
HAL Id: hal-03744863
https://hal.science/hal-03744863

Submitted on 3 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Using Concept Cartoons in primary school teacher
training: the case of a mathematics content course

Libuše Samková

To cite this version:
Libuše Samková. Using Concept Cartoons in primary school teacher training: the case of a mathemat-
ics content course. Twelfth Congress of the European Society for Research in Mathematics Education
(CERME12), Feb 2022, Bozen-Bolzano, Italy. �hal-03744863�

https://hal.science/hal-03744863
https://hal.archives-ouvertes.fr


 

 

Using Concept Cartoons in primary school teacher training: the case 
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The contribution focuses on an educational tool called Concept Cartoons and the possibilities to use 

the tool in teacher education. It perceives Concept Cartoons as educational vignettes and show how 

they can be incorporated into mathematics content courses to help assessing future primary school 

teachers’ knowledge on topics related to the primary school curriculum. The paper introduces one 

of the Concept Cartoons created on the topic of divisibility and a qualitative empirical study 

conducted with 67 future primary school teachers within a mathematics content course. The aim of 

the presented study is to observe and investigate the nature of knowledge displayed in written data 

collected via the Concept Cartoon. The results of the study confirm the potential that educational 

vignettes such as Concept Cartoons have in future primary school teacher education.  

Keywords: Concept cartoons, educational vignettes, elementary school teachers, mathematics 

education, preservice teacher education. 

Introduction 

An integral part of primary school teacher education consists of mathematics content courses where 

mathematical content related to the primary school curriculum is reviewed and applied in contexts 

outside the primary school level. For instance, the primary school curriculum in the Czech Republic 

covers the four operations with natural numbers (addition, subtraction, multiplication, division) and 

their properties, and the secondary school curriculum in this area starts with prime and composite 

numbers, common multiples and divisors, and criteria of divisibility. So that the content course for 

future primary school teachers contains all these secondary school topics, to bring the future teachers 

a broader perspective and to engage them in intensive argumentation related to the mathematical 

content they are supposed to teach in their future school practice. Such an arrangement helps verifying 

that the future primary school teachers understand and comprehend primary school concepts properly. 

This contribution focuses particularly on the topic of divisibility and on subject-matter knowledge 

(Shulman, 1986) of future primary school teachers. From the more detailed perspective of 

mathematical content, it focuses on conditional reasoning within the topic of divisibility – an area 

that appears to be difficult for future teachers as they often tend to handling the topic of divisibility 

procedurally rather than conceptually (Zazkis et al., 2013) and having deeply rooted misconceptions 

about argumentation that affect their conditional reasoning (Simon & Blume, 1996).  

The following text describes a qualitative study of an explorative character that uses an educational 

vignette (Skilling & Stylianides, 2020) in the form of a Concept Cartoon (Samková, 2020) as a tool 

for collecting data. The study addresses the research question “What kind of subject-matter 

knowledge can be revealed in future primary school teachers when using Concept Cartoons as a 

written assessment tool within a mathematics content course?” The paper follows up on the 

contributions from previous ERME conferences where various educational vignettes were used in 

mailto:lsamkova@pf.jcu.cz


 

 

teacher professional preparation: e.g. for investigating professional vocabulary of future teachers 

(Friesen et al., 2019), assessing how future teachers respond to hypothetical student ideas within 

primary school topics (Buforn et al., 2017; Samková & Hošpesová, 2015), how they respond to 

hypothetical learning support situations (Kuntze & Friesen, 2017) or what awareness they have about 

potential student ideas (Samková, 2019b). The presented study was conducted within the framework 

of the ERASMUS+ project coReflect@maths that aims at designing and evaluating vignette-based 

learning environments for various mathematics teacher education courses, with a particular focus on 

cartoon vignettes (Krummenauer et al., 2020).  

Vignettes and Concept Cartoons 

In this paper, educational vignettes are understood as stories representing school practice (Buchbinder 

& Kuntze, 2018), i.e. as representations of classroom situations or situations that relate to content 

taught and learnt in the classroom. In that sense, vignettes are rather short, descriptive episodes that 

may take the form of texts, single or multiple images, videos, or their combinations (Skilling & 

Stylianides, 2020). The protagonists of vignettes might be various combinations of teachers and 

students, e.g. a teacher with one or more students, one or more students without a teacher, one or 

more teachers without students. With future teachers as respondents of research or intervention, the 

purposes for implementing vignettes are wide (Herbst & Chazan, 2011); they usually lay in aiming 

for development or analysis of professional knowledge and skills such as noticing (Schack et al., 

2017), professional vocabulary (Schleppegrell, 2007), etc.  

Among vignettes, we may also include Concept Cartoons – individual pictures showing a content-

related situation and a group of several children discussing the situation via a bubble-dialog. The 

opinions in the bubbles may be correct, incorrect, unclear or incomplete (Keogh & Naylor, 1993). 

Originally, Concept Cartoons were developed as a means of supporting the quality of discussion in 

primary school classrooms (Naylor et al., 2007), with the key aspects for the discussion being the 

absence of the teacher in the picture (i.e. the presence of just the peers) and the diversity of opinions 

given in the bubbles. However, Concept Cartoons may be created for different target groups and 

different purposes, including the target group of future primary school teachers and the purpose of 

analysing their pedagogical content knowledge (Samková & Hošpesová, 2015) or subject-matter 

knowledge (in this paper). Within this context, the protagonists in the picture may not be just children 

but also adults (future teachers, i.e. peers of the respondents). For the purpose of collecting data on 

teacher knowledge, Concept Cartoons are usually accompanied by some set of indicative questions, 

and this combination appears to be able to provide data that are ample and relevant (Samková, 2019a).  

When creating a new Concept Cartoon, one has to choose the focus of the mathematical task in the 

background (calculation, proposition, application), its openness (e.g. single vs multiple correct 

solution procedures), determine the nature of correctness of individual bubbles (ambiguous, 

unambiguous, conditioned), and choose the form of texts in bubbles (results, procedures, statements); 

for more details on the typology of Concept Cartoons see Samková (2020). This study is based on a 

Concept Cartoon that has a group of future teachers as protagonists, a propositional task with multiple 

correct solution procedures in the background, four bubbles with unambiguous correctness, and texts 

in bubbles in the form of statements (see Figure 1). 



 

 

 

Figure 1: The Concept Cartoon on divisibility 

The Concept Cartoon in Figure 1 presents two statements that are correct (Celest, David), and two 

that are incorrect (Adele, Ben). One of the statements (David) refers to a manipulation with numbers 

(based on finding a nearby multiple of 18 that is easily identified), while each of the other three 

statements (Adele, Ben, Celest) informally refers to an application of a general rule. The rules can be 

formally rewritten as follows: 

Adele: If the sum of digits of a given number is divisible by 18, then the number is divisible 
by 18. 

Ben:  If a given number is divisible by 3 and by 6, then it is divisible by 18. 
Celest: If a given number is divisible by 9 and by 2, then it is divisible by 18. 

For the rule behind the Celest bubble, the condition in the statement is necessary as well as sufficient, 

i.e., the rule is valid and can be also rewritten in the form of equivalence. For the rule behind the Ben 

bubble, the condition in the statement is necessary but not sufficient, since 3 and 6 are not coprime 

numbers; numbers 6, 12, 24, 30 are some of the counter-examples for the rule. For the rule behind 

the Adele bubble, the condition in the statement is not necessary (even the number 18 itself does not 

have the sum of digits divisible by 18) nor sufficient (swapping the order of digits does not change 

the sum of digits but may easily create a number that is not even and thus not divisible by the even 

number 18; e.g. 1467, 7641).   

Such an arrangement creates an environment that challenges skills in conditional reasoning, by 

requiring proper differentiation between necessary, unnecessary, sufficient and insufficient 

conditions in an informally worded statement (Buchbinder & McCrone, 2019). The statement in the 

Adele bubble is also closely related to overgeneralizing – a frequent misconception consisting in 

improper use of analogical reasoning (Hemmi et al., 2017); here the overgeneralizing stems from 

criteria for divisibility by 3 and by 9 that are both based on the sum of digits. 



 

 

Design of the study 

Participants of the research study were 67 future primary school teachers – full time students of the 

first year of the 5-year teacher training program at the University of South Bohemia in České 

Budějovice. In the time of the study, they were attending the content course on arithmetic. They have 

not worked with Concept Cartoons before the study. The participants were randomly labelled by code 

names V1 to V67.  

In the data collection stage, the participants were assigned the Concept Cartoon from Figure 1 and a 

set of indicative questions to respond. Having the new environment where the protagonists of the 

Concept Cartoon were not children but future teachers, also the set of indicative questions had to be 

newly created. Taking inspiration from various sets of indicative questions verified in previous 

research and proceeding from the fact that it has proved useful to have the indicative questions 

purposefully fragmented in their focus (Samková, 2019a), the following three indicative questions 

were distributed to the participants in order to find out about how they draw on their subject-matter 

knowledge: (1) What thoughts could be behind the student teachers’ thinking? (2) How could you 

help the other student teachers to correct their answers or to improve their argumentation? (3) Write 

YOUR solution into the empty speech bubble. The participants worked on the task individually, in 

the form of a compulsory written homework. 

Collected data were processed qualitatively, using open coding and constant comparison (Miles et 

al., 2014). The process of open coding focused on various displays of subject-matter knowledge or 

lack of it, and their interrelations. Data were compared repeatedly across participants, across bubbles, 

and across indicative questions. 

Findings  

The four following code categories appeared as relevant at the end of the analytic process: Coprime 

condition (codes coprime forgotten; missing coprime reported, prime factorization misused), 

Language (codes inaccurate terminology, shifted meaning, shifted interpretation), Argumentation 

modes (codes counter-example for sufficient, counter-example for necessary, objection towards 

coincidence, overgeneralizing, rule followed instead of verified, use of assumptions not mentioned in 

the bubble), and Alternative ideas (codes favour on the use of rules, favour on the non-use of rules). 

Below, we describe the code categories in detail and provide illustrative data excerpts related to them. 

Coprime condition 

The first of the code categories refer directly to weak or good knowledge of divisibility concepts. The 

most occurring concept in focus appeared to be the concept of verifying divisibility by decomposing 

the divisor into a product of two coprime numbers (e.g. 18 = 9 ∙ 2) and verifying the divisibility by 

these two numbers. Almost half of the respondents (33 out of 67) forgot about the coprime condition 

and agreed with Ben who decomposed 18 into a product of two numbers that are not coprime. Usually, 

they then (incorrectly) included a prime factorization as a proposed enhancement of Ben’s reasoning. 

As a direct consequence, these 33 respondents labelled Celest as incorrect: 

V15 Ben:  18 = 3 ∙ 6 → 6 = 3 ∙ 2   divisibility criteria for 3 and 2 must be met  
  3 → sum of digits is divisible by 3   2 → must be even 
  → holds good (meets both criteria) 



 

 

  I would be more specific and decompose as 18 = 3 ∙ 3 ∙ 2, it is enough to 
check whether the number is even and its sum of digits is divisible by 3. 

 Celest:  She just made another decomposition. She is not right, both decompositions 
are good.  

V31 Celest: I think she is not right. It is enough. She must decompose the 6. 
V65 Ben: I think that the divisibility by six is a little extra. It is enough to verify 

divisibility by two and by three. 

In responses to the third question, 22 of these 33 respondents offered as their own solution the 

decomposition into 9 ∙ 2 or 2 ∙ 9, and 5 respondents offered the decomposition 3 ∙ 3 ∙ 2 or 2 ∙ 3 ∙ 3. 

On the other hand, there were respondents who remembered the coprime condition and pointed it out:  

V64 Ben:  We cannot decompose this way. The numbers you decompose into must be 
coprime (cannot be divisible by the same number) → 3 and 6 are divisible 
by 3, we do not want it.  

Language 

Some of the respondents displayed shortcomings in the language of mathematics that transpired in 

the form of an inaccurate terminology (V30), a shift of a meaning of a mathematical concept (V36), 

a shift in an interpretation of the text in a bubble (V47), or a combination of them (V34 – terminology 

& interpretation):  

V30 David:  1800 is the closest whole number. 
V36 Ben: The idea is good, but it is not sufficient to have the number divisible by 3 

and by 6, it must also, after dividing by one of the numbers, be divisible by 
the other.  

V47 Celest: According to Celest, we have to check divisibility by 3, 6, 9, and 2. It is 
sufficient to check just divisibility by 9 and 2.  

V34 Celest: She thinks that we have to check all variants of multiples, but it is not true. 

Argumentation modes  

The third code category refers to modes of argumentation and logical aspects in general. Among the 

proper argumentation modes, it included counter-examples that some of the respondents provided as 

a reaction to Adele. These counter-examples referred either to a condition that is not sufficient (V14) 

or a condition that is not necessary (V29):  

V14 Adele:  She tried to sum the digits of 1764 → it came out 18, and 18 : 18 = 1, so that 
she thinks this is a rule for divisibility by 18. However, when we take e.g. 
the number 4455, the sum of its digits is also 18 but the number is not 
divisible by 18.  

V29 Adele:  Her opinion surprised me. The sum of the digits is 18, so it is divisible by 
18, but I did not find this kind of criterion anywhere. … I chose the number 
126 (a multiple of 18) to check it → 126 : 18 = 7 → 1 + 2 + 6 = 9 → 9 : 18 
= 0,5. Other example: 1710 : 18 = 95 → (1 + 7 + 1 + 0 = 9) 

  118764 : 18 = 6598 (1 + 1 + 8 + 7 + 6 + 4 = 27 → 27 : 18 = 1,5). 
  In my opinion, it implies that we cannot use the sum of digits this way as 

decisive. It was just a coincidence that it worked out for her. 

Surprisingly, none of the respondents offered a counter-example as a reaction to Ben. However, 

several of them provided to Ben an objection towards coincidence similar as the one by V29 to Adele:  

V46 Ben:  That Ben’s claim comes out in this particular case is, in my opinion, just a 
coincidence. 



 

 

The improper argumentation modes included using an assumption that was not mentioned in the 

bubble (V18), overgeneralizing (V46/David) or following a rule in the bubble instead of verifying it 

(V46/Adele):  

V18 Adele: She is right, because if a number is even and a sum is divisible by 18 → it’s 
true. 

V46 David:  Number 1800 is divisible by 18, number 36 as well, in this case she is right. 
Check: 18 ∙ 4 = 72 = 100 – 28 

     100 is not divisible by 18 
      28 is not divisible by 18 
  In my case, it did not work out, which means that it was just a coincidence. 
 Adele: 1 + 7 + 6 + 4 = 18 → 18 : 18 = 1 → she is right, it will work.  

Alternative ideas 

The last code category summarizes how respondents reflected the fact that there were alternative 

opinions shown in bubbles. Aside from the discourse between Ben and Celest that got assigned its 

own code category (Coprime condition, see above), there were also two different correct statements 

presented by Celest and David. Here, some of the respondents favoured the Celest‘s way based on a 

well-known rule (V13), others appreciated that David had managed without the rule (V29, V5); one 

of the respondents favoured both the statements (V44):  

V13 David:  This procedure is logically correct, but might be time consuming. It is better 
to use divisibility criteria instead. 

V29 David: His opinion is interesting and might also be considered correct … He came 
to the conclusion logically even without knowledge of the divisibility 
criteria. 

V5 David: Nice, quick reasoning!  
V44  (3) I myself would support both opinions (C and D). C is a classical method. 

For D, we have to think a bit but, for one, it is faster. 

Discussion and conclusion 

As illustrated in the previous section, using educational vignettes, namely Concept Cartoons, as an 

assessment tool within a mathematics content course for future teachers might bring a broad insight 

into various facets of knowledge that is more or less related to the mathematical content that the future 

teachers would teach in their future teaching practice. The environment consisting in a Concept 

Cartoon presenting various correct and incorrect opinions on a chosen topic (divisibility by 18) and 

a set of three differently aimed indicative questions has proved to be able to indirectly provoke 

reasoning of future teachers and obtain rather talkative responses from them (even if only in writing). 

These responses reflected in detail how future teachers reasoned about the topic, how they understood 

key concepts, what mathematical language they used, what kind of arguments they were able to 

provide, and how they reacted to various alternative ideas.  

The results of the study highlighted the advantage that Concept Cartoons have over standard written 

tests: 33 of the 67 respondents labelled as correct a solution that was not correct (Ben, missing 

coprime condition), however, 22 of them offered as their own solution a solution that was correct. It 

is reasonable to assume that if only a standard test were used as a method of assessment (e.g. with a 

task “Is 1764 divisible by 18?”), these 22 respondents would succeed in the test and there would be 

no doubt about their subject-matter knowledge. Moreover, using the format of Concept Cartoons for 



 

 

assessing subject-matter knowledge also allowed to learn about future teachers’ mathematical 

language and argumentation. The findings of the study confirmed weaknesses in conditional 

reasoning (cf. Simon & Blume, 1996; Buchbinder & McCrone, 2019) as well as a tendency to 

overgeneralizing (cf. Hemmi et al., 2017), a tendency to handling the topic of divisibility rather 

procedurally than conceptually (cf. Zazkis et al., 2013), insecurities in mathematical language (cf. 

Schleppegrell, 2007). Such findings show that vignettes might be implemented meaningfully into 

teacher training not only to advanced courses focusing on pedagogical content knowledge and 

teaching practice (Buchbinder & Kuntze, 2018) but also to initial content courses. 
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