tenant has no incentive to deviate to an-
other mixed strategy;

e VU] (|TH) # vf (|IH), UP*(v*, IH) > U (uE.v] (|IH), IH). Thus, the informed honest landlord has no incentive to

deviate;
e VU] (.|ID) # v} (|ID), UP**(v*, ID) > UY* (uf.v] (.|ID), ID). Thus, the informed dishonest landlord has no incentive to
deviate.

3.3. Transforming a T1-game into an equivalent ordinal normal form game

In this Section, we show that any incomplete information game can be transformed into an equivalent normal form game
with complete information, such that its strategies and equilibria are in bijection with the ones of the original IT-game. This
result is a qualitative counterpart of Harsanyi’s result about the transformation of Bayesian games into normal form games
under complete information [7]. We consider as many players as the number of pairs (i, ;) in the transformed game, each
player (i, 6;) having set of available actions A;. A pure strategy in the IT-game associates an action to each type 6; of each
player i. In the “Complete information game representation” of the IT-game, a pure strategy associates an action to each
player (i, 6;):

Definition 15 (Complete standard normal form representation of a I1-game). The complete standard normal form representation
(C-SNF-representation) of IT-game G = (N, A, ©, 7, ) is the SNF game G = (N, A, i), where:

o N={(i.6).ieN.0; €O;};
a0y = Ai, ¥(i,6) eN;

o [Lie) (@ =UP(0.6), Vae AV, 6)eN, where 0;(6;) =), V(i 6) € N.

2

Definition 16 (Complete standard normal form representation of a pure strategy). Let o be a pure strategy in G = (N, A, ©, 7, ).
The C-SNF-representation of o in G is the profile of actions a defined by:

(i, 6) € N, dg g = 0i(6). (23)

It is easy to see that @ is a profile of actions of G and that the strategies of G and G are in bijection. It follows that:

Proposition 4. The pure strategy o is a PNE for G = (N, A, ©, 7r, 1) iffd is a PNE in its C-SNF representation G = (N, A, i).
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Example. The C-SNF-representation of the landlord and tenant game, G, has 4 players: N ={(T, H), (T, D), (L, IH), (L, ID)},
with At my = A,p) = {P,F_}, A1) = Aw.ip) = {C,C).

The joint action a* = (P.P.C.C) in G is the C-SNF representation of the joint pure strategy o * of G defined by o (H) =P,
0f(D)="P, o} (IH)=C, o] (ID) =C.

The utilities of @* in G are:

At @) =U (0%, H)=0.75, [ p)@)=U(0* D)=0.25,
Ao @) =UP(0*, IH) =05, fiw,p)@)=Ur(@* 1D)=0.5.

Finally, every mixed strategy in the I1-game G has an equivalent mixed strategy in its C-SNF-representation G and the
mixed equilibria of the two games are in bijection.

Definition 17 (Complete normal form representation of a mixed strategy). Let v be a mixed strategy in G = (N, A, ®, i, ). The
C-SNF-representation of v is the mixed strategy U such that:

(i, 6) € N, D g (@i 0) = vi(ail6h). (24)

It is easy to show that: U(a) = v(a|f).
As a consequence of Definition 17, we get:

Proposition 5. The mixed strategy v is a [IMNE for G = (N, A, ©, 7w, ) iff 0 isa [IME in G = (N, A, j1).

Regarding the complexity of the transformation, consider that the original game is extensively represented by tables (the
game is in standard normal form). The transformed game contains 1=} ;_; , |®;| utility functions of size n(i,ei)eN ‘A(Lgiﬂ =
[Tic1n [Toco, 1Ail = TTizy o 1A

For simplification purpose, let |A;| =d and |®;| =t, Vi € N (i.e., the number of actions and the number of types are
the same for all players). A game containing n utility functions of size (d - t)" is transformed into a game containing
fl=n -t utility functions of size d* = (d")!, since the number of players 7 in the transformed game is equal to (n - t). This
transformation is exponential in time and space.

So, except when the number of types is very small, the transformation does not provide a convenient way to solve the
game. Proposition 5 is, as in the Bayesian case, more a representation result than a solving tool.

3.4. Complexity results

In the previous Section (Section 3.3), we have shown that a TT-game can be transformed into an equivalent normal form
game with complete information. Since it is not guaranteed to get a PNE in a normal form game, it is also not guaranteed
that a IT-game admits a PNE.

In the following, we study the complexity of the problem of deciding whether a IT-game admits a PNE.

Definition 18 (PNE problem). The PNE problem consists in determining whether any given I1-game G = (N, A,©®, 7, u) G
admits a pure Nash equilibrium.

Deciding the existence of a pure Nash equilibrium in a TT-game is a difficult problem as stated by the following propo-
sition:

Proposition 6. PNE is NP-Hard, even in symmetric’ 2-player games where 7 corresponds to total ignorance, i.e., V6; € ®; and
Vb, € Oy, (01,0) = 1.

Finally, in [6], authors have shown that an ordinal SNF game admits at least one IT-MNE. Since any IT-game can be
transformed into an equivalent SNF game with complete information (this is the result of the previous Section), it follows
that a IT-game always admits at least one TT-MNE. We show in Section 4.2 that such an equilibrium can be computed in
polynomial time.

7 A game is symmetric if all players have the same set of actions, and the utilities of playing a given action depends only on the actions being played,
not on who plays them.
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4. Computing equilibria in IT-games
4.1. Finding a pure Nash equilibrium: a MILP formulation

Taking advantage of the efficiency of modern solvers, we propose a Mixed Integer Linear Programming (MILP) formulation
of the problem of finding, if it exists, a PNE in a IT-game (we follow in this the idea explored by [29] for solving Bayesian
games).

o the main decision variables are Boolean variables encoding the strategy searched for: each oj g, ¢, is a Boolean variable
indicating whether action g; is prescribed for type 6; of player i: Vi € N, Va; € A;,V0; € ©; : 0j 4, 9, € {0, 1};

o the utilities are encoded by continuous variables: U; g, ¢, is the utility (according to o_;) of player i if action a; is chosen
for type 6; (i.e., if 0;(6;)) =a;): Vi e N,Va; € A;,V0; € ©; : Uj 4,0, €10, 1].

e We will also use Boolean variables to constrain the Uj 4, ¢, to be equal to the ming_,ce_; of max (1 —(6-il6;), Ki(a, 9))
(and not only lower than the min): Vi € N,Va; € A;,V0 € © : M 4, ¢ € {0, 1}.

The MILP formulation we propose is the following:

VieN, V6 €®;, Y Oigs=1. (25)
a;eA;
Vi e N,Vaj,a; € Aj, s.t,a; #a;,V0; € O, Uj g, 9, — Ui g6 = Oiaig — 1. (26)
Vie N,Vae A,V0 € O,
Uiang <max (1 -7 (0-i16). i@, ) + > (1= 0ja;.0)- (27)
JeN, j#i

Vie N,Vaec A,V0 € O,

Uigti + Migo+ Y (1—0ja.0) > max(l —m(0_il6;). iti(@.0)). (28)
jeN, j#i
VieN.Va; € A0, €0, Y (1—Migp.0.,)=1 (29)
0_ie®_;

o Constraints (25) ensure that the strategy o searched for specifies exactly one action per type, for each player i.

e Constraints (26) require that o is a PNE: when 0j 4, ¢, = 1, this constraint requires Uj q; o, > U,"al{!gi, i.e., that player i
has no incentive to deviate from a;. When action q; is not chosen for 6;, (0j 4, = 0) the constraint is always satisfied
(Uig0, — Ui,a;_gi is always greater than —1).

e Constraints (27) implement Definition (9). They ensure that the utility of player i playing o (6;) = a; is lower than all,
i.e.,, the minimum over the 6_; of the max(1 — w (6_i|6;), ii(aj.o_i(6—;),0)). Indeed, for any profile of action a that
does not correspond to what is prescribed by o, ;. (1 — Oja;0,) =1, the constraint is always satisfied (Uj g6 < 1).
If a_; is chosen for 6_;, then Oja;0, =1, Vj#iand Zj4(1— Oja;,0;) = 0: the constraint becomes Uj g; 6, < max(1 —
7 (0-i16;), ni(a, 0)).

o Constraints (28) and (29) ensure that U; 4, ¢, is equal to the min over 6_; of max(1 —m (6_;16;), ni(a, 0)): If a_; does not
correspond to o_j, Zji(1 —0jq;0;) is at least equal to 1 and the constraints (28) are always satisfied. Otherwise, (a_;
correspond to o_;) the sum is equal to 0 and does not annihilate the constraint. The min is reached if U; 4, g, = max(1 —
7 (0-il6;), wi(a, 8)). Whenever M; 4 ¢ = 1, Equation (28) holds, and Equation (29) ensures that (28) is an equality for
one 6_; (minimizing max(1 —  (6_;|6;), Ki(a,v))).

The above formulation is linear (the max operator which appears in constraints (27) and (28) deals with constants only).
Furthermore, it does not lead to a combinatorial explosion of the required space. Recall that the size of the original problem
isn-|©|-]A|+|©]|. Let us denote d (resp. t) the number of actions (resp. types) of each player. The MILP formulation contains:
O(n-t-d) continuous variables Uj g ,; O(n-t-d) Boolean variables o4, 9,; O(n-d-t") Boolean variables M; g, 9; O(n-t)
constraints (25), each involving O (a) variables; O(n-t-d- (d — 1)) constraints (26), each involving 3 variables; O (n-t" - d")
constraints (27) each involving O (n) variables; O(n - t" - d") constraints (28) each involving O (n + 1) variables; O(n-d-t)
constraints (29) each involving O(%) variables. The size of the MILP encoding is thus in O (n? - |®|- |A|) (polynomial in the
size of the original size of the problem (i.e., n-|0]|-|A| + |O|)).

4.2. Building a possibilistic mixed Nash equilibrium

We have seen in Section 3.3 that any [T-game G can be transformed into an equivalent C-SNF-representation G (Def-

inition 15) and that a mixed strategy m in G corresponds to a unique mixed strategy v in G (Definition 17). So, it is
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Algorithm 1 IMPROVE.
Data: G=(N,A,O, T, 1), v, i, 6
Result: v’ = (v1,..., Vi1, V], Vig1. ..., Un)
D6y < 7]
forall g; € A; do
|_ if UP (@i, v_i, 6) <UP® (v, 6;) then D) < D Ulai}

if Va; € Aj \ D(ig,), vi(ail6;) <1 then V' < v
else
forall a; € A; do
L if a; € Di g, then v/(qj|6;) < max{ox e Aja <1—U*(v,6)}
else v{(a;l6;) < vi(ail6)

return v’

Algorithm 2 FINDING A LEAST-SPECIFIC [T-MNE in IT-game.
Data: G=(N,A,0,m, 1)
Result: v* = (v, ..., v)), a I-MNE
V0@, v)) /% v2(6;,a) =1,Yi e N,Va; € A;, V6 € ©; */
t<0
repeat

Uloc <« U[

forall i € N do

L forall §; € ®; do UPC « IMPROVE (G, U, 1, 6;)

v+l yloc
t<—t+1
until V' = vi~!
v* vt
return v*

theoretically possible to apply the algorithm proposed by [6]. This algorithm is guaranteed to return a IIMNE of G, 7*,
in time polynomial in the expression of G. And from 7*, we immediately get an equilibrium strategy for G as expressed
above. But, as noted in Section 3.3, the size of [t is exponential in that of the initial IT-game. Thus, if we actually construct
G, the algorithm of [6] will converge to a [IMNE, but in time exponential in the size of G.

We explore here a more direct (and polynomial time) approach. The algorithm we present (Algorithms 1 and 2) is a
generalization of the one proposed in [6]. In this iterative process, at each step, each player i of type 6; tries to maximize
her pessimistic utility by moving her mixed strategy to a more specific one. We can indeed show that when a player moves
to a more specific mixed strategy her pessimistic utility cannot decrease.

Proposition 7. Let v and v’ be two mixed strategies such that v’ < v. Then: Vi € N, V6; € ©;, U'* (v, 6;) < U (v, §)).

Algorithm 2 mimics a negotiation process. At each stage (each t), given the joint mixed strategy, every player i tries to
improve her pessimistic utility by changing her mixed strategy U{"C. Thanks to Proposition 7 changing to a more specific
mixed strategy never decreases the utility of any of the players. When no player has any more incentive to make her
strategy more specific, the result of the negotiation leads to a least specific mixed equilibrium.

We first show that Algorithm 2, which performs iterations over the IMPROVE procedure, converges, and convergence
occurs in time polynomial in the size of the IT-game G.

Proposition 8 (Convergence). Let G = (N, A, ®, 1r, ) be a T1-game. Algorithm 2 converges in a finite number of steps

Proposition 9 (Complexity of Algorithm 1). IMPROVE runs in time polynomial in the size of the input I1-game. The whole complexity
of the IMPROVE function is: O (d™t1 x t"~1)

Algorithm 2 calls N x t times Algorithm 1. Thus, thanks to Proposition 9, we get:
Corollary 1 (Complexity of Algorithm 2). The whole complexity of algorithm is 2: O (n x t" x |A| xd x d" xn) = 0 (n® x t" x |A| x d").
We finally show that the algorithm converges towards a possibilistic mixed equilibrium of the IT-game G.

Proposition 10 (Soundness). Algorithm 2 converges towards a least-specific possibilistic mixed equilibrium of G = (N, A, ®, 7T, |4).
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Fig. 1. Avg. execution time, MILP-PNE, |A;| =2, |®;| € [2,10], n € [2,4].

5. Experimental study

The goal of this experimental study is to evaluate the efficiency and feasibility of the algorithms described in the previous
Section. To this end, we adapted the GAMUT game generator [30] to generate IT1-games (GAMUT produces exclusively normal
form games with complete information). In the present Section, we detail this [T-game generator, the experimental protocol
and our experimental results.

5.1. A I1-game generator

Our generator is based on the idea that every IT-game can be equivalently defined as a set of |®| normal form games
with the same set of players N and actions A, following the approach of [29] for the generation of Bayesian games. The idea
is to generate, using GAMUT, for each combination of types # € © a normal form game G? and a possibility distribution
over the combinations of types. For the sake of simplicity, we assume that the number of actions and types are equal for
all players, ie, Vi, je N,|Aj|=|Aj|=d and Vi, je N, |0;| = |0;| =t.

To generate a IT-game, G = (N, A, ®, r, i), we need as inputs: (1) the class and the name of the game, (2) the number
of players, (3) the number of degrees in A, (4) the number of types per player and (5) the number of actions per player.
Then, we ask GAMUT to generate |®| normal form games of the class given in input, the range of utility of which is A
and we generate a normalized distribution 7 : ® — A (a randomly selected 6 receives degree 1; the degrees of the other
elements of © are selected in A following a uniform distribution). Finally, the utility u;(a, ) is simply the utility of the
joint action a for player i in the normal form game G? = (N, A, {{i! }ien }).

5.2. Experimental protocol

In our experiments, we set A ={0,0.25,0.5,0.75, 1} and let the number of players vary from 2 to 10, the number of
types from 2 to 10 and the number of actions from 2 to 10. For each combination of parameters, 100 instances are generated
and the times necessary to get (i) a pure equilibrium (or a negative result) and (ii) a possibilistic mixed equilibrium, are
measured.

We present results for 3 classes of games: Minimum Effort game, Random game and Travelers Dilemma game. In our evalu-
ation, we bounded the execution time for a single game to 10 minutes, as in [31,32].

All experiments were conducted on an Intel Xeon E5540 processor and 64 GB RAM workstation. We used CPLEX [33] as
a MILP solver and Java 8 as a programming language. The implementation of the transformation of the IT-game as a normal
form game and the MILP solver are available online.®

5.3. Experimental results: pure Nash equilibria

Globally the experiments based on the MILP formulation of Section 4.1 confirm the feasibility of the qualitative approach
for incomplete information games. In the experiment reported on Figs. 1 and 2, we let the number of types vary from 2 to
10 and n vary from 2 to 6 - setting the number of actions to 2. Unsurprisingly, the CPU time increases with the number of
players and the number of types. This is explained by the fact that when the number of types and players increases, |©|
and |A]| increase directly (as in any incomplete information games). Thus, the size of the MILP increases.

However, we note a non-monotonic behavior for the Minimum Effort game: the average execution time for 6 players
is lower than 5 players (in the case of |®;]| =5, Vi € N). This can be explained by the fact that among the 100 games
randomly generated at each point, some may have no PNE. Indeed, from Figs. 3 and 4 showing the average execution time
for games that admit at least a PNE and for those that do not admit a PNE, respectively, we can see that the existence of a
PNE in a game highly impacts the time needed to solve it. In particular, for the Minimum Effort game, with 5 players and 5
types per player, the average execution time to solve 100 games is around 300s (see Fig. 2), this value is obtained from 63

8 https://www.irit.fr/~Helene.Fargier/PossibilisticGames.html.
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the three categories of games) are configurations where no game with a PNE was found.
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games for the three categories of games) are configurations where all games admitted a PNE.

games that admit a PNE with an average time of around 460s (see Fig. 3) and 37 games that do not admit a PNE with an
average time around 27s (see Fig. 4). Moreover, for Minimum Effort game, with 6 players and 5 types per player, the decrease
of the average execution time to solve 100 games (in Fig. 2) is due to the non-existence of a PNE for all instances. The
increasing of the number of players has a twofold effect: the size of the game grows, leading hence to the growth of the
MILP formulation - finding a PNE becomes harder when it exists. On the other hand, the MILP formulation becomes more
constrained, and for the instances without PNE, the solver detects inconsistent instances faster.

5.4. Experimental results: possibilistic mixed equilibria

In this experimentation of Algorithm 2, we start by setting the number of players equal to 2 and varying the number
of actions from 2 to 10 and the number of types from 2 to 10. The execution time needed to find one of the least specific
IT1-MNE is presented in Figs. 5 and 6, respectively. Then, we set the number of types per player equal to 2 and let the
number of players and action vary - see Fig. 7.

The results show that, for the 3 classes of games, Algorithm 2 can return the least specific IT-MNE in a reasonable time
(less than 0.4 seconds when the number of players is equal to 2 and the number of actions and types are equal to 10).
The number of players in a IT-game is the “main” parameter that influences the average execution time needed to find a
IT-MNE. Fig. 7 shows that if the number of actions per player is equal to 4 and the number of types per player is equal to
2, the average execution time needed to find the least specific IT-MNE in a Minimum Effort game with 5 players is around
to 2 s. When the number of players is equal to 6 (resp., 7) the average execution time is around to 30 s (resp., 115 s).

The results empirically confirm the complexity analysis of the algorithm - its complexity is polynomial in the size of the
game, which is itself exponential in the number of players.
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6. Conclusion

In this paper, possibilistic games have been proposed as a new representation framework for ordinal games under pos-
sibilistic incomplete information. The notions of pure and mixed ordinal equilibria have been defined for such games and
we have shown that determining whether a pure Nash equilibrium exists in a T1-game is a NP-complete problem. Instead,
the problem can be solved in polynomial time when mixed equilibria are considered. The theoretical time needed to reach
a mixed equilibrium increases linearly with the size of the input (of the game), which is itself exponential in the number
of players (n - (t - a)"). Because the size of the game is highly impacted by the number of players, experiments show that
the average execution time increases drastically when the number of players increases. This is observable for all the classes
of games we considered in our experiments: Minimum Effort game, Random game and Travelers Dilemma game. This confirms
the theoretical results of this paper.

There are several possible followings to this work. The first one would be to define succinct forms of possibilistic games.
Indeed, it is even more crucial in incomplete information game than in complete information ones, to offer the possibility
of succinct expressions of utility tables, since they depend on joint types in addition to joint actions. The natural extensions
would be to consider games where the interactions are local, i.e. where the utility of a player depends only on a subset of
players. To explore this path of research, we may extend the polymatrix [34], graphical [35], hypergraphical [36] (complete
information) games frameworks to the possibilistic, incomplete information case.

A longer term perspective would be to consider studying sequential possibilistic games. In the probabilistic, quantitative
framework, competitive Markov decision processes (MDP) [37] extend both (MDP) [38] and cardinal games, to sequential
games under uncertainty. Partially observed stochastic games [39], on their side, extend both partially observed MDP [40]
and cardinal games, to sequential incomplete information games. Possibilistic MDP (and POMDP) have been introduced
by [41,42], in the possibilistic framework. A fruitful avenue for new research would be to extend possibilistic MDP/POMDP
and possibilistic complete/incomplete information games, so as to define possibilistic competitive MDP and to develop a
possibilistic version of partially observed stochastic games.
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7. Proofs

Proof of Proposition 1. Let G = (N, A, ©, 7, ) be a TT-game where Vi € N, |®;| = 1. Then it exists a unique type combina-
tion 6 € O, ie, |©] =1 = there is one possible game G’ such that 7(G?) =1 since 7 is normalized. Thus G is equal to
classical normal form game, i.e, G =G’ = (N, A, {{u?};eN}). a

Proof of Proposition 2.

UP®(,6) = min  max(1—my(a0-i6), ki@ 6)).

6_ie®_j, aeA

Based on Equation (17):

UP*(,6)= min  max (1 —min(w (6|6, v(al6;.60_))., pi(a,o)).
0_ije®_;, aeA

UPF%(,0)=min  max(1—m (66,1 — v(al6;.0_), pi(a,o)).
0_;je®_;, aeA

UP*(v,6) = min max(l—n(e_i|9i),mi£max(1—U(a|9i.9_i),u,-(a,9))). 0
ae

0_ic®_;
Proof of Proposition 3.

UP*(v,6)= min max (1 — 7 (04169, minmax (1 = v(al6). pi(a. 0)))
ae

0_ie®_;

UP*(v,6)= min max (l — 1 (6-il6:),

0_ije®_;

minmax (1 —min(v;(a;|6;), v—i(a—;|6;)), wi(a, 9))).

acA

UP*(v,6) = min max(l—n(@,iwi),min
6_ie®_; acA

max (1 — v;(a;|6;), T — v_i(a_i|6—), pi(a, 9)))-

UP*(,6)= " min
0_ije®_;j,aeA

max (1= 7 O-160), 1 = vi(@16), 1 = v_i(@ailo-), i(a.0) ).

U, ) Z(?g‘} max(1 — vi(a;l6), UP* (a;, v_i, 6)). O

Proof of Proposition 4. = Assume that a is a PNE in G. Then,

o (@;.a_i) < [l (@), Vi, 0;, a;.
But, since [i(iq,)(@) =qef U (@°, 6;), we get UP**(al,a”,, 6;) <UF*(a?,6)).
Thus, a° is a PNE of G.
< Now, let o be a PNE of G, define G and joint action a: ag, = 0;(6)), Y(i, 6;). Then, again, (g, (@) = U"*"(0,6;). And
since o is a PNE in G, we get UP**(a}, 0_;,6) <UF“(0,6)),Vi,6;,a] and, Vi, 6;,d]

6 (A g,y -0—i.6p) < FLii.ap (@)
Thus, a is a PNE of G. O
Proof of Proposition 5. First, note that the transformation v — U (Definition 17) between the sets of mixed strategies in

games G and G is bijective. Thus, in order to prove that mixed equilibria are the same in both games, it is enough to show
that

UP* (v, 6) = ul'g (0). V(0. 6). (30)
To do so, first note that:
Uipes(v, 0;) =, rgin Amax(l — my(a, 0-il6;), wi(a, 0)), by Definition 13,
_i€®_j.ae

7y (@, 0—i16;) = min( (6—|6;), v(alf)), by Equation (17),
and 0 (a) = v(a|f), by Definition 17.
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Thus,

UP% (v, 6) = min max(1 — 0(@, min max(1 — 7 (6_;|6y), i, v))).
acA 6_ie®_;

Note that, by Definition 9,

UP(o,6) = min max(1— 7 (6_i16;), ki(o (6),0)),

_i€®_;

where o is the unique pure strategy in G, defined from any pure strategy a in G.
Then,

Ul w,6) = min max(1 — 0(a), Ul®(,6)),
ae

U, 6) = min max(1 — 0(@), fi;¢)()), by Definition 15,
ae

U (v, 6) = i, (D), by Eq.(7).

Thus, Proposition 5 holds. O

Proof of Proposition 6. Membership. We prove the membership in NP for the more general case of N unbounded. In this
case, the size of the input is exponential in the number of players n. The PNE can be solved by guessing a strategy o, i.e.,
guessing an action for each pair player/type, then checking whether o is a PNE or not. More precisely: For each player i
and for each type 6; € ©;:

- compute UP**(0, 6;) and
- for each action a; € A;, compute U (a;, 0_;, 6)).

Then check if i has incentive to deviate from o;(6;), i.e., we should compare Uipes(o,éi) and Uipes(a,-,a_i,ei). Under the
assumption that ;v is represented by a table of |®| lines, the complexity of computing Ufes(a,ej) is in 0(]®_;]), from
Definition 9. Thus the whole complexity is polynomial O (n x |®;| x |©_;| X |Amax|) = O X |®] X |Amax|) where |Amax| =
max(|A1], ..., |Anl)-

Algorithm 3 details this process:

Algorithm 3 CHECK_EQUILIBRIUM.
Data: G=(N,A,®, 7, ), o
Result: IsPNE (Boolean)
ISPNE <« true
forall iin N do
forall 6; € ®; do
Compute UP (0, 6)
forall a; € A; do
Compute UP¥(a;, 0_;,6;)
if UP(a;,0_;,6) > U’ (0, 6;) then IsPNE< false;

return [sPNE

o is a PNE using Algorithm 3 is in O(n x |®] x |Amax|).
Hardness.” The hardness proof uses a reduction from the SET-COVER problem:

Definition 19 (SET-COVER (SC) problem). Given a set S = {sq, ..., sp}, subsets {S1, S2, ..., S} of S with Uj<j<nS;i =S and
an integer K < m. We are asked whether there exists a subset of {S1, Sa, ..., S} of size K whose union equals S, i.e.,
Scisoos Sci such that Uj<j<g Se; = S.

We reduce an arbitrary SC = (S,{S1,Sz,...,5m}, K) instance to a PNE instance: Let I1-game Gsc = (N, A, ®,m, u)
where:

e N={1,2}
e A=A1 x Ay where Ail=A = {S], cees Sm,S1, vy Sn}
9 The proof of hardness is inspired from [43].
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e ® =07 x O where ®; =0, ={t1, ..., tx} (both players belong to one of K types)
o Vb € ©1,0 € Oy, m(61,62) =1 (;r reflects total ignorance).
e We assume utility functions that do not depend on a specific type 6 € ®. They are as follows:

(i) @1(5i.5j) = u2(S;.5) =0.25 VSiT Sj
(i) p1(Si.sj) = p2(sj.5i) = 0.25+ g2 VS;, Vs ¢ S;
(111) M1 (S,‘.S]') = /Lz(Sj.S,') =0.5 VS,’,VSj S S,’
(iv) p1(si.sj) = (a(sj.si) =0 Vs;,s;j
(V) M1(Sj.51') = /1,2(51'.5]') =0.75 Vsi,VS]' ¢ 51
(vi) w1(sj.Si) = u2(Sj.si) =0VS;,Vs;€5;

Note that a SET-CovVER instance SC can be represented in space O (mnlog(n)). The size of the I1-game Gsc is the size
required to represent 7, nq1 and . Assuming that m is represented as a table (which is obviously not the most concise
way to represent it), || = 0(K?) = 0(n?) and |w1| = |u2| = O((m + n)?). The latter size may become O ((m + n)2K?) if
we store w;i(o,0) even though utilities are independent of 6. Thus, Gsc requires space polynomial in that of SC to be
represented. And since every m(0) and ui(o,6) require constant time to be computed, the transformation is polynomial
(time).

Note that, in TI-game with 2 players and 7 corresponding to total ignorance, the utility of the 2 players are computed
as follows:

U7™(0,61) = min max (1 -7 (@61), £1(01(61).05(62)))

ZE 2
Since m (62161) =1, thus:

U (0,61) = min p11(01(61).02(62)).
6re®)

In the same way, Ufes(o, 0y) = Gmig n2(01(61).02(62)).
1€01

Now we show that G admits a PNE < SC admits a SET-COVER.

SC admits a SET-COVER = G admits a I1-PNE First suppose there exist S, ..., S, such that Ui<j<xS¢; = S. Suppose both
players i = {1, 2} play 569,- when their type is 6;, i.e., V01 € ®1, 01(61) = 5591 and V6, € ©3, 02(02) = 5592. We claim that
(01.02) is a PNE.

Player 1 (resp. 2) supposes that player 2 (resp. 1) employs this strategy. Then, note that for any sj, there is at least
one S¢; such that s; € S;, since SC admits a SET-COVER {S,, ..., S¢,}. So, if player 1 of type 61, for example, changes her
strategy by replacing Sce, with some sj, this will decrease her ut111ty from 0.25 (i) to O (vi), since s; is covered by some
Scs, played by player 2 of type 6. Of course, the same holds for the other player, so that no player has interest to deviate
from the SET-COVER play. It follows that playing any of the S; is optimal. So there is a PNE.

G admits a PNE = SC admits a SET-COVER Suppose that G admits a PNE o*. We are going to show by contradiction that
{07 (61)}g,c0, and {05 (02)}s,co, form Set covers of SC.

1. Assume player 1 plays some o1(61) € S for some 6; € ©®1. We show that we have 02(6,) C S, V6, € ;. Indeed, if
any 03(6,) € S for some 6, € ©, then Uy (0, 6,) = p2(01(61), 02(62)) = 0 while UY*(07,62) = 0.25 if 02(62) € S is
replaced with any o,(62) = S..

2. Now, forget about Player 1 and assume that 02(62) € S, V6, € ©, and that S\ Ug,02(6;) is non-empty. Then, obviously,
01(61) € S\ Ug,02(62), V61 € O1, since this provides utility 0.75 to player 1 of any type 6;. However, let s« be the state
with minimum index for which there exists 0 s.t. 01(61) = sj«. sj+ is not “covered” by any o02(6) (so, Uges(o, 6) =

0.25+ %). However, considering (ii), Player 2 of any type 6, will be better off trading o,(6,) for some S such that
sj+ € S, since this will increase the smallest index of uncovered states.
Thus, we have a contradiction, and Uy, 02(6) =S

3. The final step is the following: In step 1 we proved that, when G admits a PNE, if for some 61 € ®1,01(61) € S, then
02(62) € S,V6; € ©,. Then, in step 2 we proved that if 02(62) C S, V6, € ©2, then Ug,02(62) = S. However, it may be
that 01(01) € S,V6; € ©1. But in this case, symmetrically to step 2, we can show that Ug 01(01) = S. In this case too,
we have proved that there exists a set cover. O

Proof of Proposition 7. The IMPROVE function defined in [6] relies on the computation of a set D g,) < A(i.g,) = A; of dom-
inated actions in G: Dy g, = {&(,-.99 € Agays st UG (@6, T-i) < Ugeg)(n)}.

This definition will be useful in the next proofs. Note first that due to the correspondence of utility functions in IT-games
ad their SNF representation, we have:
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D)= {ai € A, s.t, UP® (@i, v—i, 6) < Ulpes(vﬁi)}-

To prove the current Proposition, note first that if Di,gi = ¢, then v’ = v. Algorithm 1 Does not modify the current
strategy.
Then, for a given i, if D; g, # ¢, then, by application of Proposition 3, we have, Yv, 6;:

UP%(,6) = min 1—vj(a;|6).
a;€D; g,

Now, if v/(a;|6;) < max {a € A;a <1—UP*(v,6))}, we get
, pes =
1 —v;(ail6;) > Ui (v, 6)),Va; € Djg,.

Thus, U (', 6;) = min, 51— ] (@il6;) > U (v, 6y).

In the case where v;(a;l6;) <1 — U,Pes(v, 0, U{(ai\G,-) <~ vi(aj|6;). O

Proof of Proposition 8. Algorithm 2 performs iterated calls to function v’ < IMPROVE (G, v,1,6;) & 7/ < lMPROVE(@,n,

)
By analogy with [6] it is easy to check that the number of calls to the IMPROVE function is finite. Furthermore, it is
bounded by n x t" x |A| x d, thus is polynomial in the size of G. O

Proof of Proposition 9. Note that if calling 77’ < IMPROVE (& , 7, (1, 9,-)) requires to compute G, which is of size exponential

in that of G, on the other hand, computing v’ < IMPROVE (G, v, i, 8;) only requires a polynomial size input, (G, v, i, 6;).
It then remains to check that the computation of v’ < IMPROVE (G, v, i, §;) is polynomial in the size of G. To do so, recall
that the IMPROVE function defined in [6] relies on the computation of the set D(, ) S A(, ¢, = Ai of dominated actions in G:

D(, 0) = {a(, 0) € A(, 0, St U(l 6) (a(,‘,gi), JT,,‘) UZE;)(T[)}.
But, due to the correspondence of utility functions in both games, we have:
f)(,',@i) = {a,- € Aj, s.t, Uipes (aj, v_j, 0;) < Uipes(v’ 9,’)}.
The first expression takes polynomial space to compute since we do not actually need to store (i to compute U g‘fgi)(n), for

any fixed m. However, it takes exponential time.

On the other hand, Upes(u 0;) = ml/gl max (1 —vi(aj|6)), Upes(a,, U_ ,,91)) can be computed in time polynomial in the
a;€A;

size of G and it is also the case for U,.p S(ai, v_i, 6;), of course.

Thus, the only step of the IMPROVE function of [6] that could potentially take exponential time in the size of G (compu-
tation of b(i,gi)) can actually be performed in polynomial time.

Under the assumption that 7 is represented by a table of |®| lines, the complexity of computing {Uipes(ai,u_i,e,-)}
Vie N,Va; € A, V6; € ©; is in 0(d™ D x t®™=1) and the complexity of computing U (v, ) is in 0(d x d~D x t"=V) =
o@d" x t™=1)y,

Thus the whole complexity of Algorithm 1 is polynomial in the size of the IT-game: 0 (d"t! x t™=1), O

Proof of Proposition 10. Since v* has been obtained after convergence of Algorithm 2, which can only make mixed strate-
gies more specific at every step, it verifies:
v* = IMPROVE(G, v, i, 6;),Vi € N, V0; € ©;. This implies that Vi € N, V0; € ©;, Vv;(6;),

U w*,6) = Upes(u, (6).v*;,6), that is, v* is a possibilistic mixed Nash Equilibrium. Furthermore, the definition of
the IMPROVE procedure ensures that, whenever it computes a new strategy of player i, it improves over every least-specific
strategy of this player. It results that the fixed-point strategy obtained is a least specific equilibrium. 0O
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