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Abstract 13 

Soil available water capacity (SAWC) is a key factor to be considered when assessing soil 14 

capability to provide ecosystem services. The current study deepens the use of remotely sensed 15 

data for mapping SAWC and its components from crop model inversion. The inversion was 16 

conducted using the STICS (Simulateur mulTIdiscplinaire pour les Cultures Standard) crop 17 

model along with the GLUE (Generalized Likelihood Uncertainty Estimation) algorithm on a 18 

panel of 14 sites within a rainfed vineyard catchment located in Southern France. Several con-19 

straint variables derived from Landsat 7 ETM+ satellite imagery (leaf area index - LAI - and 20 

evapotranspiration - ET) or in-situ measurements (surface soil moisture - SSM), were used in 21 

the inversion process alone or in combination. 22 
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Three main outcomes could be reported when comparing retrievals of both SAWC and its com-23 

ponents against field estimates. First, retrievals were significantly correlated with ground esti-24 

mates for some SAWC components and some scenarios of constraint variables, although over-25 

all retrieving performances were quite poor. Second, poor retrieving performances for two sce-26 

narios of constraint variables were related to few sites for which specific processes were disre-27 

garded by the modelling framework, namely allochthonous water supply and waterlogging dur-28 

ing wet autumn and summer. Third, we could identify some promising combinations of con-29 

straint variables, after the removal of the aforementioned sites with specific processes. These 30 

promising combinations were (LAI, ET) and even more (LAI, ET, SSM) for estimating SAWC 31 

and root zone thickness, as well as SSM for estimating soil moistures at field capacity and 32 

wilting point of the topsoil layer. Provided we can avoid site-specific processes, our approach 33 

may further provide spatial sampling of SAWC and related components, to be used as surrogate 34 

input data for DSM models. 35 

Keywords: Digital Soil Mapping, remote sensing, crop model, inverse modelling, vineyard, soil 36 

available water capacity 37 

  38 
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1. Introduction 39 

Soil Available Water Capacity (SAWC) is defined as the maximum amount of plant available 40 

water a soil can provide (USDA-NCRS, 2008). It is a well-known concept that has been used 41 

for long to express the capacity of soils to store water for plants (Veihmayer and Hendrickson, 42 

1927). SAWC has also been used for characterizing important soil functions such as biomass 43 

production, erosion and flood control, water regulation and purification (Adhikari & Harte-44 

mink, 2016). SAWC is therefore a key factor to be considered when assessing soil capability to 45 

provide ecosystem services (McBratney et al., 2014). SAWC maps are thus required for appli-46 

cations based on soil capability over large territories (Leenaars et al., 2018). 47 

SAWC mapping is often hampered by low number of sites on which SAWC values can be 48 

determined, since SAWC determination requires costly and time-consuming soil observations 49 

and soil property measurements. The most current technique for SAWC mapping consists of 50 

using conventional soil maps that require few SAWC measurements only at representative sites 51 

of different soil classes (e.g., Dejong and Shields, 1988). However, Leenhardt et al. (1994) 52 

showed that this approach had strong limitations in spatial resolution and accuracy, because the 53 

scale of conventional soil maps is often less than 1:25,000. More recently, several attempts 54 

were made to apply the principle of Digital Soil Mapping (DSM) for SAWC mapping (Piedallu 55 

et al., 2011, Leennars et al., 2018, Roman Dobarco et al., 2019, Styc & Lagacherie, 2021).  56 

The general principle of DSM is to predict soil properties by machine learning and/or geosta-57 

tistical models (McBratney et al., 2003). Both methods use available spatial data related to soil 58 

forming factors (e.g., relief, climate, geology), and they are calibrated over in-situ measure-59 

ments of soil properties across several sites. In the case of SAWC that is characterized by scar-60 

city of in-situ measurements, pedotransfer functions (PTF) have been used to estimate SAWC 61 

components from easy-to-measure soil properties (Van Looy, 2017). However, validation ex-62 
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ercises showed that the mapping performances remained low as compared to other soil proper-63 

ties, with a non-negligible PTF contribution to the overall uncertainty (Roman Dobarco et al., 64 

2019). Therefore, increasing the number of in-situ SAWC estimates is a pre-requisite for im-65 

proving SAWC maps produced by DSM approaches. 66 

Remote sensing represents a valuable source of proxy that may deliver spatial estimates of sev-67 

eral surface soil properties, with fine spatial resolutions and over vast spatial extents, but they 68 

cannot be considered as possible techniques for a direct determination of SAWC. As far as soil 69 

properties are concerned, some of them (e.g., clay, organic carbon, calcium carbonate) have 70 

been successfully predicted from Vis-NIR hyperspectral remote sensing (Gomez et al., 2012), 71 

Vis-NIR multispectral remote sensing (Vaudour et al., 2019) or gamma-ray spectroscopy (Wil-72 

ford, 2006). Recent studies reported some promising capabilities with reflectance or emissivity 73 

spectra over the thermal infrared domain ([8 - 14] µm), but this remains prospective (Eisele et 74 

al., 2015). Besides, such remote sensing methods are restricted to the retrieval of topsoil prop-75 

erties, since deeper soil layers remain inaccessible. 76 

A possible alternative to overcome this problem consists of using remotely sensed proxies of 77 

the soil-plant system characteristics, to be combined with dynamic models that simulate plant 78 

growth in relation to SAWC. Although some prospective studies can be found in the DSM 79 

literature (Taylor et al., 2013, Jin et al., 2018a), this alternative has been much more investigated 80 

in the remote sensing community, through the use of inverse modelling. Inverse modelling is 81 

the process of calculating, from a set of observations, the causal factors that produced them 82 

(Knighton et al., 2019). It can be applied to SAWC mapping by assuming that SAWC is the 83 

predominant causal factor of soil / plant variables observed from remote sensors, from which 84 

SAWC can therefore be retrieved. Within this framework, estimates of SAWC, or of its com-85 

ponents, are obtained by using optimization techniques (Lammoglia et al., 2019; Prévot et al., 86 

2003) or Bayesian methods (Mertens et al., 2004; Scharnagl et al., 2011). These approaches 87 
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iteratively reduce the differences between remotely sensed observations of soil / plant variables 88 

and simulations from crop / Soil Vegetation Atmosphere Transfer (SVAT) model, by modulat-89 

ing model values of SAWC or of its components. 90 

Several soil and crop variables accessible from remote sensors have been considered as con-91 

straint variables for estimating SAWC components, following inverse modelling approaches. 92 

On the basis of mechanistic soil water models combined with soil evaporation and plant tran-93 

spiration, several studies explored the retrieval of soil depth and hydraulic properties, (1) from 94 

topsoil moisture (Montzka et al., 2011), (2) from both topsoil and root zone soil moistures 95 

(Galleguillos et al., 2011a; b; 2017), (3) from surface temperature in relation to root zone soil 96 

moisture (Coudert et al., 2006; Guillevic et al., 2012; Dong et al., 2016), (4) from both surface 97 

soil moisture and surface temperature (Ridler et al., 2012), or (5) from evapotranspiration (Oli-98 

oso et al., 2002). Other studies relied on crop models (1) with plant canopy variables such as 99 

leaf area index (LAI) or nitrogen absorption (Ferrant et al., 2016; Guerif et al., 2006; Launay et 100 

al., 2005; Varella et al., 2010a), (2) with both LAI and surface soil moisture (Dente, 2008; 101 

Sreelash et al., 2017), or (3) with both LAI and evapotranspiration (Charoenhirunyingyos et al., 102 

2011). 103 

The panel of studies above-discussed have provided valuable insights about the opportunities 104 

offered by the joint use of mechanistic models and remotely sensed observations. Nevertheless, 105 

several methodological developments still are necessary for improving performances of SAWC 106 

retrieving. First, the use of LAI as constraint variable has been extensively addressed, whereas 107 

the use of surface temperature and evapotranspiration, both related to root zone soil moisture, 108 

was moderately investigated (Feddes et al., 1993; Jhorar et al., 2004; Singh et al., 2010), be-109 

cause of methodological challenges related to the turbulent nature of surface temperature and 110 

surface heat fluxes (Lagouarde et al., 2013). However, including surface temperature and evap-111 

otranspiration into the panel of constraint variables is likely to improve the performances of 112 
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SAWC retrieving from model inversion, and even more when considering operational satellite 113 

that provide observations on a routine basis. Second, most studies focused on quite homogene-114 

ous vegetation canopies, and few of them only investigated heterogenous or discontinuous can-115 

opies, whereas the structural properties of such canopies induce methodological challenges in 116 

relation to the partitioning of energy fluxes (Kool et al., 2014; Montes et al., 2014). Third, most 117 

studies focusing on SAWC retrieving were conducted at the field scale, by involving heavy 118 

experiments with numerous field measurements of soil and crop variables, whereas very few 119 

studies investigated the regional extent (Todoroff et al., 2010; Coops et al., 2012). This is all 120 

the more critical that the regional extent is appropriate for DSM while inducing methodological 121 

challenges related to landscape heterogeneities (e.g., climate, soil, crops), whereas no validation 122 

against SAWC ground-based measurements has been reported to date. 123 

The current study aimed to estimate SAWC and its components from crop model inversion. 124 

The SAWC components to be estimated were root zone thickness as well as soil moistures at 125 

field capacity and wilting point for topsoil and root zone layers. Crop model inversion relied 126 

on three constraint variables, to be used alone or in combination, namely leaf area index (LAI) 127 

and actual evapotranspiration (ET), both obtained from satellite remotely sensed data, and sur-128 

face soil moisture (SSM) derived from in-situ measurements, because remote sensing of SSM 129 

remains questionable over vineyards (Lei et al., 2020). The experiment was conducted on a 130 

panel of 14 sites within a heterogeneous landscape with discontinuous vegetation canopies, 131 

namely a rainfed vineyard catchment located in Southern France. In order to address landscape 132 

scale heterogeneity, we used remotely sensed observations with high spatial resolution only, 133 

namely Landsat 7 ETM+ data that are operationally collected. The inversion modelling was 134 

conducted using the crop model STICS (Simulateur mulTIdiscplinaire pour les Cultures Stan-135 

dard, Brisson et al., 1998) along with the GLUE inversion algorithm (Generalized Likelihood 136 

Uncertainty Estimation, Beven et al., 1992). These methodological tools were chosen for their 137 
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robustness with regards to former studies at the field scale (Jin et al., 2018b). The paper is 138 

structured as following. We first present the methodological strategy, including the experi-139 

mental setup, the data set with variability in SAWC ground-based measurements, and crop 140 

model inversion. We next present the inversion results, including the capability of the inversion 141 

procedure to make agreement between observations and crop model simulations, and the relia-142 

bility of SAWC estimates from the inversion procedure. We finally discuss these results in 143 

terms of limitations and perspectives for DSM. 144 

2. Material and Methods 145 

2.1. Study area  146 

The study took place within the Peyne river catchment (43.49°N, 3.37°E), located in Southern 147 

French Occitanie region (see Figure 1), throughout the year 2015. The spatial extent of the 148 

Peyne catchment is around 65 km2. Altitudes range from 20 to 230 m above sea level. The 149 

Peyne catchment is mainly covered by vineyards, mostly rainfed, the remaining being covered 150 

by other crops, forests and urban areas. It is typified by a Mediterranean climate, with an annual 151 

value of 638 mm and 1109 mm for rainfall and reference evapotranspiration, respectively. The 152 

soils depict a large variability in texture and depth, inducing large contrasts in soil moisture 153 

regime within the root zone, and thus large contrasts in vine growth conditions (Taylor et al., 154 

2013). Also, permanent or temporary shallow water tables are present in some parts of the 155 

catchment, which also affects the availability of water for plants (Guix-Hébrard et al., 2007). 156 

2.2. Site characterizations and ground-based observations 157 

We selected 14 sites (Table 1) which permitted to encompass a large part of the soil variability 158 

within the Peyne catchment in terms of SAWC driving factors, namely soil texture, stone con-159 

tent and depth. Ground characterizations at each of the 14 sites were performed (1) to estimate 160 

surface soil moisture (SSM) as a constraint variable that could not be obtained from remote 161 
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sensing, (2) to determine the observed values of SAWC and of its components that were further 162 

compared with model inversions outputs (see § 2.6), and (3) to establish a prior knowledge on 163 

soil texture variability used as input of the inversion procedure (see § 2.5.3.1). 164 

 165 

Figure 1. Left: location of the Peyne watershed in the Occitanie region (blue contour). Right: 166 

limits of the Peyne watershed (red contour), location of the 14 sites (circles with digits, sites 167 

10-13 are hidden by site 14) and of the Roujan meteorological station (blue diamond). 168 

2.2.1. Soil moisture 169 

Soil moisture profiles were obtained using a 503-DR CPN neutron probe (Vectra, France). Ac-170 

cess tubes were set up at 13 sites out of 14. Soil moisture profiles were collected every 15 to 171 

30 days according to rainfall events, between 8 April 2015 and 22 October 2015, which corre-172 

sponds to 10 dates. Measurements were conducted along the vineyards root zone, from the 173 
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subsurface (0.2 - 0.3 m) down to 1.9 m with a 0.2 m step, and from 2.2 m down to 4.2 m with 174 

a 0.4 m step. The neutron probe was calibrated against in situ measurements of soil moisture 175 

following Galleguillos et al. (2011a; b; 2017). For the remaining site (AW95), hourly soil mois-176 

ture was recorded using SoilNet sensors (ring oscillators, Bogena et al., 2010), installed at 0.15, 177 

0.3, 0.6, 1.1, 1.5 and 2.0 m depths. 178 

Table 1: description of the sites with ground characterisations. WRB stands for World Refer-179 

ence Base for Soil Resources (https://www.isric.org/explore/wrb). 180 

Site Name Geological setting Soil type (WRB) soil depth 
(m) 

observed 
SAWC 
(mm) 

1 Cabrol Alluvial stony deposits Fluvisol (skeletic) 2.30 204 

2 Peyrat_Bas Old clayey alluvial de-
posits Calcisol (vertic) 2.70 179 

3 Peyrat_Haut Old clayey alluvial de-
posits Calcisol (clayic) 1.35 105 

4 Cros Loose sandstone  Gleyic Cambisol 1.55 197 

5 Doustheissier Alluvial stony deposits Hyperskeletic 
Cambisol (clayic) 1.20 44 

6 Ravanel Loose sandstone  Calcisol 1.10 155 
7 Benoit Loose sandstone  Leptic Calcisol  1.35 121 
8 Panis Lacustrine limestone  Leptic Calcisol  0.65 123 
9 Alary Lacustrine limestone  Skeletic Calcisol 1.70 129 
10 Aw104 Loose sandstone  Calcisol 1.55 202 
11 Aw92 Loose sandstone  Calcisol 1.55 202 
12 Aw124 Loose sandstone  Calcisol (gleyic) 2.00 208 
13 Aw95 Loose sandstone  Calcisol 2.10 185 
14 Aw126 Loose sandstone  Calcisol 1.65 217 

We used the following procedure for making comparable SoilNet and neutron probe measure-181 

ments. First, the SoilNet sensors were cross-calibrated with the neutron probe. Second, both 182 

neutron probe and SoilNet measurements were normalized along each profile, in accordance to 183 

their vertical representativeness. Third, we calculated daily soil moistures from the hourly val-184 

ues. Finally, we used soil moisture records across the [0.2 - 0.3] m layer at all sites to estimate 185 
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SSM as a constraint variable of the inversion procedure (see § 2.4). For two sites without direct 186 

measurements of SAWC components (aw92 and aw126), the soil moisture records from the 187 

subsurface down to 2.4 m were also used as inputs of the SAWC determination procedure (see 188 

§ 2.2.2). 189 

2.2.2. Ground-based determination of SAWC and its components 190 

On 12 sites out of 14, soil pits were dug or soil cores were drilled in close vicinity of the neutron 191 

probe access tubes or of the SoilNet sensors. Soil layers were defined as the soil horizons de-192 

termined by the morphological observations of the soil profiles, which led to consider between 193 

3 and 5 soil layers. SAWC was classically determined from soil observations and analysis using 194 

the following expression (Cousin et al., 2003): 195 

!"#$ =	∑ (! ∗ *+! ∗ ,
"##$%&!
"## - ∗ (/0$! − /#2!)'

!("   (1) 196 

where for each soil layer i, (! 	is the thickness of the layer (mm), bdi is bulk density, 45! is the 197 

coarse fragment content (% volumetric), and HFCi and HWPi are the soil moistures at field 198 

capacity (FC) and wilting point (WP), respectively. The soil properties bdi, HFCi and HWPi 199 

were determined for each layer sample from core sampling using 100 cm3 stainless-steal cylin-200 

ders, a pressure plate extractor providing measurements of HFCi and HWPi (Klute, 1986). Di 201 

and sti were determined from the observations made in the soil pits.  202 

For the two remaining sites (aw92 and aw126), we estimated SAWC and its components using 203 

the method proposed by Sreelash et al. (2017). The latter consisted of estimating SAWC and 204 

its components from a statistical analysis of the times series for soil moisture neutron probe 205 

measurements conducted over 10 years at same depths, and at several times each year in ac-206 

cordance to rainfall events. We also applied this method on 5 additional sites, in order to esti-207 

mate the uncertainty on SAWC components that was required for the inversion approach (see 208 

§ 2.5.3.1). In order to be consistent with the inversion scheme of the crop model, HFC and 209 
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HWP were finally averaged by considering two layers: a topsoil layer (0 - 0.3 m) and a root 210 

zone layer (0.3 m to soil depth, derived from observations of Di made in the soil pits). 211 

2.2.3. Characterization of soil texture variability over the region 212 

Soil samples were collected in 12 sites out of 14, and in three additional sites of the study area, 213 

in order to complete the picture of the regional soil variability. Soil samples were collected for 214 

each horizon determined by the morphological observations of soil profiles. A total of 77 soil 215 

layers (five to six per site) were sampled. The granulometric fractions of the soil samples were 216 

determined in the laboratory using classical laboratory techniques (Baize and Jabiol, 1995). The 217 

variability of the granulometric fractions as observed on the set of samples is presented in Fig-218 

ure 2. 219 

 220 

Figure 2: Variability of texture over the 77 soil layers located in the Peyne Catchment. 221 

2.3. Meteorological data 222 
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A standard meteorological station (Enerco 400, CIMEL, France) was located in the Roujan 223 

head catchment, within the Peyne river catchment (Figure 1). It provided hourly and daily val-224 

ues of solar irradiance, air temperature and humidity, wind speed and rainfall. Reference evap-225 

otranspiration ET0 was calculated following FAO-56 (Allen et al., 1998). Since this meteoro-226 

logical station was installed in 1992 in the framework of the long-term observatory OMERE 227 

(Molénat et al., 2018), it allowed the comparison of the hydrological year 2014-2015 (01 Sep-228 

tember 2014 to 31 August 2015) against the inter-annual average. Hydrological year 2014-2015 229 

was characterized by heavy rainfalls during the fall of 2014 (388 mm), followed by both dry 230 

winter (49 mm) and spring (77 mm), and a humid summer (135 mm, that occurred mostly in 231 

august, with several high intensity thunderstorms). The cumulated annual rainfall amount was 232 

649 mm, close to the inter-annual average (638 mm). Reference evapotranspiration ET0 was 233 

larger than the inter-annual average, except during august 2015, which led to an annual cumu-234 

lated ET0 of 1187 mm, substantially larger than the inter-annual average (1109 mm). 235 

2.4. Constraint variables estimated from satellite images 236 

2.4.1. Landsat 7 ETM+ imagery 237 

 Eleven almost cloud-free scenes collected by the Landsat 7 Enhanced Thematic Mapper Plus 238 

sensor (ETM+) were available between 8 January 2015 and 23 October 2015. They were down-239 

loaded from the U.S. Geological Surveys USGS website, Earth explorer Interface 240 

(https://earthexplorer.usgs.gov, accessed June, 01, 2018). These 30-meter resolution images 241 

were instrumentally corrected following Vermote et al. (1997), using the calibration factors 242 

reported in the downloaded metadata files. 243 

The Landsat images were atmospherically corrected to obtain top of canopy (TOC) reflectances 244 

and surface outgoing radiances over the solar (visible and near infrared - NIR) and the thermal 245 

infrared (TIR) spectral ranges, respectively. Two atmospheric radiative transfer models were 246 

used: the 6S model (Vermote et al., 1997) and the MODTRAN model (Berk et al., 1999) over 247 
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the solar and TIR spectral range, respectively. The required atmospheric profile data for both 248 

models (including pressure, temperature, and relative humidity) were available online 249 

(https://atmcorr.gsfc.nasa.gov, accessed on June, 01 2018). There were vertically interpolated 250 

using the National Centre for Environmental Prediction (NCEP) reanalysis data (Barsi et al., 251 

2003). Linear interpolation of the aerosol optical thickness (AOT) data at 340, 380, 440, 500, 252 

675, 870 and 1020 nm were used to estimate AOT at 550 nm from the Toulouse location 253 

(43.562N, 1.476E) of the AERONET network (Holben et al., 2001).  254 

Masks were finally created for each acquisition date, to eliminate the missing data caused by 255 

the failure of the scan line corrector (SLC) of the Landsat 7 ETM+ sensor (Chen et al., 2010, 256 

Li et al., 2017), located in the northwest part of the study area, as well as to eliminate the few 257 

clouds and their shadows that occurred for some dates. 258 

2.4.2. Leaf Area Index estimates  259 

In the literature, only few studies were devoted to estimate the leaf area index (LAI) of vine-260 

yards from satellite images. This is due to the discontinuous structure of vineyards canopies 261 

(row crops, large bare soil fraction) and to the frequent changes in canopy architecture because 262 

of trellis systems and pruning operations. Johnson et al. (2003) showed that LAI of vineyards 263 

cultivated in rows can be estimated from normalized difference vegetation index (NDVI) using 264 

a linear relationship (R2 = 0.72). Their study covered a wide range of vineyard geometries under 265 

Mediterranean climate, and in particular a wide range of row spacings (between 1 and 3.7 me-266 

ters) that included those typically practiced in the Peyne watershed (between 1.8 and 2.5 meter, 267 

mainly 2.5). Vineyard LAI maps were thus calculated at 30-meter resolution, using the linear 268 

relationship proposed by Johnson et al. (2003): 269 

LAI = 5.70 NDVI – 0.25  (2) 270 

where NDVI was calculated from ETM+ bands 3 (R: red) and 4 (NIR: near infrared): 271 
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NDVI = (NIR − R) / (NIR + R) (3) 272 

2.4.3. Evapotranspiration estimates 273 

By focusing on the same Peyne watershed, Galleguillos et al. (2011a, 2011b) investigated the 274 

mapping of daily ET over vineyards by using the Simplified Surface Energy Balance Index (S-275 

SEBI, Roerink et al., 2000) method, along with ASTER satellite imagery. The latter includes 276 

simultaneously observations over the solar (visible and NIR) and the TIR spectral ranges, for 277 

the retrieval of albedo and surface temperature, respectively (Jacob et al., 2004; French et al., 278 

2005; 2008). By combining maps of surface albedo and temperature, the S-SEBI model pro-279 

vides estimates of daily ET (Gómez et al., 2005). Thus, Galleguillos et al. (2011a, 2011b) re-280 

ported an accuracy of 0.8 mm.day-1 for the mapping of daily ET over the vineyards of the Peyne 281 

watershed, when compared against ground-based references from eddy covariance method. 282 

Further, Montes and Jacob (2007) compared the capabilities of ASTER or Landsat 7 ETM+ 283 

imageries to retrieve daily ET over the same watershed vineyards, by using the S-SEBI method. 284 

They reported a similar accuracy (0.9 mm.day-1) when using the Landsat 7 ETM+ imagery, as 285 

compared to the use of the ASTER imagery (0.8 mm.day-1). For the current study, and on the 286 

basis of the above-discussed studies, we followed the approach proposed by Montes and Jacob 287 

(2007) for the Landsat 7 ETM + imagery. Thus, we generated daily ET maps with a 30-meter 288 

resolution, for each of the 11 Landsat 7 ETM+ imageries collected during the experiment.  289 

2.5. Model inversion approach 290 

Model inversion consists of estimating some model parameters by minimising differences be-291 

tween model simulations and in-situ / remotely sensed measurements (fitting process), for a 292 

panel of constraint variables, on the basis of optimization techniques or Bayesian methods 293 

(Montes et al., 2014). Obviously, the dynamics of the constraint variables must significantly 294 

depend upon the parameters to be estimated, which explains why inversion methods usually 295 

involve simultaneous sensitivity studies (Varella et al., 2010b). 296 
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Several studies were devoted to estimating soil hydrological properties or soil depth, by using 297 

different types of models devoted to subsurface water flows (Šimůnek et al., 2016, Galleguillos 298 

et al., 2017, Javaux et al., 2008), crop functioning (Florin et al., 2011, Dente et al., 2008 ; 299 

Sreelash et al., 2017) or Soil - Vegetation - Atmosphere Transfer (Olioso et al., 2005, Gutmann 300 

et al., 2010, Bandara et al., 2015). Follow on from the literature review we discuss in introduc-301 

tion, we considered in the current study the STICS crop model for estimating SAWC compo-302 

nents by inversion, and we selected three constraint variables for the fitting process, either alone 303 

or in combination, namely leaf area index (LAI), evapotranspiration (ET) and surface soil mois-304 

ture (SSM). For LAI and ET, we considered the remotely sensed estimates from the Landsat 7 305 

ETM+ sensor. For SSM, we considered the in-situ measurements, because remotely sensed 306 

estimation of SSM remains questionable over vineyards (Lei et al., 2020). 307 

2.5.1. Implementing the STICS crop model 308 

The STICS crop model (Brisson et al., 1998) was developed to simulate the dynamics of agri-309 

cultural and environmental variables for various crops. STICS is a generic mono-dimensional 310 

model (1D vertical fluxes), predicting daily budget of water, carbon and nitrogen within the 311 

topsoil and root zone layers, on the basis of energy and mass transfer within the soil - plant - 312 

atmosphere continuum. STICS involves more than 200 input parameters or variables, related 313 

to soil profile characteristics, plant characteristics according to phenological stages, initialized 314 

soil moisture and nitrogen profiles, climate data and agricultural practices (Brisson et al., 1998; 315 

2003; Varella et al., 2010a, Guérif et al., 2006). Among many other crops, STICS has been 316 

successfully applied to vineyards (Celette and Gary, 2013). In the current study, we used the 317 

version V8.41 of the STICS model that can be freely downloaded at the following URL: 318 

https://www6.paca.inrae.fr/stics_eng/Download. 319 

For the current study, we ran STICS simulations for each of the 14 sites, and we estimated 320 

SAWC components from the inversion procedure on the basis of the aforementioned LAI, ET 321 
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and SSM estimates. LAI and ET estimates corresponded to the 30-meter pixels of the Landsat 7 322 

ETM+ imagery that matched each of the 14 sites, and SSM estimates corresponded to field 323 

measurements within each site (see § 2.2.1). Table 2 summarizes the data used as inputs of 324 

STICS simulations to document the model parameters that were not set to default values and 325 

the meteorological forcing. The meteorological variables were provided by the Roujan meteor-326 

ological station (see § 2.2.4). For row geometry of vineyards and other soil parameters that 327 

were not estimated for the inversion procedure, we fixed them to single nominal values across 328 

the 14 sites, by averaging previous measurements performed within the La Peyne watershed 329 

(Meyer, 2016; Molénat et al., 2018). The plant parameters of the wine crop were derived from 330 

the STICS library. Soil nitrogen content was set to a standard value for vineyards, also provided 331 

by the STICS library. Finally, we used the inversion procedure to fix root zone thickness and 332 

hydraulic properties, namely soil moistures at wilting point and field capacity for topsoil and 333 

root zone layers (see § 2.5.2). It is worth noting that none of the parameters was obtained by 334 

measurements at the site scale, which ensured a potential application of the procedure over the 335 

whole watershed. 336 

Table 2: Source of data for documenting the STICS parameters that were not set to the STICS 337 

default values and the meteorological forcing. N and Corg stand for soil nitrogen content and 338 

soil organic carbon, respectively. Vineyard and soil parameters were obtained in the frame-339 

work of the OMERE environmental observatory (Meyer, 2016; Molénat et al., 2018). The term 340 

“scale” stands for the representativeness of the data, either “watershed” for meteorology and 341 

for averaged measurements across the 14 sites, or “site” for in-situ data. 342 

 Data Origin  Scale 
Climate Daily meteorologi-

cal data 
OMERE meteorological station in Roujan Watershed 

Vineyard Row geometry Averaged Measurements  Watershed 
Plant functioning 
parameters 

STICS library Site 
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Soil Bulk density Averaged Measurements Watershed 
N, Corg Averaged Measurements and STICS Library Watershed 
Root zone thickness Estimated from STICS inversion Site 
Hydraulic properties  Estimated from STICS inversion Site 

The STICS starting simulation date was set to 01 January 2015, after a long period of rainy 343 

weather, so that we could initialize soil water content to full water saturation. The ending sim-344 

ulation date was 31 December 2015, thus including the whole cycle of vine cultivation. 345 

2.5.2. Setting up soil layers and soil parameters 346 

In order to reduce the number of STICS parameters to be estimated from inversion, the soil was 347 

split into two layers as proposed by Wosten (2001) and Varella (2010b). The boundaries of the 348 

topsoil layer (ploughing layer) were set to 0 and 0.3 m depth, and the thickness of the second 349 

layer (root zone layer) was included into the set of parameters to be estimated from model 350 

inversion. Thus, five soil parameters had to be estimated from the inversion of the STICS 351 

model: (1) soil moisture at field capacity HFCi and wilting point HWPi for both layers, with 352 

i=1 or 2 for the topsoil and root zone layers, respectively, and (2) thickness of root zone layer 353 

D2. The estimated soil available water capacity SAWCi of each layer was then calculated as: 354 

SAWCi= (HFCi - HWPi) × bd × Di   (4) 355 

where bd is the dry bulk density of layer i, that was set at 1.5 in accordance to the average of 356 

dry bulk densities observed in the catchment. Note that the coarse fragment content (sti) in 357 

equation 1 is not considered in equation 4, in order to limit the number of soil parameters to be 358 

estimated. However, the variations of coarse fragment content were implicitly included into the 359 

inversion process through the modulations of the five estimated soil parameters. This point is 360 

discussed in § 4.4. 361 

2.5.3. Inversion procedure 362 
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For the current study, we used the GLUE method proposed by Beven et al. (1992) to estimate 363 

the targeted STICS parameters (root zone thickness as well as soil moistures at wilting point 364 

and field capacity for topsoil and root zone layers) along with their uncertainties. This method 365 

consists of running the considered model over a large set of model parameter values, referred 366 

to as the Numerical Design of Experiment (NDoE) hereafter, by following a given distribution 367 

for each parameter. It next selects a subset of parameter values that provide best observation 368 

fitting, which leads to the estimates of the parameters along with the associated uncertainties. 369 

The framework we used here was very similar to the classical implementation of the GLUE 370 

method, except when generating the population of sampled parameters. Indeed, our framework 371 

included two steps: generating the NDoE in a first step, and estimating the parameters and their 372 

uncertainties in a second step. Both steps are presented in the next two sections. 373 

2.5.3.1. Generating the Numerical Design of Experiment (NDoE) 374 

The NDoE was the population of SAWC components to be considered as input parameters of 375 

the STICS crop model, namely populations of soil moisture at field capacity and wilting point 376 

for topsoil layer (HFC1, HWP1) and root zone layer (HFC2, HWP2), as well as thickness of the 377 

root zone layer (D2). Rather than selecting these SAWC components within independent ran-378 

dom distributions, our NDoE aimed to represent the variability of the SAWC components ob-379 

served within the Peyne watershed. The experiment design was defined according to the fol-380 

lowing procedure. 381 

● The 77 soil layers sampled in our experiment (see § 2.2.3) were used to define the ranges 382 

within which textures were randomly sampled (Table 3). Clay and silt percentages were 383 

first randomly selected from uniform distributions bounded by the defined ranges. Sand 384 

percentages were then deduced as the complement to 100, and the samples having sand 385 
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percentages outside the observed range were eliminated. Given the textures, soil water con-386 

tents at field capacity (HFC) and at wilting point (HWP) were calculated using the texture-387 

class pedotransfer functions (PTF) proposed by Al Majou et al. (2008, Table 2). 388 

● In order to account for the uncertainties on these values, random noises were next added to 389 

HFC and to HWP, following a normal distribution. The standard deviations of the normal 390 

distributions were deduced by examining the differences between the SAWC components 391 

values determined from the laboratory measurements and those determined from in-situ 392 

time series of soil moisture measurements. These differences could be calculated on the 7 393 

sites where both determinations were performed (see § 2.2.2). The standard deviation val-394 

ues were 1.57 and 2.37 for HFC and HWP, respectively. 395 

● We eliminated the samples with HWP values larger than HFC values, to ensure the coher-396 

ence of the sampled data without SAWC negative values. 397 

● The boundaries of the topsoil layer were set to 0 and 0.3 m depth, according to Wosten et 398 

al. (2001) and Varella et al. (2010a). Then, the thickness D2 of the second layer (root zone 399 

layer), was sampled by following a uniform distribution within the prior range adopted by 400 

Sreelash et al., (2017) and given in Table 3.  401 

Table 3: Ranges of the parameters used to set up the Numerical Design of Experiment (NDoE).  402 

Parameter Range Unit 
Clay 7.1 - 45.1 % 
Silt 20.0 - 65.2 % 
Sand 8.0 - 68.5 % 
D2 0 – 2.7 m 

For each location, 20,000 runs of the STICS crop model were conducted, corresponding to each 403 

set of the 5 parameters HFC1, HWP1, HFC2, HWP2 and D2. All simulated variables of interest 404 

were saved in a simulation database for further use. 405 

2.5.3.2. Estimating the parameters  406 
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For each of the 14 sites, 11 Landsat 7 ETM+ images were available between January and Oc-407 

tober 2015, and therefore used to estimate leaf area index (LAI) and daily actual evapotranspi-408 

ration (ET) (see § 2.4). Additionally, soil moisture measurements in the surface layer (surface 409 

soil moisture, SSM) were available on 10 dates between January 2015 and October 2015 (see 410 

§ 2.2.1). Both Landsat estimates and SSM measurements were used in the inversion process as 411 

constraint variables, alone or in combination, which led to six scenarios for estimating SAWC 412 

components (Table 4). The first three scenarios involved remotely sensed observations only, 413 

whereas the last three scenarios involved both remotely sensed observations and in situ meas-414 

urements of SSM. On the one hand, we did not consider SSM measurements only in the sce-415 

narios because we anticipated that root zone properties (and thus SAWC) could not be retrieved 416 

by using SSM only in the inversion system, since SSM corresponds to topsoil moisture. On the 417 

other hand, we combined SSM measurements with remotely sensed estimates, in order to quan-418 

tify the loss of inversion capability when disregarding surface soil moisture as a constraint var-419 

iable. 420 

Table 4: Scenarios of constraint variables, to be used alone or in combination, for estimating 421 

SAWC components by inversion of STICS. 422 

Scenario Constraint variables Data source 
L LAI 

Landsat 7 ETM+ imagery E ET 
LE LAI + ET 
LS LAI + SSM 

Landsat 7 ETM+ imagery 
SSM from field measurements ES ET + SSM 

LES LAI + ET + SSM 

For each run of the STICS model, among the aforementioned 20 000 runs, and each of the six 423 

scenarios of constraint variables in Table 4, we computed a likelihood function that compared 424 

the STICS simulations against the corresponding observations by combining multiple variables: 425 
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where j specifies the observed variable, k the observation date, yj,k is the observation of the 427 

variable j at the date k, fj,k(P, θ) is the model output of the variable j at the date k, obtained from 428 

the model inputs corresponding to the vector of parameters to be estimated θ, P is the vector of 429 

STICS parameters whose values are assigned prior to the inversion process, and nj is the total 430 

number of observations of the variable j. The model errors for the different variables are as-431 

sumed to be normally distributed and independent but may have different variances. Starting 432 

with the likelihood standard equation that corresponds to these hypotheses, the variance values 433 

that maximize this likelihood for fixed θ are substituted to obtain the concentrated likelihood 434 

(Seber and Wild, 1989). This allows the combination of information from different response 435 

variables, without having to weight them. More details can be found in (Buis et al., 2011) and 436 

(Wallach et al., 2011). 437 

Then, we selected the 1 000 (5%) parameters vectors HFC1, HWP1, HFC2, HWP2 and D2 of the 438 

STICS runs having the highest likelihood values 6 (equation 5). Finally, each of the five pa-439 

rameters estimates was computed as the mean value of the parameter over the selected set of 440 

runs. 441 

2.6. Assessing the reliability of the inversion procedure  442 

Four statistical metrics were considered to assess (1) the goodness-of-fit of the simulations to 443 

the observations for the constraint variables, and (2) the goodness-of-fit of the estimated SAWC 444 

to their corresponding experimental measurements (see § 2.2.2). These statistical indicators 445 

were: Mean Error (ME), Root Mean Square Error (RMSE), Coefficient of determination (R2) 446 

and Nash-Sutcliffe model efficiency coefficient (NSE). The definitions of these statistical met-447 

rics are given hereafter: 448 

>? = ∑ (2!$3!)#
!

'     (5) 449 
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G!? = ∑ (2!$3!)$#%
∑ 43!$35

$#%
        (8) 452 

Where P and O stand for predictions and observations, respectively, where observations are the 453 

reference for a given variable, and FH is the averaged value of the observations for a given sam-454 

ple. These statistical metrics were complementary since (1) ME measures the bias between pre-455 

dictions and observations, (2) R² measures the strength of the correlation between predictions 456 

and observations, independently from the bias, (3) RMSE measures the total error of prediction, 457 

including systematic and unsystematic errors, and (4) NSE is an adimensional indicator, related 458 

to RMSE, that permits to compare prediction errors across predicted variables and, if positive, 459 

to evaluate the percentage of explained variance by the predictions. 460 

It should be noted, however, that in this particular application of the inversion method which 461 

consisted in providing soil input for DSM models in a spatially distributed manner, rather than 462 

providing local SAWC predictions directly usable for decision making, a special attention was 463 

given to R2. Indeed, the latter accounts for the ability to picture the spatial variability of SAWC 464 

across the study region, regardless of bias. 465 

3. Results 466 

3.1. Reproducibility of the constraint variables 467 

We compared the six scenarios of constraint variables for STICS inversion, on their respective 468 

goodness-of-fit between (1) observed (SSM) or remotely sensed (LAI and ET) values of the 469 

three constraint variables, and (2) simulations of these variables by the inverted STICS model. 470 

The results of the comparison are given in Table 5, on the basis of the aforementioned statistical 471 

metrics. 472 
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Table 5: Statistical metrics for the comparison between (1) observations of the three constraint 473 

variables (LAI, ET and SSM), and (2) simulations of these variables by the STICS model after 474 

inversion. The comparison is conducted for each of the six inversion scenarios (see Table 4 for 475 

definition). 476 

Constraint variable Scenario ME RMSE R2 NSE 

LAI 
(m2/m2) 

L 0.71 1.12 0.32 -1.70 
E 0.62 1.29 0.18 -2.56 
LE 0.67 1.19 0.27 -2.04 
LS 0.75 1.22 0.19 -2.21 
ES 0.64 1.25 0.17 -2.34 
LES 0.71 1.18 0.26 -1.99 

ET 
(mm/day) 

L 0.50 1.00 0.38 -0.03 
E 0.40 0.79 0.57 0.34 
LE 0.43 0.83 0.54 0.27 
LS 0.56 1.00 0.38 -0.04 
ES 0.48 0.93 0.44 0.10 
LES 0.47 0.92 0.45 0.11 

SSM 
(g/g) 

L 2.61 5.73 0.01 -0.54 
E 1.88 5.12 0.04 -0.22 
LE 1.27 5.44 0.00 -0.38 
LS 0.00 3.38 0.47 0.46 
ES -0.08 3.40 0.46 0.46 
LES 0.24 3.54 0.42 0.41 

The overall quality of prediction of the constraint variables was low with few values of NSE 477 

and R2 exceeding 0.2 and 0.5 respectively (prediction of ET with scenario E and LE, prediction 478 

of SSM with scenario LS, ES and LES). However, most of the differences were ascribed to 479 

substantial biases (ME) relatively to the total error (RMSE). Also, RMSE values on LAI, ET 480 

and SSM were close to the accuracy requirements regularly quoted in literature, namely 481 

0.8 m2/m2, 0.8 mm/day and 6.5 %, respectively (Montes & Jacob, 2017, Fang et al., 2019, Pré-482 

vot et al., 1993). Consequently, the relationships between the observations of the three con-483 

straint variables and the simulations of these variables by the inverted STICS model were ac-484 

ceptable. As expected, the smallest differences were obtained on a given constraint variable 485 
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when this constraint variable was included into the inverse modelling scenario (L for LAI, E 486 

for ET, LS, ES and LES for SSM). Including SSM as a constraint variable (scenarios LS, ES 487 

and LES) did not provide significant improvement on LAI and ET estimates. Conversely, it 488 

was difficult for STICS to correctly simulate SSM when the latter was excluded from the set of 489 

constraint variables (scenarios L, E and LE). Thus, including any constraint variable in the 490 

inversion scheme did not lead to better simulations for the other constraint variables (i.e., L 491 

versus E and SSM, E versus L and SSM, SSM versus L and E). 492 

3.2. Estimating SAWC components 493 

We compared the six scenarios of constraint variables for STICS inversion, on their respective 494 

capabilities to retrieve SAWC components, namely soil parameters HFC1, HWP1, HFC2, HWP2 495 

and D2. For that, we compared the retrievals derived from STICS inversion against the ground-496 

based reference derived from the in-situ measurements (see § 2.2.2). The results of the compar-497 

ison are given in Table 6, on the basis of the aforementioned statistical metrics. 498 

The overall performances of the retrieved SAWC components were low as shown by the neg-499 

ative values of NSE, regardless of SAWC component and scenario (Table 6). Large biases 500 

contributed a lot to these low performances, whereas the predicted values were significantly 501 

correlated with observed ones (R2) for some SAWC components and scenarios.  502 

Table 6: comparison of the SAWC components retrieved from STICS inversion against those 503 

derived from the in-situ measurements. The SAWC components are soil moisture at field ca-504 

pacity (HFC) and at wilting point (HWP) for topsoil layer (label 1) and root zone layer (la-505 

bel 2), as well as thickness of the root zone layer D2. The comparison is conducted for each of 506 

the six inversion scenarios (see Table 4 for definition). 507 

SAWC component Scenario ME RMSE R2 NSE 
HFC1 
(%) 

L -3.28 4.77 0.00 -1.81 
E -2.76 4.09 0.01 -1.06 
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LE -1.91 3.88 0.03 -0.86 
LS -0.22 3.12 0.21 -0.20 
ES -0.12 2.99 0.25 -0.10 
LES -0.55 2.84 0.28 0.00 

HWP1 
(%) 

L -1.25 4.32 0.41 -1.08 
E -0.64 3.29 0.00 -0.20 
LE 0.00 4.12 0.08 -0.89 
LS 1.26 2.60 0.51 0.25 
ES 0.84 2.12 0.60 0.50 
LES 0.70 2.25 0.51 0.44 

HFC2 
(%) 

L -4.01 5.54 0.01 -1.16 
E -3.47 5.30 0.00 -0.98 
LE -3.64 5.64 0.06 -1.24 
LS -4.70 5.83 0.35 -1.39 
ES -4.26 5.68 0.01 -1.28 
LES -4.27 6.00 0.15 -1.53 

HWP2 
(%) 

L -2.02 3.23 0.00 -0.67 
E -2.31 3.26 0.15 -0.71 
LE -2.20 3.23 0.11 -0.67 
LS -1.61 3.09 0.27 -0.53 
ES -1.88 3.10 0.03 -0.54 
LES -1.87 3.20 0.01 -0.64 

D2 
(m) 

L 0.37 0.63 0.31 -0.55 
E 0.85 0.97 0.15 -2.72 
LE 0.80 0.89 0.41 -2.13 
LS 0.39 0.65 0.05 -0.65 
ES 0.64 0.82 0.02 -1.67 
LES 0.65 0.77 0.35 -1.32 

Using all the constraint variables permit to obtain the largest correlation for HFC1 only, and 508 

the largest correlations between predictions and observations were obtained with different sce-509 

narios, from one SAWC component to another (LES for HFC1, ES for HWP1, LS for HFC2 510 

and HWP2, and LE for D2). For the topsoil layer, predictions of soil moisture at field capacity 511 

(HFC1) and at wilting point (HWP1) were best correlated with observations when surface soil 512 

moisture (SSM) was included in the set of constraint variables (scenarios LS, ES and LES). For 513 

the root zone layer, predictions of soil moisture at field capacity (HFC2) and at wilting point 514 
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(HWP2) were best correlated with observations when LAI and surface soil moisture were in-515 

cluded together in the set of constraint variables (scenario LS). For the thickness of the root 516 

zone layer (D2) predictions were best correlated with observations when LAI and ET were used 517 

together as constraint variables (scenario LE). Overall, predictions were closer to observations 518 

for soil moisture at wilting point as compared to soil moisture at field capacity, apart from the 519 

LS scenario for the root zone layer. Also, predictions systematically underestimated (respec-520 

tively overestimated) observations for HFC (respectively D2), whereas predictions systemati-521 

cally underestimated observations for HWP in root zone layer only (possible overestimation for 522 

HWP in topsoil layer). 523 

3.3. Estimating SAWC  524 

We compared the six scenarios of constraint variables for STICS inversion, on their respective 525 

capabilities to retrieve SAWC, calculated from the estimated SAWC components as defined in 526 

Equation 4. For that, we compared the retrievals derived from STICS inversion against the 527 

ground-based reference derived from the in-situ measurements (see § 2.2.2). The results of the 528 

comparison are given in Table 7, on the basis of the aforementioned statistical metrics. 529 

The RMSE on SAWC estimated from the STICS inversion were larger than 60 mm with nega-530 

tive values of NSE and small R2 values, which denoted poor predictions. Biases (ME) were 531 

large, especially for the scenario E and LE, and often positive, which indicated a global over-532 

estimation of SAWC. 533 

Table 7: comparison of the SAWC retrievals from STICS inversion against those derived from 534 

the in-situ measurements. The comparison is conducted for each of the six inversion scenarios 535 

(see Table 4 for definition).  536 

Scenarios ME (mm) RMSE (mm) R2 NSE 
L 10.89 70.51 0.15 -1.07 
E 71.11 113.86 0.01 -4.39 
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LE 59.57 98.43 0.01 -3.03 
LS -21.51 51.60 0.14 -0.11 
ES 17.50 67.11 0.05 -0.87 
LES 18.86 64.42 0.04 -0.73 

To explain these overall poor performances, a critical analysis of each of the 14 sites was con-537 

ducted, which led to distinguish three sites with peculiar soil water conditions:  538 

● The “Peyrat-Haut” and “Doustheissier” showed clear evidences of additional water supply 539 

for vineyard, namely (1) lateral flows caused by recurrent overflows from a nearby ditch 540 

for the “Peyrat-Haut” site (Site #3 on Figure 1), and (2) the presence of a shallow watertable 541 

fed by the Peyne river for the “Doustheissier” site (Site #5 on Figure 1).  542 

● The “Cabrol” site (Site #1 on Figure 1) was characterized by a soil profile with hydromor-543 

phic characteristics for the deep soil layers revealing the occurrence of temporary waterlog-544 

ging (Tassinari et al., 2002). 545 

Removing these three sites induced significant increases of performances for the LE scenario 546 

(ME = 52 mm, RMSE = 70 mm, NSE = -3.08 and R2 = 0.47) and, more importantly, for the 547 

LES scenario (ME = 9 mm RMSE = 31 mm, NSE = 0.17 and R2 = 0.58). Figures 3a and 3b 548 

display the scatterplots when comparing the individual SAWC predictions against the corre-549 

sponding reference observations for these two scenarios, showing the three sites with peculiar 550 

soil water conditions. Finally, these gains of performance when removing the three aforemen-551 

tioned sites were mainly due to significant increases in the prediction performances for root 552 

zone thickness (R2 = 0.68 for scenario LE, R2 = 0.58 for scenario LES).  553 
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 554 

Figure 3: Predicted vs observed SAWC for scenario LE (LAI and ET as constraint variables) 555 

and LES (LAI, ET and SSM as constraint variables) 556 

4. Discussion 557 

4.1. Overall performances of SAWC predictions 558 

To the best of our knowledge, this study is the first that evaluated a crop model inversion ap-559 

proach for predicting SAWC and its components in the current operational conditions of Digital 560 

Soil Mapping, namely over a large spatial extent with landscape heterogeneities, by considering 561 

discontinuous crops, and by including a large panel of plant status indicators derived from sat-562 

ellite imagery. The results we obtained revealed poor prediction performances both for SAWC 563 

and its components. However, the best prediction performances we obtained for SAWC as a 564 

whole with the LES scenario, after the removal of sites with peculiar soil water conditions, were 565 

comparable with those reported in the few field-scale studies dedicated to the estimation of 566 

SAWC from crop model inversion. Indeed, Morgan et al. (2003) and Jiang et al. (2008) reported 567 

RMSEs respectively between 37 to 74 mm and 18 to 50 mm, respectively. Such performances 568 

« Dousteyssier » site « Peyrat-Haut » site « Cabrol » site
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were also comparable to those obtained over the same study area at a different period by Cou-569 

louma et al. (2020) when predicting SAWC from carbon isotope discrimination (δ13C) in har-570 

vested grapes (RMSE between 35 and 61 mm). Besides, substantial parts of the prediction er-571 

rors were due to biases (as measured by ME), whereas some scenarios showed significant cor-572 

relations between predictions and ground measurements, with R2 values up to 0.6. Finally, us-573 

ing SSM as constraint variable in addition to LAI and/or ET led to better predictions of SAWC. 574 

Better results could theoretically be obtained by determining site specific values of STICS pa-575 

rameters (e.g., bulk density, row geometry of wine crops, soil nitrogen content etc…) instead 576 

of setting constant values for these parameters across the whole study area. Some of these pa-577 

rameters (e.g., raw spacing) can be spatialized using remote sensing techniques (Delenne et al, 578 

2010). However, most of the STICS parameters cannot be locally determined in the absence of 579 

any available proxy (e.g., soil nitrogen content), which makes unrealistic their spatialisation at 580 

large scale because of subsequent errors that are difficult to reduce. Additionally, the spatial 581 

mismatching between soil measurements (soil profile over 1 m ´ 1 m) and remotely sensed 582 

constraint variables (pixels over 30 m ´ 30 m) can generate errors that may affect the inversion 583 

procedure. Indeed, variographic studies performed in the same region showed that a non-neg-584 

ligible part of the soil property variations occurred at very short scale (Gomez et al, 2012, Fig-585 

ure 3). Finally, it can be anticipated that several nonreducible factors such as those cited above 586 

may limit the precision of SAWC estimations. A sensitivity analysis of the inversion procedure 587 

is necessary to study the respective impacts of these factors, and to identify the site specific 588 

properties to be characterized first for further improvements. 589 

4.2. Comparisons of performances across scenario and SAWC components 590 

This study compared several scenarios involving different constraint variables among which 591 

evapotranspiration (ET) that, contrary to leaf area index (LAI) and surface soil moisture SSM, 592 

has been rarely considered in the literature. 593 
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On the one hand, errors on simulations and / or observations of constraint variables (LAI, ET, 594 

SSM) were decorrelated from one variable to another. On the other hand, the sensitivities of 595 

constraint variables to the soil properties obtained from STICS inversion changed from one 596 

variable to another. This explained why (1) including any constraint variable in the inversion 597 

scheme did not lead to better simulations for the other constraint variables, (2) the best predic-598 

tion performances for soil properties were not obtained with a unique set of constraint variables, 599 

and (3) combining together the three constraint variables did not systematically provide the best 600 

prediction performances for SAWC and components, apart from the prediction of SAWC as a 601 

whole after removal of the three sites with peculiar soil water conditions. 602 

The prediction performances obtained for the SAWC components with different scenarios of 603 

constraint variables were physically consistent with our knowledge of the underlying physical 604 

processes. First, we obtained better performances for soil moisture at field capacity and wilting 605 

point in the soil surface layer when including surface soil moisture (SSM) into the set of con-606 

straint variables. Second, we obtained better retrieving performances for soil moisture at wilting 607 

point than for soil moisture at field capacity. This was ascribed to large occurrences of water 608 

stress periods with soil moisture close to wilting point throughout the vine growth cycle, as 609 

compared to low occurrences of water availability periods with soil moisture close to field ca-610 

pacity. These large / low occurrences could also explain why predictions systematically under-611 

estimated observations for soil moisture at field capacity. Third, it was necessary combining 612 

ET and LAI as constraint variables to obtain significant correlations between predictions and 613 

observations for (1) SAWC components within the root zone layer and (2) SAWC as a whole 614 

after the removal of the three sites with peculiar soil water conditions. This was explained by 615 

the strong dependence of vegetation transpiration and growth upon root zone SAWC and com-616 

ponents, especially when vegetation faced water shortages.  617 
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Including ET as a constraint variable permitted to increase the prediction of soil properties re-618 

lated to the root zone layer, which underlines the importance of developing robust methods to 619 

estimate ET from remote sensing, where current challenges are related to discontinuous cano-620 

pies, heterogeneous landscapes and hilly areas (Aouade et al., 2020; Bellvert et al., 2021; Bou-621 

dhina et al., 2018; Merlin et al., 2014; Zitouna et al., 2012; 2015; 2018). Similarly, including 622 

SSM as a constraint variable permitted to increase the prediction of soil moisture at field ca-623 

pacity and wilting point in the soil surface layer, which motivates continued efforts on the re-624 

trieval of surface soil moisture from remote sensing (Babaeian et al., 2019; Paolini et al., 2021), 625 

and especially over complex crop canopies such as vineyard (Fernandez-Moran et al., 2015). 626 

4.3. Study area peculiarities, strengths and limitations 627 

This study addressed the retrieving of SAWC from crop model inversion within a Mediterra-628 

nean vineyard. The specificities of the study area should be thoroughly analysed to better un-629 

derstand our results and to anticipate possible improvements or applications to other areas.  630 

Following Sreelash et al. (2017), the retrieval quality of SAWC components from model inver-631 

sion depends upon the agro-pedo-climatic conditions of the study area. Indeed, the latter drive 632 

the modelling capabilities to account for vegetation types within the study area, while the per-633 

formances of the inversion largely depend upon the modelling capabilities to reproduce the link 634 

between vegetation functioning and water uptakes within deep soil layers.  635 

• In that respect, rainfed vineyard catchments can be considered as favourable areas for crop 636 

model inversion. Vineyards are the dominant crops in such areas, which makes the crop 637 

model inversion applicable on numerous sites covering a large variety of soils. Also, grape 638 

vine is rarely irrigated, which makes the crop sensitive to deep soil characteristics and water 639 

content, thus facilitating the crop model inversion. Todoroff et al. (2010) observed that rain-640 

fed sugar cane in dry years was another example of favourable agro-climatic conditions for 641 

predicting SAWC from crop model inversion.  642 
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• Also, cropping systems with large water dynamics that include wetting and drying cycles 643 

should be optimal for estimating SAWC components from crop model inversion (Sreelash 644 

et al., 2017). This is not completely the case for the study reported in the current paper, with 645 

larger occurrence of drying periods, which lead to large biases for the prediction of root 646 

zone soil moisture at field capacity (§ 4.2). 647 

• Finally, the specific climate conditions observed during the period of experiment increased 648 

the limitations of our SAWC predicting approach from crop model inversion. In the exam-649 

ple of scenarios LE and LES shown in Figure 3, SAWC was strongly underestimated at two 650 

sites (“Peyrat-Haut” and “Doustheissier”) because of allochthonous water supplies from 651 

shallow watertable or nearby ditches (see § 3.3) during summer 2015 thunderstorms. Be-652 

sides, Figure 3 revealed that SAWC predictions strongly underestimated observations at the 653 

“Cabrol” site with morphological evidence of temporary waterlogging. Such temporary wa-654 

terlogging was likely to occur during the experiment period after the wet autumn 2014 655 

(358 mm), with subsequent depletions of the rooting systems that hampered the full exploi-656 

tation of the available water within the root zone layers. In such site-specific conditions, the 657 

crop model could not represent water flows correctly, and the subsequent errors propagated 658 

into the SAWC predictions. Besides, these errors might have been amplified by the well-659 

known spatial heterogeneities of the rainfalls in this Mediterranean area (Ducrocq et al., 660 

2014), that were not considered in our approach.  661 

From this analysis, it can be deduced that SAWC prediction from crop model inversion could 662 

be largely improved in the future by moving to a multi-annual approach. This would permit to 663 

increase the number of wetting and drying cycles and to select the years with climatic conditions 664 

that attenuate the site-specific problems discussed above. As an example, by adopting such a 665 

multi-annual approach (four years) and by selecting years with favourable climate conditions 666 

(three years out of four), Coulouma et al. (2020) increased their SAWC prediction performances 667 
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from carbon isotope discrimination (δ13C) in the harvested grapes, with RMSE decreasing from 668 

[35 - 61] mm to 32 mm. Besides, rainfall heterogeneities could be better addressed in the future 669 

by replacing climatic records from a unique weather station with high resolution rain maps as 670 

now provided by terrestrial radar systems (Lengfeld et al., 2020). 671 

4.4. SAWC concept mismatches 672 

It should be noted that the SAWC field measurements (see § 2.2.2) and predictions from crop 673 

model inversion (see § 2.5) did not share the same underlying concepts. On the one hand, the 674 

SAWC field measurements relied on a “soil-based” approach involving static soil parameters 675 

that together represent the maximum soil water storage to sustain plant transpiration, as stated 676 

by Cousin et al. (submitted). On the other hand, the crop model inversion was a “plant-based 677 

approach” involving proxies of water quantity withdrawn from soil by vegetation throughout 678 

the crop growth cycle. Our study is a good illustration of statement by Cousin et al. (submitted): 679 

“Depending on the climate conditions, this AWC-equivalent parameter [provided by the plant-680 

based approach] can be strongly different from the AWC evaluated from soil-based approaches. 681 

In some situations, it can even be close to the Readily Available Water Content”. 682 

Additionally, the SAWC field measurements (see § 2.2.2) and predictions from crop model 683 

inversion (see § 2.5) did not rely on the same description of soil properties. On the one hand, 684 

the SAWC field measurements relied on dug soil pits and drilled soil cores to characterize pro-685 

files of soil properties across different layers, with consideration for coarse fragment content. 686 

On the other hand, the crop model inversion procedure considered two layers only, namely 687 

topsoil and root zone layers, without explicitly consideration for coarse fragment content, alt-688 

hough profiles of soil properties and coarse fragment content were implicitly included into the 689 

inversion procedure, since they drove plant status indicators to be used as constraint variables 690 

(LAI, ET, SSM). 691 
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In spite of these differences in both underlying concepts and description of soil properties, we 692 

observed that the crop model inversion provided useful predictions of “soil-based” SAWC in 693 

most of the sites (11 sites out of 14 in black on figure 3). This demonstrated that both ap-694 

proaches can be combined to better map SAWC over regional extents, in spite of their different 695 

underlying concepts and description of soil properties. Again, a critical analysis of the overall 696 

climate and topography, as well as of the soil specific conditions, should permit to avoid large 697 

errors caused by these differences. 698 

4.5 Implications for Digital Soil Mapping  699 

We explored a potential way to estimate SAWC in a spatially distributed manner, as this prop-700 

erty is sorely lacking in current databases. This new approach complements other means previ-701 

ously explored such as δ13C (Coulouma et al., 2020). As it does not require direct numerous 702 

field measurements, it is quite inexpensive and open path for having a high spatial density of 703 

characterised sites.  704 

Lagacherie and Gomez (2018) mentioned two ways of using remotely sensed data for DSM: 705 

either as exhaustive covariates, or as a provider of point sites characterised by the property to 706 

be mapped. In view of the results, which clearly show the impossibility of obtaining an exhaus-707 

tive estimate of the SAWC due to particular situations that model inversion cannot consider, 708 

the prospects for using SAWC estimates by model inversion clearly lie in the second way. The 709 

introduction of these new data can therefore be considered as "soft data" in co-kriging proce-710 

dures, as already done with hyperspectral data (Walker et al., 2017) and with Field EM38 meas-711 

urements (Zare et al., 2021). It should be noted that such approaches require only that the “soft 712 

data” should be well-correlated with the target soil property, and are unsensitive to large biases 713 

as those observed in our results.  714 

To fully achieve the hybridization of model inversion techniques and Digital Soil Mapping, 715 

data flow from the latter to the former should also be considered. In this study, the numeric 716 
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design of experiment of the inversion procedure used ranges of SAWC-related soil properties 717 

(Table 3) that were deduced from the existing laboratory samples in the study area. Alternate 718 

determinations of these ranges could also be deduced from excerpts of prior DSM products 719 

available at the national or regional scales (Chen et al., 2022) and covering the study area. 720 

5. Conclusion 721 

The main lessons that can be retrieved from this study are the following. 722 

• Using crop model inversion with remotely sensed variables related to vegetation transpira-723 

tion (ET), vegetation growth (LAI) and surface soil moisture (SSM) could potentially allow 724 

the estimation of Soil Available Water Capacity and its components at low cost (no ground 725 

soil measurements) and over large areas. 726 

• The comparisons against ground measurements of SAWC in a Mediterranean vineyard re-727 

vealed overall poor estimation performances. However, acceptable correlations with ground 728 

measurements of SAWC (R2 = 0.47 and 0.58) were obtained for specific scenarios of con-729 

straint variables (LAI + ET, LAI + ET + SSM) after the removal of specific sites with pe-730 

culiar soil-water conditions. Surface Soil moisture was also found potentially useful for 731 

predicting surface soil hydrodynamic properties. 732 

• The poor estimation performances stemmed from a minority of sites for which unmodelled 733 

processes (allochthonous water supply, waterlogging) occurred under the particular condi-734 

tions during the experiment period (wet autumn). 735 

• With a multi-annual approach increasing the number of wetting and drying cycles, while 736 

avoiding site-specific unmodelled processes, crop model inversion approach could be used 737 

in the future for providing spatial sampling of SAWC and of its components, to be next 738 

used as surrogate input data for Digital Soil Mapping models. 739 
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