
HAL Id: hal-03744923
https://hal.science/hal-03744923v1

Submitted on 3 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Task and motion planning methods: applications and
limitations

Kai Zhang, Eric Lucet, Julien Alexandre Dit Sandretto, Selma Kchir, David
Filliat

To cite this version:
Kai Zhang, Eric Lucet, Julien Alexandre Dit Sandretto, Selma Kchir, David Filliat. Task and mo-
tion planning methods: applications and limitations. ICINCO 2022 - 19th International Conference
on Informatics in Control, Automation and Robotics, Jul 2022, Lisbonne, Portugal. pp.476-483,
�10.5220/0011314000003271�. �hal-03744923�

https://hal.science/hal-03744923v1
https://hal.archives-ouvertes.fr


Task and motion planning methods: applications and limitations

Kai ZHANG1,2 a, Eric LUCET1 b, Julien ALEXANDRE DIT SANDRETTO2 c,
Selma KCHIR1 d, and David FILLIAT2,3 e

1Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
2U2IS, ENSTA Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France

3FLOWERS, INRIA, ENSTA Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France
kai.zhang@cea.fr

Keywords: Task and motion planning, simulation environment, learning methods

Abstract: Robots are required to perform more and more complicated tasks, which raises the requirement of more intel-
ligent planning algorithms. As a domain having been explored for decades, task and motion planning (TAMP)
methods have achieved significant results, but several challenges remain to be solved. This paper summarizes
the development of TAMP from solving objectives, simulation environments, methods and remaining limita-
tions. In particular, it compares different simulation environments and methods used in different tasks aiming
to provide a practical guide and overview for the beginners.

1 INTRODUCTION

With the development of manufacturing and software
technology, robots are playing a more and more im-
portant role in our society. For example, we can see
them in the factories to assist or replace people in the
dangerous and tedious work. To enhance our life ex-
perience, they come to our life as autonomous cars,
housekeepers, etc. However, their competence on this
kind of tasks is not always convincing since they are
not as intelligent as expected. The essential reason is
that the human environment is unstructured and dy-
namic, which is more complicated than the structured
factory environment. As a consequence, the tasks of
the robots are more difficult in human environment,
like household affairs. When a robot performs a task,
firstly it needs to find feasible plans to accomplish the
goal, then during executing the plan, it has to consider
the surrounding complex and changing environment
before stepping ahead. This process can be summa-
rized as two steps, task planning and motion planning.

Task planning aims to compute solvable plans to
complete a long-horizon task. It usually decomposes
a long-horizon task into some short-horizon and el-

a https://orcid.org/0000-0003-1129-9944
b https://orcid.org/0000-0002-9702-3473
c https://orcid.org/0000-0002-6185-2480
d https://orcid.org/0000-0003-3047-6846
e https://orcid.org/0000-0002-5739-1618

ementary subtasks. For example, when a robot is or-
dered to fetch some object in a room with door closed,
after decomposition, it can complete the task by solv-
ing several simple tasks, including opening the door,
searching the object and returning. Hence, the chal-
lenge in this step is to decompose the complicate task
into several simple subtasks.

Motion planning focuses on converting a subgoal
into a sequence of parameters so that the software of
the robot can control the hardware parts to reach the
subgoal. For example, the ”open door” task is trans-
formed into some parameters to control the joints of
robot’s arm so that the end-effector could touch and
push the door. Due to the constraints of the envi-
ronment, it is often challenging to generate applicable
control parameters that will avoid colliding with other
objects.

Although it seems that task planning and motion
planning share some similar designs, they are oper-
ated in different spaces. Task planning is usually
considered as planning in a discrete space while the
motion planning is taken in continuous space. Great
progress has been made to integrate the discrete and
continuous planning methods to solve TAMP prob-
lems. Recently, an overview paper [Garrett et al.,
2021] focused on the integration of TAMP, summa-
rizes different kinds of methods to solve multi-model
motion planning and TAMP. It provides general con-
cepts but the scope focuses on the operator-based
methods operating in fully-observable environments,



which is far from the real applications. Besides, it
demonstrates the solution of TAMP problems in a the-
oretical way, which is not user-friendly to beginners
who want to get into this field by practicing. There-
fore, this paper intends to provide a practical and
broader overview for readers to easily start applying
the TAMP methods to solve different tasks.

The organization of this paper is as follows: af-
ter the introduction, the background knowledge on
TAMP is introduced in section 2. Section 3 describes
the popular tasks solved by TAMP methods and some
available simulation environments. Besides, the re-
cent TAMP methods are compared and some limita-
tions are pointed out. Finally, section 4 concludes this
paper and proposes some potential research directions
in this field.

2 BACKGROUND

Let’s first present task and motion planing separately.
Task planning usually works in a higher-level discrete
state space, giving a global plan, while motion plan-
ning aims to follow such guidance in a lower-level
action space.

2.1 Task planning

Given an initial state and a global task, task planning
aims to generate a sequence of intermediate elemen-
tary tasks or abstract actions to guide the agent to ac-
complish the original complicate task.

Depending on the types of tasks, the predefined
actions of a robot could be discrete actions or con-
tinuous actions. Discrete actions contain a finite set
of options that the agent can choose to apply, such
as move left or right. Continuous actions are config-
ured with a value, such as the rotation of a robot base,
where there is an infinite choice of actions. For exam-
ple, 60 degrees clockwise rotation is different from
60.1 degrees clockwise rotation. This second situa-
tion is more complex to deal with as the search space
is much larger.

Lots of efforts have been made by robotics re-
searchers and several planning methods have been
proposed, such as hierarchical methods [Kaelbling
and Lozano-Pérez, 2013], heuristic searching meth-
ods, operator planning methods, etc. A more detailed
overview and discussion can be found in the introduc-
tion book [LaValle, 2006]. Due to the simplicity and
efficiency, they are widely used in the decision mak-
ing games like chess, Tower of Hanoi, etc.

Instead of the handcrafted methods, reinforcement
learning (RL) methods learn policies that map the ob-

servations to subgoals by maximizing a numerical re-
ward signal. By default, these methods learn the so-
lution to a single task, hence they are not solving the
full planning problem

2.2 Motion planning

Motion planning can be considered to bridge the
low-level control parameters and the high-level tasks.
Given a feasible task, the motion planning algorithm
would generate a series of concrete parameters to
achieve the task. For example, in the navigation task,
given a goal position, motion planning algorithm will
generate a trajectory so that the robot could follow the
trajectory to reach the goal without collision.

Several algorithms have been proposed for motion
planning, such as the shortest path searching meth-
ods in navigation task, or inverse-kinematic methods
in manipulation task. A more detailed introduction
can be found in Ghallab’s planning book [Ghallab
et al., 2016]. Besides, learning methods, especially
the RL methods have drawn lots of attention for intel-
ligent motion planning. Some examples can be found
in [Sun et al., 2021].

Apart from the previous passive motion planning
algorithms, which focus on satisfying the predefined
collision constraints, an active motion planner could
consider the context of local environment before mak-
ing a plan. For instance, a context-aware costmap
is generated by integrating several semantic layers
in [Lu et al., 2014], each of which describes one
type of obstacle or constraint, including mobile and
static obstacles, or dangerous regions. Planning on
the context-aware costmap could produce a practical
and intelligent trajectory. Moreover, in [Patel et al.,
2021], an active obstacle avoidance method is intro-
duced, where the robot intends to avoid humans from
its back region.

3 TASK AND MOTION
PLANNING

TAMP is the integration of task planning and motion
planning. In other words, it links the planning in dis-
crete space and continuous space. In this section, we
highlight the common TAMP problems and methods
categorized by whether they use deep learning tech-
niques. In contrast to [Garrett et al., 2021], which fo-
cuses on symbolic operator based planning methods,
we extend it to a broader view, including end-to-end
learning methods for TAMP. Besides, we present a
comparison of related global tasks and experimental
environments.



Figure 1: Demonstration of tasks. (a) Rearrangement task. The robot needs to push the green box from its start pose to the
goal region indicated by the green circle [King et al., 2016]. (b) Navigation among movable obstacles. The robot needs to
remove the green obstacles before moving the red boxes to the kitchen region [Kim et al., 2019]. (c) Pick-Place-Move task.
The robot needs to pick the blue cube and place it in the box containing green cube [Garrett et al., 2015].

3.1 Objectives

There are various global tasks for TAMP in human
environment but most of them could be regarded as
the combination of basic tasks. We believe that if
the TAMP methods could deal well with the basic
tasks, they could be generalized to solve more com-
plex global tasks. Three of the fundamental tasks are
described as follows:

• Rearrangement (Re). As shown in Figure 1(a),
the robot needs to manipulate several objects so
that it could reach a target object without colli-
sion. The rearrangement task for multiple robots
requires the collaboration among robots, which
usually happens when a robot’s arm cannot reach
some regions of the environment due to its physi-
cal limitation [Driess et al., 2020].

• Navigation among movable obstacles (NAMO).
Different from pure navigation task, NAMO re-
quires the robot to interact with environment dur-
ing navigation to reach the goal position. The in-
teraction aims at clearing the obstacles actively so
that a blocked trajectory becomes feasible. An
example can be found in Figure 1(b), where the
robot should remove the obstacles before entering
the kitchen.

• Pick-Place-Move (PPM) task. As shown in Fig-
ure 1(c), the primitive operations of the robot are
to pick up an object, move and place it in a box.
Furthermore, the PPM task can serve for the As-
sembly and/or Disassembly task, in which the or-
der of manipulated object should be considered.

3.2 Methods

After introducing the global tasks, we describe the
TAMP methods corresponding to these objectives into
three categories, namely classical methods, learning
methods and hybrid methods that combine the previ-
ous two categories.

3.2.1 Classical methods

The classical methods mainly include two types
of methods, sampling-based and optimization-based
methods. Given a long-horizon task with description
of initial and final state, sampling methods could sam-
ple several useful intermediate states from the con-
tinuous infinite state space. Afterward, the searching
methods are used to find a sequence of feasible tran-
sition operators between the intermediate states. The
frequently adopted searching-based sampling meth-
ods include heuristic search, forward search, or back-
ward search. An overview on searching methods can
be found in [Ghallab et al., 2016]. With a sequence
of operators, the classical motion planning methods,
including RRT Connect [Kuffner and LaValle, 2000]
for the robot base and inverse kinematics for the robot
arm [Garrett et al., 2020b], are applied to transit
robot’s state to the target state.

However, sampling methods are usually not com-
plete over all problem instances. First, they cannot
generally identify and terminate infeasible instances.
Second, sampling process can only be applied to the
explored space, which means they cannot find solu-
tions to instances that require identifying values from
unknown space [Garrett et al., 2018]. For example,
in a partial observation case, the robot can only find
a path to a waypoint within the range of observation.
Third, when the task description is not lucid (for ex-



ample, a pouring task where the goal is to pour as
much milk as possible into the cup), the sampling
methods tend to fail.

Accordingly, optimization based methods are pro-
posed to compensate the sampling methods. The ob-
jective is primarily given in terms of a cost function
along the temporal axis. An optimization strategy
is applied to minimize the cost with respect to con-
straints and finally output the feasible solutions. The
optimization method is ideal to solve the problems
with continuous solutions since time axis is directly
integrated in the objective function. Toussaint [Tou-
ssaint, 2015] uses this approach in a manipulation
problem where a robot picks and places cylinders and
plates on a table to assemble the highest possible sta-
ble tower. The action sequences are generated by a
simple symbolic planning approach but the best final
and intermediate positions of all the objects are found
through optimization.

A comprehensive review on sampling methods
and optimization methods to solve TAMP problems
can be found in [Garrett et al., 2021].

Besides, there are also some TAMP methods with
hand-crafted strategy. For example, [Meng et al.,
2018] presents an active path cleaning algorithm for
NAMO task. The proposed system integrates obsta-
cle classification, collision detection, local environ-
ment reconstruction and interaction with obstacles.
To solve the situation where the obstacle is unknown,
an affordance-based method [Wang et al., 2020] is de-
veloped to help robot decide if the obstacle is movable
by interacting with it.

3.2.2 Learning based methods

In learning based methods, the robot acquires the
skills from experiences. The most common frame-
work is RL which learns a policy that maps a
state of the environment to an action by reward and
penalty [Driess et al., 2020]. A TAMP problem usu-
ally contains a long-horizon task, which can be con-
verted to sparse reward when the task is completed.
However, exploring the environment through taking
random actions requires a prohibitive number of sam-
ples until a solution can be found [Li et al., 2020].
Therefore, hierarchical RL (HRL) has been proposed
to solve the sparse reward problem by generating sub-
tasks to guide the robot to accomplish final task [Barto
and Mahadevan, 2003].

An intuitive idea of HRL is to design and train two
networks, one is dedicated to high level task genera-
tion while the other one is for primitive motion con-
trol, as described in [Kulkarni et al., 2016], a top-level
module learns a policy over subgoals and a bottom-
level module learns actions to accomplish the objec-

tive of each subgoal. Considering the task depen-
dence and generalization problem of previous meth-
ods, a task-independent method [Nachum et al., 2018]
is designed by reformulating the task description. In-
stead of using the observation from the robot, they
use the observation from the environment, like posi-
tion and distance, to reduce the dependence on task.

Training the high-level policy and low-level ac-
tion separately misses the ability of joint optimiza-
tion. Hence, in [Levy et al., 2018], they describe a
joint training strategy to learn the policy in three lev-
els for a navigation task. The highest level takes in the
current state and a task to generate subtasks, while
the middle level decomposes a subtask to a visible
goal. The lowest level generates action parameters
to reach the goal. However, in a NAMO task, given a
final position, the high-level subgoal creation network
should not only generate subgoals for robot base but
also the interaction position for arms. Accordingly,
a HRL method is proposed [Li et al., 2020] to gen-
erate heterogeneous subgoals so that the robot could
interact with the obstacles during navigation. To find
an appropriate action to interact with various obsta-
cles, a Neural Interaction Engine [Zeng et al., 2021]
that predicts the action effect, is integrated to a policy
generation network.

Although the learning methods have achieved sat-
isfying results in simulation environment, the trans-
fer from simulation to real applications is difficult be-
cause the trained models cannot be used directly in
the real scenarios and under most circumstances, they
should be retrained in the application environment.
For example, in the solution proposed in [Li et al.,
2020], the trained model maps the sensor data to ac-
tions. However, due to the large difference between
environments, the change of sensor data could lead to
strange actions. Moreover, the training data in real
environment is expensive, hence we can see few real
applications relying on pure learning methods.

3.2.3 Hybrid methods

Although both the classical methods and learning
based methods can solve several TAMP tasks, they
suffer some limitations. For example, the operators
used in sampling methods are usually designed man-
ually, which is time-consuming and tends to be very
task-specific. The learning methods avoid the man-
ual work but they offer less freedom to add extra con-
straints, like no collision tolerance. Besides, the trans-
ferability of learning methods from simulation to real
environment is proved difficult since the expensive
cost of constructing the training dataset and the inac-
curate representation of environment, which might be
caused by sensor noise, illumination, occlusion, etc.



Table 1: List of TAMP methods on three tasks.

Classical methods Learning based methods Hybrid methods

Re [Toussaint, 2015]
[Garrett et al., 2020b] [Driess et al., 2020] [Chitnis et al., 2016]

[Wang et al., 2021]

NAMO [Meng et al., 2018]
[Wang et al., 2020]

[Li et al., 2020]
[Zeng et al., 2021]

[Kim and Shimanuki, 2020]
[Xia et al., 2021]

PPM [Kaelbling and Lozano-Pérez, 2013]
[Garrett et al., 2015]

[Kim et al., 2019]
[Konidaris et al., 2018]

[Garrett et al., 2018]

Therefore, some researchers adopt hybrid strate-
gies, such as learning symbolic operators from dataset
[Silver et al., 2021,Pasula et al., 2007,Konidaris et al.,
2018], learning to guide the operator search [Kim
et al., 2019, Kim and Shimanuki, 2020] or learning
to generate feasible subgoals [Xia et al., 2021].

Learning symbolic operators from a dataset pro-
vides the primitive skills for the task planning. With
the operators, a conventional tool such as PDDL
[Ghallab et al., 1998] or its extension [Garrett et al.,
2020a] is applied to search the feasible plans. Then,
the motion planning algorithm could directly converts
the primitive operators to executable control param-
eters. A supervised learning strategy is introduced
in [Pasula et al., 2007] to learn the symbolic operators
from a training dataset. Each training example con-
tains the current state, an action and the state after ap-
plying the action. An action model is trained by max-
imizing the likelihood of the action effects, subject to
a penalty on complexity. To reduce the requirement
for an expensive training dataset, a learning-from-
experience method [Konidaris et al., 2018] applies ac-
tions to the agent and obtains the states through the
experience. Then, it converts the continuous states
into a decision tree, and finally into symbolic opera-
tors.

Given a large problem that contains lots of actions
and states, the classical searching methods are less
efficient since the search space is too large. Instead
of traversing the whole space to find a solution, rein-
forcement learning methods provide an efficient way
to learn the searching strategy from experience [Chit-
nis et al., 2016]. In [Kim et al., 2019], a graph is
taken as the searching space due to its extensibility.
The nodes are abstract actions while the edges are the
priority of transition. A Q-value function is learned
from a training dataset to calculate the priority of ac-
tions, which provides guidance for efficient searching.
Apart from the guidance of discrete searching, in con-
tinuous action space, they apply a generative model to
generate multiple feasible candidates to avoid being
blocked by an infeasible solution [Kim et al., 2021].
Similarly, a model is applied to a dataset to learn the
probability of success [Wang et al., 2021]. Then, in

the same domain but a new scenario, given the action,
the model predicts a success rate. By picking the ac-
tions with a higher success rate, the searching space
is significantly reduced.

In addition to the operator based methods, a few
methods are proposed to directly generate the sub-
tasks based on RL methods. With a feasible sub-
task, classical motion planning methods are used to
control the robots. In a NAMO task, a Soft Actor
Critic [Haarnoja et al., 2018] algorithm is applied to
generate the subgoals for the arm and the base of a
robot [Xia et al., 2021] through the observation of en-
vironment. Subsequently, RRT connect [Kuffner and
LaValle, 2000] and inverse kinematics methods are
employed to reach the subgoals.

In summary, the hybrid methods usually apply
learning to task planning, or a part of the task planning
process, then classical motion control algorithms are
adopted to generate control parameters. This strategy
benefits from better transferability to real application
than pure learning algorithms and provides more effi-
cient strategies than classical methods.

Table 1 provides an overview of the application of
the presented methods on the basic tasks proposed in
section 3.1.

3.3 Environments and tools

When developing robotic algorithms, the validation of
interaction results is an essential step. Testing the ef-
fects of interactions in a real environment is a straight-
forward approach, but it can be time-consuming, ex-
pensive, unstable and potentially unsafe. Therefore,
several interactive simulation environments are re-
cently proposed to advance the robotic research and
facilitate the experiments.

In this subsection, we compare several interactive
simulation environments that are designed for navi-
gation and manipulation tasks, which include iGib-
son2 [Li et al., 2021], AI2THOR [Kolve et al., 2017],
TDW [Gan et al., 2021], Sapien [Xiang et al., 2020],
Habitat2 [Szot et al., 2021] and VirtualHome [Puig
et al., 2018]. Different from the low-level view that



Table 2: Comparison among different interactive simulation environments.

iGibson2 AI2THOR TDW Sapien Habitat2 VirtualHome

Provided environment 15 homes
(108 rooms)

120
rooms - - - build from 8

rooms
Interactive objects 1217 609 200 2346 - 308

ROS support ✓ × × ✓ ✓ ×
Uncertainty support ✓ × × × ✓ ×

Supported tasks
Re + +++++ ++++ ++++ ++++ ++++

NAMO +++++ ++ +++ +++ ++ ++++
PPM +++++ +++++ ++++ ++++ +++++ +++++

Speed GPU ++ ++ ++ +++ ++++ ++

Sensors RGBD, Li-
dar RGBD RGBD RGBD RGBD RGBD

focuses on which type of rendering they use, we pay
attention to their usability for TAMP tasks and trans-
ferability to real environment.The comparison results
can be found in Table 2.

3.4 Challenges

Although TAMP methods have been explored for
decades, they are still not robust and face limitations
in practical applications. In this section, we present
several potential directions of improvement.

3.4.1 Observation uncertainty

Observation uncertainty is usually caused by the sen-
sor noise, which is unavoidable in real applications.
There are mainly two kinds of solutions, (a) modeling
the noise and reducing it through multiple observa-
tion; (b) using learning methods to directly map the
noisy data with actions.

An operator-based TAMP method is presented in
[Kaelbling and Lozano-Pérez, 2013] to solve the ob-
servation uncertainty in PPM task. The uncertainty
appears in the localization of the robot and the target
object. They ask the robot to observe the object mul-
tiple times and use Gaussian model to approximate
the noise of localization. In [Driess et al., 2020], the
raw sensor data is directly inputted to a neural net-
work aiming to map raw observation data to action
sequence through reward optimization. The approach
is simple since it doesn’t require a complex modeling
process but requires a large amount of training scenes,
30000 in their experiment.

In summary, although the previous methods com-
plete the task with observation uncertainty, their ex-
periment environment is quite simple, giving the
robot a large free space of manipulation. Therefore,
it raises the questions of their practicability in a con-
strained and complex environment to finish household

works, and their efficiency to find a feasible solution.

3.4.2 Action uncertainty

With the same precondition and symbolic operator,
an action may produce different effects. For exam-
ple, pick action may indicate the grasp of the object
from its top or from its side. This ambiguity may
lead to failure when trying to place the object steadily.
In a PPM task described in [Silver et al., 2021], the
robot needs to pick an object and place it in a shelf,
which demands the robot to choose appropriate action
of picking since the space is narrow under the ceil-
ing of the shelf. They collect a dataset, from which
they obtain several kinds of pick operators, like pick-
ing from side and picking from top. The solution is
found through backtracking because the robot could
infer suitable pick action from the goal state. How-
ever, backtracking requires the full observation of en-
vironment, which usually cannot be satisfied in real
applications.

3.4.3 Situational mapping

A real task tends to be more complex and the robot
needs to deduce the solution by considering the se-
mantic information of the environment. For example,
imagine a blocks building task, with different kinds
of blocks and the objective to assemble a car model.
Without considering the type or shape information of
each block and the car, it is impossible to complete
the assembly task.

Situational analysis and mapping could benefit
various domains, including safe navigation, action
verification, understanding of ambiguous task, etc.
For example, to achieve safe navigation, situational
mapping allows robot to build respective danger zone
according to the characteristics of obstacles. The dan-
ger zone is relative small for the static obstacles, like



walls, desks, while it is large for the mobile obstacles,
like humans, vehicles. Specifically, the shape of dan-
ger zone is related to the moving direction and veloc-
ity of mobile obstacles. In [Samsani and Muhammad,
2021], the real-time behavior of humans are analyzed
to generate the danger zone to guarantee the safe nav-
igation in crowed scenes.

4 CONCLUSION

This paper reviews the recent development of TAMP,
including the popular tasks, practical simulation en-
vironments, methods and existing challenges. Three
fundamental tasks, including rearrangement, naviga-
tion among movable obstacles and Pick-Place-Move
task, are described. Besides, some popular simula-
tion environments are listed and compared to facili-
tate the choice of experiment environment. What’s
more, some TAMP methods are classified by whether
they use deep learning methods and their tasks, which
helps readers to start from a baseline according to the
problems encountered and their background knowl-
edge. Finally, we describe the existing problems aim-
ing at indicating the possible exploration direction. In
summary, algorithms that are robust to perception and
action uncertainty and are able to exploit the environ-
ment semantics, should be explored.

ACKNOWLEDGEMENTS

This work was carried out in the scope of OTPaaS
project. This project has received funding from the
French government as part of the “Cloud Acceleration
Strategy” call for manifestation of interest.

REFERENCES

Barto, A. G. and Mahadevan, S. (2003). Recent advances
in hierarchical reinforcement learning. Discrete event
dynamic systems, 13(1):41–77.

Chitnis, R., Hadfield-Menell, D., Gupta, A., Srivastava,
S., Groshev, E., Lin, C., and Abbeel, P. (2016).
Guided search for task and motion plans using learned
heuristics. In 2016 IEEE International Conference
on Robotics and Automation (ICRA), pages 447–454.
IEEE.

Driess, D., Ha, J.-S., and Toussaint, M. (2020). Deep visual
reasoning: Learning to predict action sequences for
task and motion planning from an initial scene image.
In Robotics: Science and Systems 2020 (RSS 2020).
RSS Foundation.

Gan, C., Schwartz, J., Alter, S., Mrowca, D., Schrimpf,
M., Traer, J., De Freitas, J., Kubilius, J., Bhandwal-
dar, A., Haber, N., et al. (2021). Threedworld: A
platform for interactive multi-modal physical simula-
tion. In Thirty-fifth Conference on Neural Information
Processing Systems Datasets and Benchmarks Track
(Round 1).

Garrett, C. R., Chitnis, R., Holladay, R., Kim, B., Silver,
T., Kaelbling, L. P., and Lozano-Pérez, T. (2021). In-
tegrated task and motion planning. Annual review
of control, robotics, and autonomous systems, 4:265–
293.

Garrett, C. R., Lozano-Pérez, T., and Kaelbling, L. P.
(2015). Ffrob: An efficient heuristic for task and mo-
tion planning. In Algorithmic Foundations of Robotics
XI, pages 179–195. Springer.

Garrett, C. R., Lozano-Pérez, T., and Kaelbling, L. P.
(2018). Sampling-based methods for factored task
and motion planning. The International Journal of
Robotics Research, 37(13-14):1796–1825.

Garrett, C. R., Lozano-Pérez, T., and Kaelbling, L. P.
(2020a). Pddlstream: Integrating symbolic planners
and blackbox samplers via optimistic adaptive plan-
ning. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 30,
pages 440–448.

Garrett, C. R., Paxton, C., Lozano-Pérez, T., Kaelbling,
L. P., and Fox, D. (2020b). Online replanning in
belief space for partially observable task and motion
problems. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pages 5678–5684.
IEEE.

Ghallab, M., Howe, A., Knoblock, C., Mcdermott, D., Ram,
A., Veloso, M., Weld, D., and Wilkins, D. (1998).
PDDL—The Planning Domain Definition Language.

Ghallab, M., Nau, D., and Traverso, P. (2016). Automated
planning and acting. Cambridge University Press.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S.,
Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P.,
et al. (2018). Soft actor-critic algorithms and applica-
tions. arXiv preprint arXiv:1812.05905.

Kaelbling, L. P. and Lozano-Pérez, T. (2013). Integrated
task and motion planning in belief space. The Interna-
tional Journal of Robotics Research, 32(9-10):1194–
1227.

Kim, B. and Shimanuki, L. (2020). Learning value func-
tions with relational state representations for guiding
task-and-motion planning. In Conference on Robot
Learning, pages 955–968. PMLR.

Kim, B., Shimanuki, L., Kaelbling, L. P., and Lozano-
Pérez, T. (2021). Representation, learning, and plan-
ning algorithms for geometric task and motion plan-
ning. The International Journal of Robotics Research,
page 02783649211038280.

Kim, B., Wang, Z., Kaelbling, L. P., and Lozano-Pérez, T.
(2019). Learning to guide task and motion planning
using score-space representation. The International
Journal of Robotics Research, 38(7):793–812.

King, J. E., Cognetti, M., and Srinivasa, S. S. (2016). Re-
arrangement planning using object-centric and robot-



centric action spaces. In 2016 IEEE International
Conference on Robotics and Automation (ICRA),
pages 3940–3947. IEEE.

Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs,
L., Herrasti, A., Gordon, D., Zhu, Y., Gupta, A.,
and Farhadi, A. (2017). Ai2-thor: An interac-
tive 3d environment for visual ai. arXiv preprint
arXiv:1712.05474.

Konidaris, G., Kaelbling, L. P., and Lozano-Perez, T.
(2018). From skills to symbols: Learning symbolic
representations for abstract high-level planning. Jour-
nal of Artificial Intelligence Research, 61:215–289.

Kuffner, J. J. and LaValle, S. M. (2000). Rrt-connect: An ef-
ficient approach to single-query path planning. In Pro-
ceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automa-
tion. Symposia Proceedings (Cat. No. 00CH37065),
volume 2, pages 995–1001. IEEE.

Kulkarni, T. D., Narasimhan, K., Saeedi, A., and Tenen-
baum, J. (2016). Hierarchical deep reinforcement
learning: Integrating temporal abstraction and intrin-
sic motivation. Advances in neural information pro-
cessing systems, 29.

LaValle, S. M. (2006). Planning algorithms. Cambridge
university press.

Levy, A., Konidaris, G., Platt, R., and Saenko, K. (2018).
Learning multi-level hierarchies with hindsight. In In-
ternational Conference on Learning Representations.

Li, C., Xia, F., Martı́n-Martı́n, R., Lingelbach, M., Srivas-
tava, S., Shen, B., Vainio, K. E., Gokmen, C., Dharan,
G., Jain, T., et al. (2021). igibson 2.0: Object-centric
simulation for robot learning of everyday household
tasks. In 5th Annual Conference on Robot Learning.

Li, C., Xia, F., Martin-Martin, R., and Savarese, S. (2020).
Hrl4in: Hierarchical reinforcement learning for inter-
active navigation with mobile manipulators. In Con-
ference on Robot Learning, pages 603–616. PMLR.

Lu, D. V., Hershberger, D., and Smart, W. D. (2014). Lay-
ered costmaps for context-sensitive navigation. In
2014 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 709–715. IEEE.

Meng, Z., Sun, H., Teo, K. B., and Ang, M. H. (2018). Ac-
tive path clearing navigation through environment re-
configuration in presence of movable obstacles. In
2018 IEEE/ASME International Conference on Ad-
vanced Intelligent Mechatronics (AIM), pages 156–
163. IEEE.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. (2018).
Data-efficient hierarchical reinforcement learning.
Advances in neural information processing systems,
31.

Pasula, H. M., Zettlemoyer, L. S., and Kaelbling, L. P.
(2007). Learning symbolic models of stochastic do-
mains. Journal of Artificial Intelligence Research,
29:309–352.

Patel, U., Kumar, N. K. S., Sathyamoorthy, A. J., and
Manocha, D. (2021). Dwa-rl: Dynamically feasi-
ble deep reinforcement learning policy for robot nav-
igation among mobile obstacles. In 2021 IEEE In-

ternational Conference on Robotics and Automation
(ICRA), pages 6057–6063. IEEE.

Puig, X., Ra, K., Boben, M., Li, J., Wang, T., Fidler, S.,
and Torralba, A. (2018). Virtualhome: Simulating
household activities via programs. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 8494–8502.

Samsani, S. S. and Muhammad, M. S. (2021). Socially
compliant robot navigation in crowded environment
by human behavior resemblance using deep reinforce-
ment learning. IEEE Robotics and Automation Let-
ters, 6(3):5223–5230.

Silver, T., Chitnis, R., Tenenbaum, J., Kaelbling, L. P., and
Lozano-Pérez, T. (2021). Learning symbolic opera-
tors for task and motion planning. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), pages 3182–3189. IEEE.

Sun, H., Zhang, W., Runxiang, Y., and Zhang, Y. (2021).
Motion planning for mobile robots–focusing on deep
reinforcement learning: A systematic review. IEEE
Access.

Szot, A., Clegg, A., Undersander, E., Wijmans, E., Zhao, Y.,
Turner, J., Maestre, N., Mukadam, M., Chaplot, D.,
Maksymets, O., Gokaslan, A., Vondrus, V., Dharur,
S., Meier, F., Galuba, W., Chang, A., Kira, Z., Koltun,
V., Malik, J., Savva, M., and Batra, D. (2021). Habitat
2.0: Training home assistants to rearrange their habi-
tat. In Advances in Neural Information Processing
Systems (NeurIPS).

Toussaint, M. (2015). Logic-geometric programming: An
optimization-based approach to combined task and
motion planning. In Twenty-Fourth International Joint
Conference on Artificial Intelligence.

Wang, M., Luo, R., Önol, A. Ö., and Padir, T. (2020).
Affordance-based mobile robot navigation among
movable obstacles. In 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pages 2734–2740. IEEE.

Wang, Z., Garrett, C. R., Kaelbling, L. P., and Lozano-
Pérez, T. (2021). Learning compositional models of
robot skills for task and motion planning. The Inter-
national Journal of Robotics Research, 40(6-7):866–
894.

Xia, F., Li, C., Martı́n-Martı́n, R., Litany, O., Toshev, A.,
and Savarese, S. (2021). Relmogen: Integrating mo-
tion generation in reinforcement learning for mobile
manipulation. In 2021 IEEE International Conference
on Robotics and Automation (ICRA), pages 4583–
4590. IEEE.

Xiang, F., Qin, Y., Mo, K., Xia, Y., Zhu, H., Liu, F., Liu, M.,
Jiang, H., Yuan, Y., Wang, H., et al. (2020). Sapien: A
simulated part-based interactive environment. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 11097–11107.

Zeng, K.-H., Weihs, L., Farhadi, A., and Mottaghi, R.
(2021). Pushing it out of the way: Interactive visual
navigation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 9868–9877.


