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Abstract: 

Actual engineering processes can be simulated and analyzed in virtual environments by using Computer Aided Design 

(CAD) methods. The CAD is presented by geometrical parameter as Non-Uniform Rational B- Splines (NURBS), B-

spline and T-splines. Stress and strain of produced parts can also be simulated in virtual environments by using the 

CAD models in order to be analyzed and controlled. The Finite Element Method (FEM) is a very common analysis 

method in order to analyze CAD models. Efficiency of FEM is under influence of many parameters such as 

approximation, polynomial based geometry, mesh generation and mesh refinement process, sliding contact and 

flows about aerodynamic shapes. The isogeometric analysis is introduced to eliminate the analysis costs related to 

geometry clean-up, defeaturing and mesh generation. The integrated numerical simulation in the part designing is 

development and implementation of the next generation design and simulation methods based on isogeometric 

analysis. Polynomial splines over hierarchical T-meshes (PHT-splines) will be employed to construct exact geometric 

models. PHT-splines will be extended to RHT- spline (Rational spline over Hierarchical T-meshes) as rational spline in 

order to capture a wider class of geometries. So, a general framework of unifying preprocessing as well as designing 

using isogemetric analysis can be provided in order to improve efficiency of produced parts. 
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1- Introduction 
 

The Computational methods are based on the geometry of simulated parts in virtual environments by presenting 

diverse spatial scales of real feathers. Also, topology is a branch of mathematics to present material properties of 

objects under continuous deformations such as stretching and bending. Space dimension as well as transformation 

are used by topology science in terms of developing concepts through geometry and basic theory. 

Designers and engineers can present their new ideas using Computer Aided Design (CAD) which is start point of 

converting their perception to new products. It presents computer models of objects by using geometrical 

parameters in virtual environments. Three dimensional (3D) representations as well as wireframe views with ability 

of changing relevant parameters are some advantages of simulated models of objects in virtual environments. 

Today fundamental of most CAD systems are based on the spline basis function as well as Non-Uniform Rational B-

Splines (NURBS). NURBS is a mathematical model of free form surfaces and shapes which is used commonly in CAD 

systems by offering great flexibility and adaptability. In general, NURBS is generalized and improved upon the 

traditional piecewise polynomial basis function. The traditional piecewise polynomial basis functions are improved 
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by NURBS modeling in order to provides flexibility, unprecedented accuracy and editing predictability. A set of 

weighted control points and a knot vector are main parts of a NURBS curve. B-spline is a spline function for modeling 

of free form surfaces with ability of smoothness, domain partition and minimal support to a given degree. 

B-spline curve frequently refers to a spline curve which is parameterized by spline functions in order to present linear 

combinations of B-splines. Thus, B-spline curves can present many important properties by Bézier curves. 

Moreover, T-splines can describe arbitrary topological shapes with preserving suitable basis of a smooth analysis and 

high level of variety and complexity. So, the property can improve efficiency of the finite elements analysis of many 

engineering problems. It can express complex surfaces with high levels of accuracy in details. Designer can add 

control points to every section of needed surfaces. As a result, T- Splines surface will have up to 70% fewer control 

points in comparison with NURBS surfaces. T-junction of T-Splines is a main difference between T-Splines and NURBS 

surfaces. It allows lines of detail to end elegantly in order to provide smooth surfaces at T-points. Modeled surfaces 

by T-Spline can describe partial isoparms using T-points which is a vertex of an isoparmonly on the one side of 

surfaces. CAD systems can create extrusions, holes and other unique features by T-Spline surface easily. T-Splines 

can describe such features in a single surface using a special point as star point which allows a single T- spline surface 

to be non-rectangular. But, NURBS require multiple surfaces for merging or a poly surface for such objects which 

makes second difference between T-Splines and NURBS. T-points and star points of T-Splines surfaces provide many 

advantages such as abilities of editing surfaces easily and grabbing a point anywhere on the surface. As a result, the 

modeled surface will stay smooth and free form by eliminating gaps between simulated feathers. 

Polynomial Splines over hierarchical T-meshes (PHT-splines) is a new introduced type of splines and generalized B-

splines over hierarchical T-meshes. It is presented to model geometric objects more efficient. The new splines can 

efficiently describe objects in order to fit open or closed mesh models. In the description, only linear systems of 

equations with a few unknowns are involved. 

The fundamental functions of PHT-splines have the same important properties of B-splines such as non- negativity, 

local support and partition of unity [1]. Thus PHT-splines are a generalization of B-splines over hierarchical T-meshes. 

Given a rectangular domain a T-mesh is a partition of the domain and it is basically a rectangular grid that allows T-

junctions [1]. It is assumed that the end points of each grid line in the T-mesh must be on two other grid lines and 

each cell or facet in the grid must be a rectangle [1]. Fig. 1 shows an example of a T-mesh [1]. 

 

Fig. 1. An example of T-mesh. 

 
A hierarchical T-mesh is a special type of T-mesh which has a natural level structure. One generally starts from a TP 

mesh (level 0). From level k to level k+1, one subdivides a cell at level k into four sub cells which are cells at level k 

+1 [1]. For simplicity, each cell has been subdivided by connecting the middle points of the opposite edges with two 
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straight lines [1]. Fig. 2 illustrates the process of generating a hierarchical T- mesh [1]. 

 

Fig. 2. A hierarchical T-mesh. 

 
Given a T-mesh   Г, let F denote all the cells in Г and   Ω the region occupied by all the cells in Г, 

S (m, n,, , Г): =  𝑠(𝑥, 𝑦) 𝐶 𝛼,𝛽( )|  𝑝𝑚𝑛  for any   F ,                                                                                                 (1) 

Where  𝑝𝑚𝑛 is the space of all the polynomials with bi-degree (m, n), and 𝐶𝛼,𝛽() is the space consisting of all the bivariate 

functions which are continuous in Ω, with order α along the x-direction and with order β along the y-direction. It is obvious 

that S (m, n,, , Г) is a linear space, which is called the spline space over the given T-mesh Г. For any function b(u, v), its 

function value b(u, v), two partial derivatives of first order and mixed partial derivative are 

𝑏𝑢(𝑢, 𝑣) =  


 𝑢
𝑏 (𝑢, 𝑣)|(𝑢,𝑣), 

𝑏𝑣(𝑢, 𝑣) =  


 𝑣
𝑏 (𝑢, 𝑣)|(𝑢,𝑣),                                                                                                                                                                (2) 

𝑏𝑢𝑣(𝑢, 𝑣) =  
 2

 𝑢 𝑣
𝑏 (𝑢, 𝑣)|(𝑢,𝑣), 

At some point (𝑢0, 𝑣0) are called the geometric information of 𝑏 (𝑢, 𝑣) at point(𝑢0, 𝑣0). Given a hierarchical T-mesh Г, 

suppose the basis functions are {𝑏𝑗
𝑘(𝑢, 𝑣)}  , j = 1, . . . , N, k = 0, . . . , 3. Here N is the number of basis vertices. Then a spline 

surface over Г can be defined as, 

𝑠(𝑢, 𝑣) = ∑ ∑ 𝐶𝑗
𝑘𝑏𝑗

𝑘(𝑢, 𝑣),

3

𝑘=0

𝑁

𝑗=1

                                                                                                                                                             (3) 

Where 𝐶𝑗
𝑘 are the control points associated with the jth basis vertex. 

Efficiency of simulation methods is evaluated by using testing techniques to determine dynamic relations between a 

system of parts. So, different levels of numerical solid and fluid functions are considered during and after the design 

stages. 

Finite Element Method (FEM) is very common test where the geometry is represented by piecewise low order 

polynomials. It is a numerical, mathematical and analytical technique test method to present approximate solutions 

of partial differential equations (PDE) as well as integral equations of physical problems. Technique of solution 

approach is based on the method of eliminating completely the differential equation (steady state problems) or 

rendering the PDE into an approximating system of ordinary differential equations. The solution will be integrated 

numerically using standard techniques such as Euler's method, Runge-Kutta, etc. A wide range of engineering as well 

as physical problems can be considered to be analyzed by using the FEM. The method presents an efficient tool to 
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solve and find answer of partial differential equations of engineering problems with complicated domains. FEM 

technique divides surfaces to small elements by mesh generating methods. A sample surface which to be meshed 

for FEM analysis is shown in Fig. 3 (a). A possible mesh using triangular elements is shown in Fig. 3 (b). Rectangular 

elements and Rectangular and quadrilateral elements are shown in Fig. 3 (d) and Fig. 3 (e) respectively. In general, 

the ratio of the largest characteristic dimension of an element to the smallest characteristic dimension is known as 

the aspect ratio [2]. Large aspect ratios increase the inaccuracy of the finite element representation and have a 

detrimental effect on convergence of finite element solutions [3]. An aspect ratio of 1 is ideal but cannot always be 

maintained. Finite element software packages provide warnings when an element’s aspect ratio exceeds some 

predetermined limit. As a result, the remesh process or changing meshing model is necessary [3]. 

  

Fig. 3. A domain to be modeled (a) and different models of mesh generation (b), (c) and (d) [3]. 
 
In many cases, 80% or more control points of NURBS models are superfluous. By contrast, T- spline models typically 

require only 20% of the control points in comparison with to NURBS models. Furthermore, T- spline control mesh is 

allowed to have partial rows of control points by their T-junctions. For a designer, fewer control points mean lesser 

amount of computational time by reducing analysis volume. Refinement process which is adding new control points 

to a control mesh without changing the surface in terms of mesh revision is an important basic operation used by 

designer. Refinement process in the NURBS modeling operations can create limitation as well as time consuming 

applications. 

T-junctions enable T-spline to locally refined by editing partial rows of control points. Most objects need several 

NURBS surfaces to be modeled as a result of having a rectangular topology for a single NURBS surface. It is also 

another limitation of NURBs modeling processes. Moreover, it is difficult to merge multiple NURBS surfaces within a 

single, smooth, free form and watertight model especially if corners of valence other than four are introduced. T-

junctions of T-spline surface make it possible to merge together several NURBS surfaces in to a PHT-spline. 

Furthermore, it is mathematically impossible for a trimmed NURBS to accurately present the intersection of two 
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NURBS surfaces without introducing any gaps in the designed model. It is another serious inherited problem in 

NURBS surfaces. The problem is a major cause of the incompatibility between CAD and analysis software [4]. 

A NURBS surface can simplifies efficiently by converting to a PHT-spline which dramatically reduces the superfluous 

control points of the NURBS surface. Furthermore, PHT-splines provide several important types of geometry 

processing with natural and efficient manner. PHT-spline can present assembly of tensor-product spline with simple 

shapes using coarser T-meshes. PHT-splines not only inherit the main properties of T-splines such as adaptively but 

also exhibit more advantages over T-splines. PHT-splines are polynomial instead of rational structure of T-splines. So, 

the refinement algorithm of PHT-splines is local and simple. The conversion between NURBS and PHT-splines is very 

fast and simple, while conversion between NURBS and T-splines is a bottleneck of T-splines in practical applications. 

In comparison with T- splines and hierarchical B-splines, PHT splines have a set of basic functions. It is a necessity in 

some theoretical analysis and applications, while hierarchical B-splines have a redundant set of ‘basis functions’ [1]. On 

the other hand, hierarchical B-splines require a very special hierarchical T mesh structure due to their refinement 

scheme, while PHT-splines work over arbitrary hierarchical T-meshes [1]. 

Difficulties of CAD simulation systems create many problems for mesh generating process of geometry analysis using 

FEM. Many difficulties encountered with FEM emanate from its approximate, polynomial based geometry such as 

mesh generation, mesh refinement, sliding contact, flows about aerodynamic shapes, buckling of thin shells, etc. [5]. 

It is estimated that about 80% of overall analysis time is devoted to mesh generation in the automotive, aerospace, 

and ship building industries [4]. Presenting more powerful descriptions of geometry characters is demand of 

geometry analysis by computational techniques as FEA. Converting data between CAD and FEA is necessary process 

for many analysis studies and it is complicated process when there is different computational geometric approach 

for each segment. As a result, a methodology must be presented for bridging the gap between CAD and finite element 

analysis (FEA). The isogeometric paradigm can be invoked for eliminating problems of CAD surfaces analysis, 

associated with geometry clean-up, defeaturing and mesh generation which is proposed by Hughes et al. [4]. 

Isogeomtric analysis is computational approach of finite element analysis (FEA) into conventional NURBS, B-spline, T 

spline and PHT-splines in order to offer integrated analysis technique.  

Common spline basis of geometric modeling systems and finite element analysis of a given object are used in the 

Isogeomtric analysis to fill the gap of CAD and  

FEM. It employs directly complex CAD geometries in the FEA application for testing and adjusting models using a 
common data set. Eliminating and reducing the approximation of the computational domain as well as erasing 
demand of remeshing are some preferences of the method. Main advantage of the proposed generalized 
isogeometric analysis is wide range of applications such as analysis of models based on CAD designs, surface models 
and point clouds generated by laser scanners. Diagram of Isogeomtric Analysis is shown in the Fig. 4.  
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Fig. 4. Diagram of Isogeomtric Analysis. 

 

Finite element analysis can model the topology of a domain in an accurate fashion but the geometry of simulated 

features are approximate [5]. CAD accurately represents the geometry while the topology has historically incorrect 

[5]. Isogeomtric analysis attempts to model both topology and geometry accuracy [5]. Fig. 5 shows comparison of 

modeling abilities in topology and geometry by FEM, CAD and IGA. 

 

 Topology Geometry 

Finite Element Analysis   

Computer Aided Design(CAD)   

Isogeometric Analysis   

 
Fig. 5. Comparison of Topology and Geometry Modeling by FEM, CAD and IGA. 

 
Isogeometric analysis can use both of NURBS and T-splines surfaces which provide advantageous in comparison with 

traditional finite element analysis. It includes not only in the convergence of the analysis answers but also in accuracy 

of results. In the NURBS surfaces, tensor-product structure makes local refinement impossible. It depends to some 

variant as the structure of the mesh. Therefore, the  refinement process is not local. But, T-splines have the ability of 

local refinement. For providing a same rules, several theoretically computation methods such as the linear 

independence of the blending functions are still open and under research. Polynomial splines over hierarchical T-

meshes (PHT-splines) are generalized B-splines over hierarchical T-meshes with ability of local refinement by a simple 

algorithm. PHT-splines have great flexibility and adaptability for geometrical modeling [1]. Used Geometry  in CAD 

and FEM has different descriptions. CAD and isogeometric analysis use the same geometry description. The process 

and refinement steps of FEM and IGA are shown in Fig. 6. 
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Fig. 6. Differences between FEM and IGM in process and refinement. 

 
The CAD systems characters are based on geometry aspects of models. But in the CAE, three-dimensional of 

geometry representations are necessary. So, the process can be designed and presented to generate volume models 

in CAE from CAD surface models in order to connect the modeling systems. On the other hand, geometric models of 

CAD systems have to be re-approximated by CAE-software. The processes are complex and time consuming which 

are not desired in CAE analysis. Production of volume model becomes 
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more intricate when most CAD functions are based on a tensor-product form with hexahedra – type meshes. 

But, exact geometry of CAD models without any effect of model discretization is available using isogeomtric 

analysis. Fig. 7 shows process of physical problem identification to the output of the system in modeling 

adaptively by isogeometric analysis. 

 

 

Fig. 7. Mathematical Model, Computational Model, Error Estimation and Model Adaptively 
 
After determination of physical problems, mathematical model should be chosen according to a physical 

problem such as thin-shell model or a three-dimensional model. Physical problem are discretized by 

isogeometric shape functions. Types of errors are as the discretization error and the model error. Most common 

error estimators are as 

• Residual based error estimators are used and developed in isogeometric analysis studies [6]. 

• Recovery based error estimators is developed based on using the computed solution in order to 

produce a smoother approximation of part by sampling the values (or its derivatives) at certain points in the 

domain and by using a weighted average to produce a more accurate approximation to u (or its gradient) at 

the nodes, the process can be accomplished. In order to produce the recovered solution, these averaged values 

can be fitted by an interpolation algorithm. 

• Goal oriented error estimators are extended and developed by researchers when they found it 

is useful to estimate the error in some quantity of interest and they called it Goals algorithms. Oden et al. [7,8]  

presented and developed the idea of goal-oriented error estimators especially for multi scale error modeling. 

In order to provide multi scale modeling, a predefined base-model was enhanced until a minimum error was 

reached in a certain quantity of interest. As is shown in the Fig.8, handling discretization errors is by using goal-

oriented error estimators which needed adaptively refine (or coarsen) a given discretization while goals 

algorithm focus on the model error. 

Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis 

is presented by Hiemstra et al. [9]. Also, Nguyen-Thanh et al. [10] presented isogeometric analysis of large-

deformation thin shells using RHT-splines for multiple-patch coupling. Jia et al. [11] presented reproducing kernel 

triangular B-spline-based FEM for solving PDEs. Moreover, an isogeometric boundary element approach using T-

splines for Shape optimization directly from CAD models is presented by Lian et al. [12]. Valizadeh et al. [13] 

presented NURBS-based finite element analysis of functionally graded plates: static bending, vibration, buckling and 

flutter. Also, a refined quasi-3D isogeometric analysis for functionally graded microplates based on the modified 

couple stress theory is presented by Nguyen et al. [14]. A two-dimensional isogeometric boundary element method 

for elastostatic analysis is also presented by Simpson et al. [15]. 

The Homotopy Perturbation Method is used by Nourazar et al. [16] to obtain the exact solution of Newell-

Whitehead-Segel Equation. To obtain the exact solution of the Burgers-Huxley as well as Fitzhugh–Nagumo non-

linear differential equations, application of the Homotopy Perturbation Method is investigated by Nourazar et al. 

[17,18] .The Variational Iteration Method and Homotopy Perturbation Method are used by Soori and Nourazar [19] 
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in order to obtain the exact solution of nonlinear differential equations. To obtain the exact solution of nonlinear 

differential equation The variational iteration method and the homotopy perturbation method to the exact solution 

of the Fisher Type Equation is presented by Soori et al. [20]. The Variational Iteration Method and the Homotopy 

Perturbation Method to the Exact Solution of the generalized Burgers-Fisher Equation is used by Soori [21] in order 

to obtain the exact solution of nonlinear differential equation. To present the capabilities of the semi analytical 

methods in obtaining  the exact solution of nonlinear differential equation, a Comparison between the Variational 

Iteration Method and the Homotopy Perturbation Method for the Burgers-Huxley Equation is presented by Soori 

[22]. The variational iteration method is used by Soori et al. [23] to obtain the exact solution of the Newell-

Whitehead-Segel Equation. Also, the variational iteration method is used by Soori [24,25] to Solve the Korteweg-de 

Vries-Burgers Equation and Fitzhugh–Nagumo non-linear differential equations. To obtain the series solution of the 

Weakly-Singular Kernel Volterra Integro-Differential Equations, the Combined Laplace-Adomian Method is used by 

Soori [26]. 

The proposed research project is about the development and implementation of the next generation design and 

simulation methods based on isogeometric analysis. In order to present more advantages in comparison with NURBS 

surfaces, a new type of splines-polynomial splines over hierarchical T-meshes (PHT-splines) is employed to construct 

exact geometric models. We will extent the PHT-splines to a RHT- spline (Rational spline over Hierarchical T-meshes) 

as rational spline which can capture and demonstrate a wider class of geometries. The recovery based error 

estimators and Goals-oriented error estimators will be extended to model thin structures in terms of using the 

isogeometric analysis. In the first step, appropriate error estimators in the context of isogeometric analysis will be 

developed. Next, it will be extended to goals algorithms. Designed feathers as CAD parts which simulated by PHT-

splines will be also evaluated and improved. It will be extended to RHT-spline in proposing accurate design and 

simulation methods by using isogeromteric analysis. This objective will be achieved by developing improved 

numerical methods for generalized isogeometric finite elements and robust adaptive refinement algorithms for 

unstructured and Cartesian meshes. It can also be exploited into isogeometric analysis which is a key link between 

CAD and CAE. Using isogemteric analysis, both topology and geometry of destined feathers will be tested and 

problems of FEM analysis such as mesh generation, mesh refinement with long process and only topology analysis 

will be illuminated. Refinements process is also easily implemented and exact geometry is maintained at all levels 

without the need of subsequent communication with a CAD description. For purposes of analysis, the basis is refined 

by feedback information and its order elevated without changing the geometry or its parameterization. In analysis 

of CAD systems, the feathers which are modeled by PHT- splines will be considered. This selection is as a result of 

flexibility and adaptability of geometrical modeling by PHT-splines. Furthermore, refinement algorithm is local and 

simple due to the nature of hierarchical T-meshes. Therefore, the analysis processes become more accurate and 

reliable. 

 

2- Research methodology 
 
The method is gathering all necessary information about demands of the project such as articles, books and 

internet pages. Then, the information and data will be used in computer aided design and analysis system such 

as CAD and FEM software with regard to the isogeometric analysis. Every gap will be also filled by programming 

languages such as C++, MATLAB, FORTRAN and Visual Basic. The results will be tested and evaluated by 

industrial cooperation in order to estimate accuracy and reliability of the analysis method. Objectives and 

targets of the project will be reviewed in terms of correcting and completing pervious phases by getting 

feedback. As a result, the research will be reached to a methodology and products according to the project 

schedule. 

 

3- Conclusion 
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The aim of the study is providing and presenting a general framework of unifying pre-processing and designing 

with numerical and analytical technique as isogeometric analysis. The framework will be applied into the most 

common and popular methods employed in pre-processing design and analysis of CAD designed feathers using 

PHT-splines method. The key outcome of the research project can be presented as a system and methodology 

which can improve efficacy and reliability of parts designing and simulating. The aim of the developed system 

is designing and developing a state of art programming tool using the numerical schemes and isogeometric 

analysis at the INSIST project. Extension of isogeometric analysis for presenting unification of CAD, CAE and 

analysis techniques are aims of the project to unify pre-processing and analysis system. So, a productive method 

will be presented in the project in order to improve efficiency of designing and testing parts production. 
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