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Abstract

This paper studies the truckload market with carriers providing transport services between two locations. It
aims to provide a modeling methodology to represent the spatial behavior of a carrier dealing with the issue
of repositioning. Indeed, due to the imbalance of trade, carriers face the difficulty of finding freight for their
return trips. When they operate over long distance shipments, repositioning their empty vehicles from the
low-demand zone is necessary to sustain their business. Yet the mechanisms at stake by carriers to understand
their repositioning decision-making process are mostly unknown and unobservable. This lack of data on carrier
repositioning zone choice issues has major consequences for shipper and forwarder resource planning systems.
Indeed, repositioning behavior induces hidden costs which makes it difficult to design for example a cost-based
pricing strategy. To address this problem we develop a mathematical model to study the spatial repositioning
behavior of carriers. We propose a probabilistic approach based on aggregated transport data that consists
in a two-steps decision making process. The first one is the probabilistic selection of a set of repositioning
candidates based on the microeconomic theory of the consumer. The second step is the choice of a region
within this set through the estimation of the spatial distribution of reloading. It makes use of the graph
structure of the transport data and combines a spatial interaction model and a random walk model on a graph.
Using simulations, we illustrate how our methodology can be used for operational purposes to provide more
transparency on carrier behavior. In conclusion, research perspectives are suggested for tackling the problem of
freight demand estimation as well as rationalizing the impact of the trade imbalance on the price of a transport.
Software development perspectives will also be addressed.

keywords : Imbalance of trade, carrier spatial behaviour, trip-chaining behavior, repositioning prob-
ability, random walk on bipartite graph, spatial modeling.

1 Introduction

Context and problematic

The truckload market is a strategic sector of the economy and an essential link in the supply chain.
According to Eurostat, road freight transport contributes to 10% of French GDP and generates a
revenue of 45.8 billion euros. However, the development of road transport is facing a number of limi-
tations in terms of technological development which correspond to the main challenges the sector has
to face in order to pursue its transformation. Among these challenges, the place of digitalization and
the visibility of transport are at the core of the major concerns. The rationalization and efficiency
of the sector depend on the digital transition. This is increasingly important as supply chain man-
agement becomes more complex, shippers’ requirements in terms of quality of service and tracking
getting higher and have been intensified during the health crisis. This need for visibility includes an
understanding of market dynamics and how these affect the spatial behavior of carriers.
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In transport services, vehicles have to move back and forth between selected loading and unloading
locations in different areas. Therefore, services in both directions can be seen as a joint production
process. Indeed, if a transport company provides a service in one direction, it will have to provide the
service in the opposite direction. For example, in the case of a round trip between two locations A
and B, a transport movement from A to B inevitably creates a movement from B to A as the driver
and the truck have to return to the original depot. The joint nature of transport is well known in
economic literature and has been studied by many authors. It would seem that the pioneers were Pigou
et Taussig (1913). We can also mention Pederson et al. (1979) and more recently Fan et al. (2014).
Moreover, it is well known that trade is subject to imbalances: some areas are mainly exporting areas,
whereas others are mainly importing areas.

The joint nature of transport together with the imbalance of trade generates a major logistical
challenge: the problem of finding return shipments. This phenomenon is known in transport economics
as the backhaul problem. It refers to the situation where the volume of transported goods (or people)
is not balanced between two areas, which means that the transport flows are mainly in one dominant
direction, the so-called headhaul, while the opposite direction is the so-called backhaul. To sustain
their activity, carriers have to commit to a maximum transport capacity for a round-trip, and are
therefore forced to reposition their empty vehicles looking for a return shipment to their originating
depot. Repositioning is defined as the movement of empty vehicles from a delivery location to pickup
location. The problem of vehicle repositioning is deemed as an inefficiency of the road transport sector,
but it is an inevitable consequence of the trade imbalance and is very hard to be eliminated, and thus
requires consideration in addressing transport issues.

In the traditional freight road market, different actors interact, such as shippers, carriers and for-
warders. In this highly fragmented market which has not been fully enriched by new technologies,
collaboration between the different actors and information sharing is difficult, resulting in a lack of
transport data. In particular, shippers and forwarders have limited or no visibility on carriers’ choices
and decisions on repositioning locations. Understanding these choices is essential in determining a
pricing strategy for a transport operation as there are hidden costs associated with vehicle reposition-
ing.

There are several research streams on the backhaul problem: study of the impact of trade imbal-
ance on transportation pricing, optimal repositioning strategy, collaborative repositioning strategy.
However, to the best of our knowledge, none of them deals with the study of the impact of freight
imbalance on the spatial repositioning behavior of carriers. There is a lack of analysis of carriers
behavior faced with trade imbalance in order to understand their spatial choices of repositioning lo-
cations. One would need to know both the degree of imbalance and the preferences of each individual
carrier, which are difficult to observe. Due to the lack of data, an aggregated approach based on annual
observations of transport flows will be used to address the problem of spatial repositioning choice. Our
research aims to provide an understanding of this issue by developing a mathematical model to study
the decision-making and spatial choice process of carriers at an aggregate level. Decision-making is
not straightforward because the choice problem involves knowledge of the market and its imbalances.
To characterize the trade imbalance we develop a methodology to estimate the spatial probability of
reloading. It will be defined as the probability of finding a return shipment to its depot from a region of
low demand. This indicator will be at the core of the carrier choice process. The methodology is based
on a random walk model on a bipartite graph. The transition matrix of the underlying Markov chain
is estimated by calibrating an extension of a spatial interaction model based on origin-destination
matrices. We hope that the knowledge obtained from the study of this problem can help practitioners
to better understand the transport market and shed light on more practical problems.

Our contributions

1. We consider a spatial choice problem from the point of view of carriers that has never been
addressed in the literature. This problem could have an impact on the practical difficulties
encountered by transport practitioners, particularly on the problems of information feedback
and lack of visibility (especially the hidden costs due to empty repositioning). We develop a two-
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stage decision-making process scheme including a method for estimating the spatial reloading
probability;

2. We define the spatial distribution of the reloading probability across the territory; an original
probabilistic indicator to characterize the trade imbalance. A methodology for estimating this
spatial probability is proposed. It is based on the modelling of a random walk on a bipartite
graph;

3. We develop an extension of Huff’s spatial interaction model to model conditional destination
choices. This representation is particularly suitable for modelling trip-chaining;

4. The distance in the previous Huff model will be defined by the transportation cost. We take into
account uncertainties in the modelling of this cost based on partial information from surveys;

5. We perform numerical experiments to demonstrate how the method could be used in practice
to overcome the problem of information visibility, especially in terms of hidden costs due to
repositioning.

Outline of the paper

The paper is organized as follows. In Section2 we present the literature review pertaining to the empty
equipment repositioning problem. Section 3 focuses on the necessary mathematical background on
random walks on finite graphs, the spatial interaction Huff model and presents some concepts on
origin-destination matrices. Section 4 presents the probabilistic choice repositioning problem by a
description which relies on the mathematical framework of Section 3. It also presents the assumptions
leading to the description of this model. Section 5 is dedicated to modelling the probabilistic choice
problem of carrier’s repositioning introduced in Section 4. Section 6 is devoted first to some preliminary
tools for modelling random walks on a bipartite graph, then to the probabilistic spatial interaction
model and the computation of the spatial reloading probability. Section 7 is devoted to application
of our methodology by numerical experiments, and Section 8 is dedicated to the conclusion of future
works. Technical details and further analyses are gathered in Appendix A for some basic concepts on
statistical estimation based on φ-divergences, Appendices B and C for the estimation procedure, and
Appendix D for the stochastic transportation cost.

2 Literature review

Many studies on trade imbalance in the transportation industry focus on the empty equipment repo-
sitioning (EER) problem due to its importance to the transport operations management. Indeed,
imbalanced trade has resulted in considerable costs and decreased profits for transportation firms.
Many authors have investigated strategies to reduce the cost of repositioning empty containers. Song
et Carter (2009) investigated the impact of route-coordination and container-sharing on the empty
container movements. Many authors Özlem Ergun et al. (2007); Özener et Ergun (2008); Bailey et al.
(2011); Pan et al. (2019); Ferrell et al. (2020) have studied how to reduce costs through collaboration
network between shippers and carriers.

The EER problem is often considered as an inefficiency in the transportation industry and has
attracted considerable attention and many classes of problems have been investigated. This problem
exists widely in all freight transport sectors, such as trucking, rail and an extensive literature exists in
the shipping industry referred to as empty container repositioning problem (ECR). Dejax et Crainic
(1987) proposed an extensive review of the models dealing with empty flows and backhaul problems
in the freight transportation industry.

The first stream of work focuses on the optimal repositioning strategy given the imbalanced flow
of demand. In the shipping industry considerable work has been done. Crainic et al. (1993) pro-
posed a dynamic deterministic formulation for the empty container allocation problem in an inland
transportation system and extended it to a two-stage stochastic programming formulation under the



3 Mathematical background 4

demand uncertainties. Song (2007) provided an optimal policy for empty container repositioning with
uncertain demand using a Markov decision process. Erera et al. (2009) adopted robust optimization
techniques to address the dynamic of the empty repositioning problem modeled using time-space net-
works. Long et al. (2012) have taken into account the uncertainty in vessels weight and space capacity
and solve the problem using a two-stage stochastic program. Li et al. (2004) studied the empty con-
tainer allocation in a port with the aim to reduce redundant empty containers. They consider the
problem as a nonstandard inventory problem with simultaneous positive and negative demand under
a general holding cost function. Also, Li et al. (2007) extended the model of Li et al. (2004) to a
model for a multi-port case. In the railway networks we can mention Holmberg et al. (1998); Joborn
et al. (2004)

Another strand of the literature has more specifically investigated the pricing decisions with empty
equipment repositioning in a transportation market. Gorman (2001, 2002) studied a freight carrier’s
pricing strategy in a freight rail network. Equipment repositioning is required if the demand flow in
the network is unbalanced. The objective is to find a set of prices that maximize the network profits.
The author formulated a carrier’s pricing problem as a mathematical programming model in a network
and provided an efficient computational algorithm to solve the problem. Zhou et Lee (2009) considered
two firms competing with each other to increase their profits from transportation services they provide
between two port services. In this study, the realized demand for the services is deterministic. The
authors found the optimal prices with EER of the two firms in each direction using a monopoly and a
Bertrand duopoly model. Chen et al. (2016) extended the study of Zhou et Lee (2009) and discussed
the carrier pricing decisions with EER who provide transportation services for product and waste
between two port services. Xu et al. (2015) studied a sea-cargo service chain with one carrier and
two forwarders providing transportation service between two ports with deterministic demands in
both directions. They built a mathematical model to study how the carrier and forwarders determine
pricing and EER cost-sharing decisions. Lu et al. (2020) investigated simultaneous pricing and empty
container repositioning decisions considering stochastic demand in two-depot shipping services. They
solved the problem by developing a large-scale dynamic programming model.

Although there are numerous studies dealing with empty equipment repositioning, to our knowl-
edge, our work is the first one to study the impact of the trade imbalance on the spatial behavior of
carriers faced with repositioning in the truckload industry. Our research therefore aims to provide an
understanding of this issue by constructing and analyzing a mathematical model. However, another
stream of research is related to our study, and concerns in a general way the modeling of the geograph-
ical choices of the consumer without however considering the repositioning behavior of a carrier. This
stream of research is widely used in the Anglo-Saxon geography community (Thill et Timmermans
(1992)). The modeling of geographic choices aims to analyze spatial decisions and consumer choice
processes. The behavioral approach of the consumer in his purchasing behavior can be modeled by
a trip-chaining. This type of model was conceived in the 1960s. Thill et Thomas (1987) proposes a
synthesis of the existing literature on multi-stop travel behavior. This approach lends itself naturally
to Markovian analysis. It allows for example to model the chain behavior of the stops during a trip
(Lerman (1979)). The Markovian approach has the advantage of considering the interactions between
the different stops, but it is not a choice model since it does not incorporate a preference structure.
Thus, several authors have tried to take into account the choice processes of a consumer. Ben-Akiva
et al. (1978) uses a Multinominal Logit model to estimate the transition matrix. Borgers et Timmer-
mans (1986) use a gravity model to estimate the transition matrix of consecutive pedestrian stops in
their shopping behavior. Our research therefore aims to provide an understanding of this problem
through the construction and analysis of a mathematical model.

3 Mathematical background

In this section we specify the mathematical background that we use in this paper. As we will see in
Section 4, an appropriate description of the carrier probabilistic repositioning choice problem involves
the concept of a random walk on a bipartite graph. The transition matrix of the underlying Markov
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chain will be calibrated using an Huff-type spatial interaction model on the basis of origin-destination
matrices. We first recall some basic notions from graph theory. We will then describe the random
walks on bipartite graphs. We will also review the original formulation of the Huff model, and finally,
we present some basic notions related to origin-destination matrices.

3.1 Some basic facts on random walks on graphs

A random walk is a random process that describes paths consisting of a succession of random steps
on some mathematical space (in our case a graph). Let us start by restating some graph theory
definitions. In this paper, only directed and weighted graphs will be considered.

A bipartite graph is a graph having two kinds of vertices, and whose edges are only between vertices
of different kinds. More formally, a graph is bipartite if the set of vertices V can be partitioned into
two sets A and B such that there is no edge between the vertices of the same set. In other words, for
each edge (u, v) either u ∈ A and v ∈ B, or u ∈ B and v ∈ A. We denote G = (A,B,E) such a graph,
where A and B constitute two distinct classes of vertices, with A∩B = ∅, and E ⊆ (A×B)∪(B×A).
Let W := (wij)ui∈A,vj∈B be a graph weight matrix where the entry wij is the weight of edge (ui, vj)
appearing between the vertex ui ∈ A and the vertex vj ∈ B. Then the adjacency matrix A of the
bipartite graph is expressed as

A =

(
0 W
W t 0

)
, (1)

where the matrix W t := (w̃ij)vi∈B,uj∈A designates the transpose of W , with w̃ij = wji, and corre-
sponds to weights of edges from nodes of type B to those of type A.

Consider a weighted bipartite graph G = (A,B,E) with the associated weighted matrix (1). Let
us imagine a walker on an initial vertex of the graph, say u0 ∈ A, and who moves at each time step,
following a randomly chosen edge. No edge connects the vertices of the same class, so the random
walker, initially in u0 ∈ A, randomly chooses a neighbor of u0 in B ( let’s denote v1 such node) and
then moves on it. The walker randomly chooses again a neighbor of v1 in A, say u2, and moves again
on it, and so on... At each step n of its path, we have a random variable Xn taking values in A ∪ B.
The sequence of vertices X1, X2, . . . , Xk, . . . selected in this way by the walker is a random walk on
the graph G. The random sequence of vertices is a discrete Markov chain with state space A∪B and
matrix of transition probabilities P .

The initial vertex u0 can be fixed or can be a random variable of initial law µ on A ∪B. Starting
from ui ∈ A, the Markov chain is characterized by the transition probabilities

P (Xn+1 = vj |Xn = ui) =

{
wij/W (ui) if (ui, vj) ∈ A×B,
0 otherwise, (2)

where W (ui) :=
∑

vj∈Γ(ui)⊆B w
A
ij corresponds to the sum of weights in the neighborhood of the vertex

ui ∈ A, with Γ(ui) denotes the neighborhood of the vertex ui.
Starting from vi ∈ B the transition probabilities are given by

P (Xn+1 = uj |Xn = vi) =

{
w̃ij/W (vi) if (vi, uj) ∈ B ×A,
0 otherwise, (3)

where W (vi) :=
∑

uj∈Γ(vi)⊆A w̃ij is the sum of weights in the neighborhood of the vertex vi ∈ B, with
Γ(vi) denotes the neighborhood of the vertex vi.

The transition matrix P of the Markov chain {Xn, n ≥ 0} on A ∪B with initial law µ is given by

P =

(
0 P (A)

P (B) 0

)
, (4)

where submatrices P (A) and P (B), are given respectively by the transition probabilities (2) and (3).
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3.2 Consumer spatial behaviour models. The formulation of the Huff model

Spatial analysis models are used to understand the spatial choice behavior of a consumer towards a
supply location. Consumer choices are generally the result of a trade-off between both attractiveness
and distance of the supply location. This trade-off is represented by a utility function. The first retail
trading area models due to Reilly et al. (1929), Reilly (1931), or Converse (1949) were deterministic,
and Huff (1964) was the first to formulate these models on a probabilistic basis. The model is based
on the premise that the probability that an individual confronted with a set of alternatives will choose
a particular location is directly proportional to the utility of each alternative. The Huff model is based
on the following utility function

Uij = Aαj /d
β
ij ,

where Uij is the utility of the supply location j for a customer located in i; Aj reflects the attractiveness
of the supply location generally measured by its sales area; and dij the distance of the shop from the
potential customer of origin i. The parameter β represents the distance friction, and α measures the
attractiveness elasticity. The level of consumer satisfaction is positively correlated to the attractiveness
of the supply location, hence α > 0. On the other hand, the more distant the supply location is, the
less satisfied the potential customer is, hence β > 0.

From the choice axiom of Luce (1959), the consumer’s decision in the Huff (1964) model is con-
sidered as probabilistic. The probability that an individual i will select the alternative j, from a set
of alternatives (j = 1, . . . , n) corresponds to the utility of the supply location j (Uij) renormalized by
the sum of the utilities of all the alternatives, namely

pij =
Uij∑n
k=1 Uik

=
Aαj /d

β
ij∑n

k=1A
α
k/d

β
ik

, (5)

where i is the origin location of the potential customer, and j the supply location; pij is the probability
that the consumer originated from i selects the alternative j, with

∑n
j=1 pij = 1, and 0 < pij < 1.

Both α and β are unknown parameters which are usually estimated by linear multiple regression. In
Section 6.2 we propose an adaptation of the Huff Model(5) to characterize the conditional choice of
destinations; decision-making that focuses on loading or unloading locations.

3.3 Some definitions in the origin-destination matrices framework

In this section we give a brief description of the origin-destination (OD) matrices data used in this
paper. We then present some basic results on OD matrices.

3.3.1 Available data

The main source of data (French and European) of freight road transport is the SitraM database
(Système d’Information sur les TRAnsports de Marchandises). It was built from surveys whose ob-
servation units are based on vehicle movements of carriers. These surveys consist of a sample of road
vehicles (trucks, trailers and semi-trailers) less than 15 years old and with at least 3 tonnes of capacity.

The dataset we study comes from the European freight road transport surveys conducted between
2010 and 2016. They consist of annual traffic matrices, providing an estimation of the transported
goods measured in tonnes from one division to another one based on surveys of transporters. The
variables used are:

1. the origins (NUTS);

2. the destinations (NUTS);

3. transported goods (ton).
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3.3.2 Some basic facts on OD matrices

The general structure of the origin-destination (OD) matrix consists of an m × n matrix. The inter-
section of the i-th row (origin) and the j-th column (destination) corresponds to a cell of the matrix
with a value Tij . This value provides information on the road transported goods from the origin i to
the destination j. This matrix represents freight demand generally measured in tons per kilometer or
tons among European NUTS regions (Nomenclature of Territorial Units for Statistics).

We restrict our study to the case of interregional trades measured in tons, and where origins and
destinations are identical. This yields the square matrix that will be noted T from now on, with
T := (Tij)1≤i,j≤L, where L denotes the number of origin (or destination) areas, i.e,

T =


0 T12 T13 · · · T1L

T21 0 T23 · · · T2L
...

...
. . .

...
...

TL1 TL2 TL3 · · · 0

 , (6)

with a zero diagonal for within-region trades.
From (6) we can derive a variety of indicators. We will mention the ones we will use in this paper.

Let us begin by the total value of transported goods, i.e.,

T•• =

L∑
i=1

L∑
j=1

Tij . (7)

The total value of the emitted goods from i, denoted by Ti•, and the total value of received goods by
j, denoted by T•j , are respectively given by

For all i = 1, . . . , L, Ti• =
L∑
j=1

Tij and, for all j = 1 . . . , L, T•j =
L∑
i=1

Tij . (8)

From (7) and (8), we derive the following frequency indicators

1. the proportion of total emitted goods from i relative to overall transported goods

Ei = Ti•/T••, i = 1, . . . , L (9)

2. the proportion of total received goods in j relative to the overall transported goods

Rj = T•j/T••, i = 1, . . . , L. (10)

From Eqs. (9) and (10), we derive the following conditional frequency indicators. For all i =
1, . . . , L,

Fj|i = Tij/Ti•, j = 1, . . . , L; (11)

and, for all j = 1, . . . , L,
Fi|j = Tij/T•j , i = 1, . . . , L. (12)

Remark. An OD-matrix can be considered as a contingency table. Indeed, each cell of (6) represents
the value of the relationship between two qualitative characters X and Y . The two qualitative characters
correspond to the origin and destination zones respectively. The intersection of the i-th modality of
X with the j-th modality of Y , Tij, corresponds to the transported goods from the origin i to the
destination j. From (6) and (7) we can generate a new matrix of frequencies F := (Fij)1≤i, j≤L, such
that, Fij := Tij/T•• for i, j = 1, . . . , L. Thus, Fij can be interpreted as the probability of loading goods
from i and unloading goods in j, i.e., (Fij)i∈L,j∈L can be understood as a probability distribution on
the probability space, L×L, with L = {1, 2, . . . , L} designates the space of origins (and destinations).
By analogy with (8), (Fi•)i∈L and (F•j)j∈L designate the marginal distributions on L, and Eqs. (11)-
(12) conditional distributions. Eq. (11) may be interpreted as the conditional probability of unloading
goods in j given that goods were loaded from i, and Eq. (12) the conditional probability of loading from
i given that the unloading area is j. The two last Equations are commonly called line profiles and
column profiles.
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4 Problem definition and methodology

This section focuses on introducing the problem definition and the methodology. We first outline the
assumptions used for the modelling of the probabilistic repositioning choice problem.

4.1 Model assumptions

Assumption 1 (Geographical structure). The geographical range of the model is on within-national
trades. The territory in which carriers make shipments is divided into geographical zones defined by
NUTS regions. Each zone is characterized by its centroid.

Assumption 2 (Transportation market). We only consider the long-haul and full truck load (FTL)
transportation service since the issue of repositioning is mostly relevant for long-haul shipments. The
definition of long distance used is the one defined by the French National Road Comity (CNR), i.e.,
a transport where operating constraints make impossible or uncertain for the driver to return home
every day. The truck capacity is assumed to be either 0 (empty truck) or Q (fully loaded truck). A
vehicle will be considered as a fully loaded truck if its capacity Q is such that Q ∈ [Qmin, Qmax]. Qmin

is the minimum limit for considering a truck to be fully loaded. Qmax is the maximum allowed weight
for a truck.

Assumption 3 (Long-haul repositioning). Repositioning behavior is defined as the movement of an
empty vehicle from an unloading zone to a (re)loading zone. In the long-haul market, we assume that
the (re)loading zone is different from both the unloading and loading zones. Intra-divisional movements
to find a return trip will not be considered as repositioning but as a directed return. Furthermore, when
we talk about a repositioning zone, we mean a (re)loading zone induced by an empty trip.

Assumption 4 (Aggregate approach). Our reference data are the OD matrices which are derived
from annual surveys of individual carrier firms, and provide information on transported goods. The
information provided by these matrices is an aggregation of all the information provided by each indi-
vidual firm that has answered the survey. This leads us to consider an aggregated approach and thus to
introduce a representative carrier firm, representing the diversity of companies. We will refer to this
company as a carrier with a vehicle and who moves across the territory between loading and unloading
zones. The company and its driver will be referred to interchangeably.

Assumption 5 (Probabilistic behaviour). The carrier being a representative one intended to represent
the diversity of carriers; this results in the randomness behavior due to the variability of the carriers.
We will express probabilistic behavior by indicating a probabilistic choice.

Assumption 6 (Accessibility to market information). The carrier is assumed to have knowledge on
the freight market, of its flow asymmetries. This assumption follows from the aggregate approach.

4.2 Methodology

Let us define L the set of all the geographical zones of the considered territory (Assumption 1), denoted
by

L := {1, 2, . . . , L}. (13)

Consider the long-haul and FTL transport service market (Assumptions 2) and a carrier under As-
sumption 4-5-6, having a single vehicle with capacity, denoted by κ such that κ ∈ K, where

K := {0} ∪ [Qmin, Qmax], (14)

denotes the set in which the vehicle capacity belongs. Assume that the carrier is based at the depot
located at h ∈ L.

Assume the carrier provides a shipment from its depot h to l ∈ L. Assume also without loss of
generality that the headhaul is defined as the direction from h to l. Hence, the carrier carries out a
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fully loaded capacity shipment from the region of high demand h, that we call the loading zone, to
the region of lower demand l, that we call the unloading zone, with h 6= l. The carrier is observed
each time the vehicle arrives at a zone and at the end of each action; an action being either loading
or unloading. So, the loading zone h is associated with a loading action characterized by a full load
capacity Q, and is noted by (h,Q). The unloading zone l is associated with an unloading action
characterized by an empty vehicle’s capacity, and is noted by (l, 0). We now define the sets P and D
of the loading (or pickup) and unloading (or delivery) zones respectively, namely

P = {(i, Q), i ∈ L, Q ∈ [Qmin, Qmax]} , (15)
D = {(i, 0), i ∈ L} , (16)

where L is given by (13).

Remark. When we specify the action (loading or unloading) associated with a geographical location
i ∈ L, we will simply note i instead of (i, Q) or (i, 0) depending on the action. For example, we refer
to the state (i, Q), i ∈ L as the loading zone.

Due to the imbalance of trade and to secure its headhaul business, the carrier has to reposition its
empty vehicle looking for a return shipment, from the unloading area (l, 0) to a (re)loading zone (or
repositioning zone), say (k1, Q) as depicted in Fig.1. Under Assumption 3, note that the repositioning
zone (k1, Q) will be distinct of (h,Q) and (l, Q) which means that the carrier will not reposition the
empty vehicle within l and h. From (k1, Q) the carrier moves on to the unloading zone (h, 0) before
completing their round-trip, (h,Q)− (l, 0)− (k1, Q)− (h, 0) as displayed in Fig. 1.

Under Assumption 4, it is reasonable for the representative carrier to select not a single reposition-
ing zone but a repositioning set consisting of a finite number of repositioning zones. This is because
this carrier reflects the variability of all carriers and thus the variability of their repositioning choice
behavior. As a result, the carrier behavior is viewed as probabilistic choice behavior. Fig. 1 shows
an example of such a set consisting of three repositioning zones, {(k1, Q), (k2, Q), (k3, Q)} where the
carrier will have to reload goods. Given a choice of repositioning set, the carrier will again randomly
select a repositioning zone within that set where they will move with their empty vehicle to reload the
goods in order to finally unload them in the origin zone. This repositioning probability will be based
on the Assumption 6.

The carrier’s trip pattern is described by a trip-chaining starting and ending at the depot located
in h ∈ L. This pattern is induced by Assumption 2. Since the carrier has to load a full truck there
is no other option than alternating between loading and unloading zones. The round-trip consists in
four ordered and alternating loading and unloading zones as depicted in Fig. 1, such that

1. Initially, the carrier is located at the depot in h ∈ L to carry out a loading action that is
characterized by vehicle capacity Q. This initial node is displayed as (h,Q) in Fig. 1 to indicate
that it is a loading node. The carrier travels with a fully loaded vehicle to the unloading node
(l, 0), with l ∈ L and h 6= l ;

2. In (l, 0), the goods are unloaded. The carrier selects according a repositioning probability one
of the repositioning zones {(k1, Q), (k2, Q), (k3, Q)}, say (k1, Q) to move with an empty vehicle
on to this area ;

3. In (k1, Q), the carrier has loaded new goods and move on with a fully loaded vehicle to the
unloading node (h, 0) ;

4. In (h, 0), the vehicle is empty. The carrier is located in the depot’s area h. This is the end of
the round-tour.

We are interested in the spatial repositioning behavior of the carrier in particular on the spatial
probabilistic choice of a repositioning set. This choice is the result of a double decision-making
process. The carrier is first confronted with the problem of choosing a repositioning set. It decides on a
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Fig. 1: Trip pattern and repositioning set with three repositioning zones (k1, Q), (k2, Q), (k3, Q).
(h,Q) − (l, 0) is the headhaul direction with (h,Q) the loading node and (l, 0) the unloading
node; (k1, Q) to (h, 0) is one return shipment with (k1, Q) a repositioning node and (l, 0) an
unloading node. An example of round tour is (`,Q) − (u, 0) − (k1, Q) − (`, 0), for the sake of
clarity since there is no ambiguity the round-tour will be denoted by hlk1h since the trip is
alternating and ordered.

repositioning set by arbitrating between different known alternatives. This repositioning set consists of
a finite number of repositioning zones, and the decision is indicated by a probability of choice. Secondly,
given a repositioning set, the carrier makes a decision-making rule within this set to make individual
repositioning choices. Based on the knowledge of the market (Assumption refassumption:knowledge
of the market) through the reloading opportunities which are characterized by the spatial distribution
of reloading probabilities, the carrier assigns to each of the zones of the set a repositioning probability.
The reloading probability is defined with respect to the headhaul direction, as the probability of finding
a return shipment resulting from an empty repositioning trip. To investigate this problem we develop
the two-stage solution scheme described in Section 5, as follow

1. Probabilistic repositioning set choice
The objective of the first step is to select a repositioning set. We investigate this choice as a
result of a decision making process in which the carrier makes a trade-off between the different
alternatives and selects one of them randomly under utility assumptions. The knowledge of
the market through the spatial distribution of the reloading probability together with an empty
distance criterion, influence the carrier’s preferences and thus they can choose a repositioning
set in a probabilistic way.

2. Probabilistic choice of unit repositioning
Given a repositioning set choice selected in step 1, the second step aims at choosing how the
carrier will assign its individual repositioning decisions. Its individual repositioning choices are
induced by market knowledge through the reloading probability distribution by evaluating a
repositioning probability for each zone within the set (Assumption 6).

The technical issue is to determine the spatial reloading probability (Section 6). To do so,
we introduce a random walk on a bipartite graph (Section 6.1). The transition matrix of the
underlying Markov chain is empirically estimated by calibrating a Huff-type spatial interaction
model on the basis of the OD matrices (Section 6.2). The definition and estimation of this
probability is discussed in Section 6.3. From this spatial reloading probability, the repositioning
probability within the repositioning set is easily determined.
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5 Spatial probabilistic repositioning choice problem of the carrier

In this section, we address the problem of the carrier probabilistic choice of the spatial repositioning.
The carrier is considered from the point of view of a consumer having to satisfy a need, namely, finding
a return shipment resulting from a repositioning of the empty vehicle to secure the business. This
choice is the result of a double decision-making process. At first, the carrier chooses a repositioning
set consisting of a number n of repositioning zones by arbitrating between the different alternatives
and selects one of them in a probabilistic way. The number n is assumed to be fixed by the carrier.
In a second step, within the repositioning set, the carrier decides on the assignment of the individ-
ual repositioning zones by evaluating a repositioning probability under the knowledge of the spatial
distribution of the reloading probability. We present the methodology in detail and refer to the next
section for technical details.

To understand the repositioning behavior and decision-making process, it is necessary to know
the carrier’s preferences between the different alternatives. An alternative is described as a set of
potential repositioning zones and are described using individual attributes defined for each zone. In
the absence of data on the carrier’s preferences, we first make assumptions on the attributes (Eqs. (17)-
(31)), and then on the carrier’s preferences (Eqs. (18)-(19)). As a result, the probability of choosing
a repositioning set is derived (Eq. (20)). Based on the knowledge of the spatial distribution of the
reloading probability (Eq. (31)), the carrier assigns a repositioning probability to each area of the
repositioning set (Eq. 21). The main challenge is the computation of Eq. (31) which is postponed to
Section 6.3.

The carrier is assumed to provide a shipment from the loading zone h to the unloading zone l.
Before defining the individual attributes, let’s define the set P(hl) consisting of all potential reloading
zones excluding h and l, namely

P(hl) = P \ {(h,Q), (l, Q)},

where P is given by (15).
To measure the benefits and costs of an alternative, the carrier performs a trade-off to rationally

assess the costs of the alternative against its benefits. The first important criteria we assume the
carrier is focused on is the loaded run rate defined for a potential reloading zone k, with respect to
the round-tour hlkh, i.e.,

rloadhlkh(k) = 1− dlk
dhlkh

, k ∈ P(hl), (17)

where dlk is the empty distance trip, and dhlkh is the total distance of the round-tour hlkh. It provides
information on the percentage of loaded mileage (or empty mileage) covered relative to hlkh (or empty
mileage and therefore not profitable).

The second criteria the carrier is focused on is the spatial reloading probability prelhl (k) which
measures the attractiveness of potential reloading zones. This probability will be given by (31) and
gives information on reloading opportunities relative to the headhaul direction. Section 6 is devoted
to the calculation of this probability.

Assume that the carrier specifies a number n of repositioning zones that constitute the choice of
the repositioning set, with 1 < n ≤ L − 2. He determines the value of n based on the volume of the
headhaul business and the knowledge of the market. We do not consider the following trivial case
n = 1. In this case the problem would be reduced to a choice of a single repositioning zone that is
incompatible with Assumption 4.

The carrier assigns certain constraints to each potential repositioning zone through two cut-off
values to control both attributes (17) and (31). It will not select an area as an eligible repositioning
zone :

1. if the loaded run rate (17) is less than the threshold value r. In other words, if the potential
repositioning zone is considered too expensive (the empty run rate is too high or the loaded run
rate is too low) by the carrier ;
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2. if the probability (31) of reloading is below a threshold value p. In other words, if the potential
relocation zone is not considered attractive enough in terms of reloading possibilities by the
carrier.

We define the admissible set C(hl) with respect to the headhaul direction hl, the set of all potential
repositioning zones satisfying minimum conditions characterized by the above constraints, namely,

C(hl) :=
{
k ∈ P(hl) | rloadhlkh(k) ≥ r and prelhl (k) ≥ p

}
.

We define now the alternative set A(hl) with respect to hl as the collection of all the subsets
consisting of n elements of the admissible set C(hl).

The utility of any alternative R ∈ A(hl) such that all elements k of this alternative is characterized
by the vector of attributes

(
rloadhlkh(k), prelhl (k)

)
is defined by aggregate utility functions, namely

1. the perfect type utility function, i.e.,

u : A(hl) → R+

R 7→ u(R) =
n∑
k=1

rloadhlkh(k) + prelhl (k); (18)

2. the Cobb-Douglas type utility function, i.e,

v : A(hl) → R+

R 7→ v(R) =
n∑
k=1

rloadhlkh(k) prelhl (k). (19)

First stage decision-making process The model is based on the premise of the probability that
the carrier confronted with a set of alternatives will select a particular repositioning set is directly
proportional to the perceived utility of each alternative. The choice behavior can be viewed as prob-
abilistic. As a result, it is unlikely that any given alternative will be selected exclusively unless no
other alternatives exist. The probability that the carrier will select the alternative Ru from A(hl),
with u = 1, . . . , |A(hl)| (|A(hl)| designates the cardinal of the set A(hl)), corresponds to the utility of
Ru renormalized by the sum of the utilities of alternatives, i.e.,

P (Ru) =
U(Ru)∑

Rs∈A(hl) U(Rs)
, (20)

where U(.) is either u(Ru) or v(Ru).

Second stage decision-making process The carrier will then select a repositioning zone within Ru
according the repositioning probability, for any repositioning zone k ∈ Ru,

prephl (k) =
prelhl (k)∑
`∈Ru

prelhl (`)
. (21)

Remark. Under an assumption of rationality of the carrier the set repositioning choice with highest
probability (20) coincides with the choice of the alternative associated with the highest level of utility.
In that case, the first stage decision-making process would be defined deterministically. The carrier’s
decision problem therefore amounts to finding an optimal set R∗ ∈ C(hl) maximizing an aggregate utility
function ( (18) or (19)). More formally, we are looking for R∗ ∈ C(hl) such that

max
R∈C(hl)

n∑
k=1

rloadhlkh(k) + prelhl (k)

(
or max

R∈C(hl)
rloadhlkh(k) prelhl (k)

)
Note that solving the above maximization problem is elementary in this case. Since the utility function
is additive with positive local utilities. The problem amounts to calculating the utilities of the (L− 2)
zones of L \ {h, l}, to order them and take the n highest values and the associated zones.
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6 The spatial reloading probability distribution

The objective of this section is to develop a methodology to access the spatial distribution of the
reloading probability. We first introduce a random walk on a bipartite graph and the mathematical
framework. The transition matrix of the underlying Markov chain is then empirically estimated
by calibrating a extension of the Huff model on the basis of the OD matrices. The definition and
estimation of the reloading probability is finally discussed.

6.1 Formulation of the carrier behavior with discrete Markov chain framework

As discussed in Section 4.2, the problem of evaluating the probability of spatial reloading is defined by
means of a random walk on a bipartite graph. The idea is to represent the market dynamics through
a random walker.

The network model we consider is a bipartite graph since the set of nodes can be partitioned into
two disjoint sets P and D. The graph will be also labelled with non-negative values. Thus the network
will be modelled by a bipartite graph with weighted edges, defined by

G = (P,D, E) ,

where,

• the set of loading nodes P is given by (15) ;

• the set of unloading nodes D is given by (16) ;

• E =
{(

(i, Q), (j, 0)
)
∈ P ×D or

(
(i, 0), (j,Q)

)
∈ D × P

}
is the set of arcs of the network.

The adjacency matrix W associated with G is the 2L× 2L matrix of the form (1), namely

W =

(
0L T
T t 0L

)
, (22)

where

• 0L is the null matrix of dimension L × L, corresponding to the edges whose nodes are of the
same kind ;

• T is the OD matrix (6) which connects the loading zones of P to the unloading zones of D; T t
designates the transpose of T which link unloading nodes to loading nodes.

We use a random walk on G to define the spatial reloading probability. This dynamic corresponds
to a bi-dimensional, homogeneous, and discrete time Markov chain Xn = {(Ln,Kn)}n≥0 with finite
state space

S := P ∪ D = {(i, κ), i ∈ L, κ ∈ K} ,

where L and K are given respectively by (13) and (14). with initial distribution

P ((L0,K0) = (h,Q)) = 1.

The transition matrix which gives the probability that the Markov chain moves from one state (loading
or unloading) to another one (unloading or loading) is denoted by

P =
(
p(i,κ),(j,κ′)

)
(i,κ)∈S, (j,κ′)∈S .

The one-step transition on S can be written in the general form, for (i, κ) ∈ S and (j, κ′) ∈ S

P
(
Ln+1 = j, Kn+1 = κ′|Ln = i, Kn = κ

)
= p(i,κ), (j,κ′), (23)
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where
∑

(j,κ′)∈S p(i,κ), (j,κ′) = 1 and p(i,κ), (j,κ′) ≥ 0. Following the general form of a transition matrix
on a bipartite graph (4), (23) yields

P =

(
0L P (p)

P (d) 0L

)
, (24)

where 0L is the L × L dimensional null matrix corresponding to one-step transitions whose states
are of the same kind. P (p) is the L× L dimensional matrix corresponding to the one-step transition
from a loading state to an unloading one. It characterize fully loaded vehicle trips. Some restrictions
are imposed on P (p). As our study is based on an interregional OD matrix, this sub-matrix is with
null diagonal. Let i ∈ L be a loading state (or (i, Q) ∈ P). Following the definitions of transition
probabilities (2) and (22), the conditional probabilities of unloading in j ∈ L, given the loading zone
in i are given by

p(i,Q),(j,0) = P (Ln+1 = j,Kn+1 = 0|Ln = i,Kn = Q) =


Tij∑
j∈L
j 6=i

Tij
= Fj|i if i 6= j

0 if i = j ,
(25)

where Fj|i is given by (11).
The matrix P (d) of dimension L×L corresponds to one-step transition from an unloading state to

a loading one with the same restrictions on the diagonal as P (p). It characterize empty vehicle trips.
Let j ∈ L be an unloading state (i.e., (j, 0) ∈ D). From (3) and (22), the conditional probabilities of
loading in i ∈ L given the unloading zone in j are given by

p(i,Q),(j,0) = P (Ln+1 = i,Kn+1 = Q|Ln = j,Kn = 0) =


Tij∑
i∈L
i 6=j

Tij
= Fi|j , if i 6= j

0 if i = j ,
(26)

where Fi|j is given by (12).

As stated in (25) and (26), the empirical counterparts of the transition probabilities can be easily
derived from the OD matrices. Yet, in the following, we propose a mathematical modelling of those
probabilities. This approach is justified by both practical and methodological arguments. First, the
nature and quantity of the data do not allow an empirical estimation of the transition probabilities
from the matrices. Second, this study aims at providing more visibility in the transportation process,
thus an explanatory model for the estimation of P (p) and P (d) is called for.

6.2 Estimation of transition probabilities

We focus now on the empirical estimation of the transition matrix (24). Markov chains have been
widely used to model the sequences of decisions and actions composing trip-chaining behavior (Thill et
Thomas (1987), Thill et Timmermans (1992)). Some applications of Markov processes to trip-chaining
behavior estimate the transition matrix by using random utility choice model (Ben-Akiva et al. (1978),
Lerman (1979)) or a gravity-type model (Borgers et Timmermans (1986)). We propose a procedure
for estimating the matrix using a Huff-type spatial interaction model. First, we present an extension
of the Huff (5) to characterize a carrier’s conditional choice of destinations; decisions that concern
loading or unloading zones.

6.2.1 Formulation of the conditional Huff model

This choice of modelling is motivated by two main arguments. The first is that the carrier reasons
sequentially at a fixed origin to determine the next destination; a conditional probability approach is
therefore natural. The second is that origin areas have specific economic and structural characteristics,
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so it seems more relevant to consider (5) at an origin level. This guarantees greater flexibility and a
better adjustment of the model. These considerations led us to pose L Huff models on the conditional
unloading (resp. loading) distribution given that each loading (resp. unloading) zone. The set of these
sub-models is thus parametrized by L vectors (α

(p)
i , β

(p)
i )i=1,...,L (resp. (α

(d)
i , β

(d)
i )i=1,...,L), each being

estimated locally on a subset of the OD matrix T (resp. T t).

Unloading conditional distribution given loading zone. Starting from a loading zone i which is
characterized by its economic weight Ei (Eq. (9)), we define the utility function of the unloading zone
j, denoted U (p)

ij for the carrier located at i as follows

U
(p)
ij = Rj

α
(p)
i /C̄

β
(p)
i
ij ,

where Rj is the reception rate (Eq. 10) which reflects the attractiveness of the unloading state j; C̄ij
the mean transportation cost between the centroids of i and j depending on the distance dij (See
Appendix D). For a given loading zone i, α(p)

i and β
(p)
i represent the conditional sensitivity of the

utility of the unloading zone j, as a result of a change in Rj and C̄ij respectively. In particular,
the parameter α(p)

i measures elasticity of the attractiveness relative to the loading state i. Thus, an
increase in reception Rj will lead to greater increase in utility the higher the economic weight Ei of
the loading location. The higher the reception rate Rj , the higher the utility; and the higher the
transport cost between i and j the lower the utility, hence for all loading zones i ∈ L, α(p)

i > 0 and
β

(p)
i > 0. We observe a strong positive correlation between the {α̂(p)

i , i ∈ L} and {Ei, i ∈ L}, where
α̂

(p)
i designates the estimator of α(p)

i (See Tab. 7 in Appendix B). This is because the parameter α(p)
i ,

i = 1, . . . , L, represents the size effect associated with a loading zone i, and captures information about
the economic weight of i.

The probability of an unloading destination j ∈ L, such that j 6= i given the loading zone i is
defined as the ratio of the utility U (p)

ij with the sum of the utilities of all the unloading destination
alternatives

p(i,Q),(j,0) = P ((Ln+1 = j,Kn+1 = 0) | (Ln = i,Kn = Q)) , j 6= i

=
U

(p)
ij∑

k∈L
k 6=i

U
(p)
ik

=
R
α
(p)
i
j /C̄

β
(p)
i
ij∑

k∈L
k 6=i

R
α
(p)
i
k /C̄

β
(p)
i
ik

, (27)

where p(i,Q),(j,0) is the conditional probability of unloading in j given that the loading in i, with∑
j 6=i p(i,Q),(j,0) = 1, and 0 < p(i,Q),(j,0) < 1. The choice of the unloading destination results from

drawing under the probabilities given in Eq. (27).

For any loading zone i ∈ L, the unknown parameter θ(p)
i :=

(
α

(p)
i , β

(p)
i

)
will be estimated on the

basis of the OD matrix T (6). The statistical estimation procedure is postponed to Appendix B. The
estimator of p(i,Q),(j,0) yields

p̂(i,Q),(j,0) =
Û

(p)
ij∑

k∈L
k 6=i

Û
(p)
ik

=
R
α̂
(p)
i
j /C̄

β̂
(p)
i
ij∑

k∈L
k 6=i

R
α̂
(p)
i
k /C̄

β̂
(p)
i
ik

. (28)

where, for any loading state i, θ̂(p)
i :=

(
α̂i

(p), β̂i
(p)
)
designates the estimator of θ(p)

i .

Loading conditional distribution given unloading zone. In the same way as the previous paragraph,
the utility function of the loading destination zone j starting from a given unloading origin zone i
which is characterized by its economic weight Ej (Eq. 9) is defined as follows

U
(d)
ij = Ej

α
(d)
i /C̄

β
(d)
i
ij ,
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where U (d)
ij is the utility function of the loading location j for a carrier originating from the unloading

state i; Ej characterizes the attractiveness of the loading zone destination j, measured by its emission
rate (9); C̄ij is the mean transport cost from the centroid of the unloading zone i to the centroid of
the loading zone j (Appendix D). For a given unloading zone i, α(d)

i and β(d)
i represent the conditional

elasticities of the attractiveness and the transportation cost from i to j. The higher the emission rate
Ej , the higher the utility; and the higher the transportation cost from i to j the lower the utility, thus
for all origin unloading zone i, α(d)

i > 0 and β(d)
i > 0. The parameter α(d)

i characterizes the size effect
of the unloading zone i (with a strong positive correlation between α(d)

i and Ri, see Appendix C).
The conditional probability of loading in j given the unloading area i, p(i,0),(j,Q), is equal to the

utility of the loading location j divided by the total sum of the utilities of the potential (L−1) loading
locations. The estimator of the conditional loading distribution given the unloading at i ∈ L is given
by

p̂(i,0),(j,Q) = P̂ ((Ln+1 = j,Kn+1 = Q) | (Ln = i,Kn = 0)) , j ∈ L \ {i}

=
Û

(d)
ij∑

k∈L
k 6=i

Û
(d)
ik

=
E
α̂
(d)
i

j /C̄
β̂
(d)
i
ij∑

k∈L
k 6=i

E
α̂
(d)
i

k /C̄
β̂
(d)
i
ik

, (29)

with , θ̂(d)
i :=

(
α̂

(d)
i , β̂

(d)
i

)
is the estimator of the unknown parameters θ(d)

i :=
(
α

(p)
i , β

(d)
i

)
obtained by

the estimation procedure described in Appendix C.

6.3 Definition of the spatial reloading probability distribution

Recall that P(hl) is the set of potential reloading candidates resulting from an empty trip from (l, 0),
and privates of both loading zones (ih,Q) and (l, Q). We are interested in the probability of reloading
in k ∈ P(hl) starting from the unloading state l to return to unload in h, denoted Prelhl (k). Due to the
joint nature of a transport, the carrier has to return at h to complete the round-tour by repositioning
the empty vehicle in k ∈ LQhl, which yields for all k ∈ P(hl)

prelhl (k) = P ({L2 = k,K2 = Q}|{L0 = h,K0 = Q}, {L1 = l,K1 = 0}, {L3 = h,K3 = 0})

The above Equation yields

prelhl (k) =
P ({L0 = h,K0 = Q}, {L1 = l,K1 = 0}, {L2 = k,K2 = Q}, {L3 = h,K3 = 0})

P ({L0 = h,K0 = Q}, {L1 = l,K1 = 0}, {L3 = h,K3 = 0})
(30)

The numerator of (30) is calculated using the Markov property, hence

P ({L0 = h,K0 = Q}, {L1 = l,K1 = 0}, {L2 = k,K2 = Q}, {L3 = h,K3 = 0})
= p(h,Q),(l,0) × p(l,0),(k,Q) × p(k,Q),(h,0)

The computation of the denominator of (30) yields

P ({L0 = h,K0 = Q}, {L1 = l,K1 = 0}, {L3 = h,K3 = 0})

=
∑

(z,Q)∈P

P ({L0 = h,K0 = Q}, {L1 = j,K1 = 0}, {L2 = z,K2 = Q}, {L3 = h,K3 = 0})

= p(h,Q),(l,0)

∑
(z,Q)∈P

p(l,0),(z,Q)p(z,Q),(h,0) = p(h,Q),(l,0)p
2
((l,0),(h,0))

Finally, the reloading probability is

prelhl (k) =
p((l,0),(k,Q))p((k,Q),(h,0))

p2
((l,0),(h,0))

, k ∈ P(hl), (31)
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where the quantity p2
((l,0),(h,0)) which designates the probability of unloading in h knowing that the

carrier has unloaded in l in two steps is strictly positive, because the graph is bipartite and therefore
periodic of period 2, p((l,0),(k,Q)) is the probability of reloading in k given the carrier unloaded its goods
in l; p((k,Q),(h,0)) represents the probability that the carrier unloads in i given goods have been loaded
in k.

An estimator of (31) is given by

p̂relhl (k) =
p̂((l,0),(k,Q))p̂((k,Q),(h,0))

p̂2
((l,0),(h,0))

, k ∈ P(hl).

where p̂((k,Q),(h,0)) is given by Eq. (28), p̂((l,0),(k,Q)) by Eq. (29),and p̂((k,Q),(i,0)), p̂2
((l,0),(h,0)) is given by

p̂2
((l,0),(h,0)) =

∑
(z,Q)∈P

p̂((l,0),(z,Q))p̂((z,Q),(i,0)).

7 Numerical experiments

This section presents numerical experiments of the proposed methodology for the probabilistic repo-
sitioning choice problem. In the road freight transport sector, which does not fully benefit from new
technologies to facilitate information sharing and feedback, data concerning carriers’ repositioning
zones play a major role in the construction of a transport price and are difficult to access. The ob-
jective is to have a better knowledge of the market and a better visibility of carriers’ choices in terms
of repositioning zones in order to shed light on more practical problems. These numerical simulations
aim to highlight information from our model in order to illustrate how it could be used in practice.
We illustrate this methodology in the context of Belgium. From a technical point of view, note that
the spatial reloading probability underlying these numerical experiments focuses on the minimum of
the Hellinger divergence estimate. We refer the reader to a comparison of estimators under various
divergences for example in Appendices B and C. Tab. 1 lists the parameters used in these simulations.
The parameters of the transportation cost are listed in Appendix D.

Parameters Definition Values
n number of repositioning zones 3
r loading run rate cut-off 0.65
p reloading probability cut-off 0.08

Tab. 1: Simulation parameters

7.1 Empirical illustrations of the carrier’s choice of repositioning set

In this section, we present some of the results of the proposed model to help practitioners in transport
management. Fig. 2a represents the spatial distribution with respect to the headhaul direction (from
Antwerp to Luxembourg depicted by the black arrow) of the reloading probability across Belgium.
This probability (Eq. (31)) is estimated according to our methodology presented in Section 6.3. It
reflects the carriers’ reloading opportunities from the unloading area assumed to be of lower demand
(the arrowhead in Fig. 2a) to a different zone. The value of these probabilities is represented by a
colour gradient. The darker the colour, the higher the probability of reloading. From Fig. 2a, the
three highest spatial reloading probabilities relative to the headhaul occur in provinces of Liège, East
Flanders and Limburg, with

1. a probability of 0.21 for Liège ;

2. a probability of 0.19 for East Flanders ;

3. a probability of 0.18 for Limburg.
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These values are given in Tab. 2. The first probability means that, given that the carrier has carried
out a transport from Antwerp to Luxembourg, a carrier has a 21% chance of reloading goods in Liège
from Luxembourg to finally unload in his place of origin (Antwerp). The carrier will thus complete the
round trip (Antwerp-Luxembourg-Liège-Antwerp), provided that it decides to reposition the vehicle
there. Similarly, these results also show that the carrier has a 19% chance of reloading goods in East
Flanders and 18% chance of reloading in Limburg to return to Antwerp in order to unload the goods,
provided it decides to reposition there.

(a) Spatial reloading probability
distribution relative to the
headhaul direction Antwerp
to Luxembourg (black arrow).

(b) Spatial repositioning set rel-
ative to the headhaul di-
rection Antwerp to Luxem-
bourg with highest probabil-
ity (0.26) with perfect utility.

(c) Spatial repositioning set rela-
tive to the headhaul direction
Antwerp to Luxembourg with
highest probability (0.28) and
Cobb-Douglas utility.

Fig. 2: Mapping of repositioning probabilities

loading zones unloading zones reloading zones loaded run rates reloading probabilities
Antwerp Luxembourg Brussels 0.67 0.03
Antwerp Luxembourg Limburg 0.65 0.18
Antwerp Luxembourg East Flanders 0.58 0.19
Antwerp Luxembourg Flemish Brabant 0.66 0.12
Antwerp Luxembourg West Flanders 0.58 0.02
Antwerp Luxembourg Walloon Branbant 0.71 0.05
Antwerp Luxembourg Hainaut 0.68 0.13
Antwerp Luxembourg Liège 0.80 0.21
Antwerp Luxembourg Namur 0.81 0.08

Tab. 2: Attributes’ values for each zones except the headhaul direction: the loaded run rate and the
reloading probabilities.

Tab. 2 lists all the potential reloading zones (before the carrier decision). Each of these zones is
characterised by its two attributes: the reloading probability, and the loaded run rate with respect to
its corresponding round trip. A reloading in Liège leads to the round tour Antwerp-Luxembourg-Liège-
Antwerp which is characterised by the highest loaded run rate of 80%, or in other words by the lower
empty run rate, i.e., 20%. This means that on the whole round-tour Antwerp-Luxembourg-Liège-
Antwerp round, the carrier would make 20% of their journey empty. A reloading in East Flanders
leads to the round-trip Antwerp-Luxembourg-East Flanders-Antwerp which is characterised by the
lower loaded run rate, namely, 58%, or the highest empty rate, i.e., 42%.

The model provides additional information listed in Tab. 3, namely the empty trip distance (be-
tween centroids, under Assumption 1) and the mean of the transport cost distribution presented in
Appendix D. These variables are the determinants of the associated Huff model for the conditional
law of loading given unloading (Eq. 28). They can complement the information in Tab. 2 by giving an
approximation of the hidden costs of repositioning. Let’s take the example of a reloading in Liège, the
distance travelled empty is 87 km, the associated cost which is carried out by the carrier is estimated
at 235 e on average.
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loading zones unloading zones reloading zones empty distance (km) average cost (e)
Antwerp Luxembourg Brussels 146.01 301.66
Antwerp Luxembourg Limburg 156.17 313.14
Antwerp Luxembourg East Flanders 213.02 377.37
Antwerp Luxembourg Flemish Brabant 150.27 306.47
Antwerp Luxembourg West Flanders 267.88 439.36
Antwerp Luxembourg Walloon Branbant 125.81 278.83
Antwerp Luxembourg Hainaut 165.66 323.86
Antwerp Luxembourg Liège 87.17 235.17
Antwerp Luxembourg Namur 86.30 234.19

Tab. 3: Empty distances with associated mean transportation cost

The spatial distribution of the reloading probability with respect to a headhaul direction does not
necessarily reflect the carrier’s actual choice of relocation, but rather a state of the market. The carrier
uses this information to make decisions and assess the spatial repositioning probability. To decide on
a repositioning set, the carrier is faced with the problem of choosing a repositioning set consisting of
an a priori fixed number of potential repositioning zones. This set is selected with probability (20).
Figs. 2b and 2c represent the carrier choice of a repositioning set with three zones highest choice
probability with respectively (18) and (19) utilities. After choosing the repositioning set, the carrier
assesses one particular zone with the spatial repositioning probability. Tabs. 4 and 5 provide the
spatial respositioning probability (21).

We also observe different behaviour depending on the utility function. Under the Cobb-Douglas
utility function (Eq. 19), the carrier is willing to travel additional empty kilometres to have more
chances to reload. Indeed, he is willing to go to Flemish Brabant, thus taking on average 306 e to
cover the 150 empty repositioning kilometres, against repositioning in Namur for an average costs
of 234 e for the perfect utility function (Eq. 18). Combining the information in Tabs. 3 with 4-5,
we derive the average cost of repositioning relative to its repositioning set relative to (18)-(19). The
repositioning set (Tab 4) is associated with the hidden average repositioning cost: 262.41 e. The
repositioning set (Tab 5) is associated with the hidden average repositioning cost: 278.93 e.

loading zones unloadings zones repositioning zones repositioning probabilities
Antwerp Luxembourg Hainaut 0.31
Antwerp Luxembourg Liège 0.49
Antwerp Luxembourg Namur 0.20

Tab. 4: Repositioning set choice with highest probability with perfect utility

loading zones unloading zones repositioning zones repositioning probabilities
Antwerp Luxembourg Flemish Brabant 0.26
Antwerp Luxembourg Hainaut 0.29
Antwerp Luxembourg Liège 0.46

Tab. 5: Repositioning set choice with highest probability with Cobb-Dougals utility

8 Conclusion and perspectives

This study tackles the untreated, yet critical issue of formalizing the spatial choices of a carrier
dealing with repositioning. It was motivated by the problems encountered by most actors in the
freight transport industry, namely the lack of visibility on the repositioning choices of carriers. This
question is a major blocking point to the development of transparency and visibility on the market.
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Indeed, among the numerous opacities on the transport market, the behavior of its actors is particularly
illegible, especially concerning the carriers’ choices and strategies in terms of finding return shipments.
Indeed, in a trade imbalance context, repositioning their vehicle to sustain their business is a necessity.
Those behaviors reflecting the carriers own market knowledge and personal strategies are often not
formalized by the carriers themselves and unknown to the shippers or freight forwarders, thus resulting
in an impossibility to manage their costs and transport plans optimally. This question is challenging on
multiple levels. On an operational level, providing explanatory tools to understand the decision-making
process of a carrier on repositioning zones selection will remove a significant obstacle to information-
sharing and visibility in the transport industry. On a technical one, it implies the development of an
original model as it has not been studied.

The solution we propose is an original combination of statistical and econometric tools to model
the opaque process of repositioning choices. The formal framework borrows from the economic theory
of the consumer: we model the movements of a representative carrier, in the sense of a production
unit. We adopt an aggregate approach based on the exploitation of national OD matrices as market
representation. Thus the carrier is assumed to know the market and his movements represent its
trends. There are three main modeling tools:

1. A random walk on a bipartite graph representing the flows exchanged between regions.

2. An adaptation of Huff’s spatial interaction model to express the spatial reloading distribution
from a given origin (with a loading or unloading action) on the national territory.

3. A choice procedure based on assumptions on the carrier’s preferences.

The preliminary step consists in estimating the loading and unloading distributions on the territory.
Huff’s spatial interaction model is adapted locally to define on one hand the conditional distributions
of unloadings given each origin location and on the other hand the distributions of loadings given each
destination location. Those probabilities define the transition matrix of the Markov chain modeling
the carrier spatial repositioning behavior. They are used to express two key notions in the choice
procedure: the reloading probabilities of a repositioning candidate given an initial expedition from an
origin h to a destination l and the repositioning probabilities among a selected set of candidates which
are derived from the latter.

The proposed procedure is a two-steps decision-making process: First the carrier decides on the
set of repositioning candidates through a trade-off between the reloading probabilities as an indicator
of the locations’ attractivity and the additional cost the supplementary trip induces. This trade-off
is determined by the preferences of the carrier represented by utility functions. Secondly, within the
selected set, we define the distribution of the repositioning probabilities from the reloading probabilities
and draw a repositioning location.

Our methodology is illustrated from an operational standpoint by means of numerical simulations.
They aim at providing transparency on the spatial behavior of carriers through indicators built from
the different information contained in the underlying models.

Research perspectives

We propose research perspectives to address the problem of modeling freight demand and the effect
of trade imbalance on transportation price. The method we have developed can be used as a basic
theoretical framework for modeling the effect of trade imbalance on the price of transportation. Indeed,
one possible interpretation of the effect of trade imbalance on price is the notion of repositioning cost
corresponding to the additional costs due to empty miles weighted by the risk for the carrier of not
finding return freight. We have proposed an extension of the Huff spatial interaction model to express
the spatial distribution of a load (resp. unloading) conditional on an unloading (resp. loading) on
the national territory. The first simulations performed on the Belgian territory suggest that this local
estimation procedure is reasonable and can be extended to the so-called four-stage models with the
first stage called Generation and the second called Distribution. From a software development point
of view, our methodology can be used in decision-making tools.
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A Statistical estimation based on φ-divergence

Divergences are widely used in statistics. We are concerned with finite discrete support distributions.
For these types of distributions, Liese et Vajda (1987) and Morales et al. (1995) introduced the so-
called minimum φ-divergence estimators. The use of φ-divergences criteria in statistics cover and
improve classical methods in some cases. In particular, Lindsay (1994) and Jiménz et Shao (2001)
show that the minimum Hellinger estimator is better than all other power divergence estimators in
terms of efficiency and second order robustness. The quality of real observations motivates the use of
robust estimators. In the case where the densities of the model are continuous, Toma et Broniatowski
(2011) uses an approach based on the influence of the efficiency and the second-order robustness.

The estimation problems through φ-divergences that we are considering can be described as follows.
Let {Pθ, θ ∈ Θ} be an identifiable model with Θ an open subset of Rd, with d ≥ 1. Consider the
problem of estimating the unknown true value of the parameter θ? on the basis of an independent
and identically distributed sample (i.i.d), X1, . . . , Xn with probability measure (p.m) Pθ? . When all
the p.m. Pθ share the same discrete finite support S which is independent of the parameter θ, the
φ-divergence between Pθ and Pθ? is defined by

φ (Pθ, Pθ?) =
∑
j∈S

ϕ

(
Pθ(j)

Pθ?(j)

)
Pθ?(j),

where ϕ is a non-negative convex function defined on [0,+∞[ onto [0,+∞] and satisfying ϕ(1) = 0.
The minimum φ-divergence estimators θ̂n for the parameter θ? is defined as the solution of the

minimization problem

θ̂n := argmin
θ∈Θ

φ (Pθ, Pn) = argmin
θ∈Θ

∑
j∈S

ϕ

(
Pθ(j)

Pn(j)

)
Pn(j),

with φ (Pθ, Pn) is the plug-in estimator of φ (Pθ, Pθ?), and Pn := 1
n

∑n
i=1 δXi is the empirical measure

associated with the sample, where δx designates the Dirac measure at x.

B Estimation of the conditional unloading distribution given the loading

For any given loading state i ∈ L, assume we observe an i.i.d sample
(
X

(i)
` , ` ∈ L \ {i}

)
with common

and unknown conditional probability distribution P
θ
?(p)
i

. Assume also that θ?(p)i ∈ Θ
(p)
i , an open

subset of R+ × R+. For any given loading state i, let’s denotes by Pi(j) the empirical and conditional
probability distribution for these samples defined by Eq. (11), namely

Pi(j) = Fj|i = Tij/Ti•, j ∈ L \ {i}. (32)

Assume that the distribution P
θ
?(p)
i

is defined by the proposed Huff model (27). The objective is to

estimate for each given loading state i ∈ L, the true unknown parameter θ?(p)i using φ-divergences, on
the basis of the i.i.d. sample

(
X

(i)
` , ` ∈ L \ {i}

)
. Define the parametric model, for any given loading

state i ∈ L
M(p)

i :=
{
P
θ
(p)
i

, θ
(p)
i ∈ Θ

(p)
i

}
, (33)

where

Θ
(p)
i :=

{
θ

(p)
i =

(
α

(p)
i , β

(p)
i

)
, α

(p)
i ⊆ R+, β

(p)
i ⊆ R+

}
, (34)

P
θ
(p)
i

(j) =
U

(p)
ij∑

k∈L
k 6=i

U
(p)
ik

=
R
α
(p)
i
j /C

β
(p)
i
ij∑

k∈L
k 6=i

R
α
(p)
i
k /C

β
(p)
i
ik

, j ∈ L \ {i}. (35)
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For a given loading state i ∈ L, all the distributions P
θ
(p)
i

have the same discrete and finite

support which does not depend on θ
(p)
i . The model (33)-(34)-(35) being identifiable, the minimum

φ-divergence estimators of θ(p)
i , denoted by θ̂

(p)
i,ϕ is defined as the unique solution of the following

minimization problem :

θ̂
(p)
i,ϕ = argmin

θ
(p)
i ∈Θ

(p)
i

φ
(
P
θ
(p)
i

, Pi

)
= argmin

θ
(p)
i ∈Θ

(p)
i

∑
j∈L
j 6=i

ϕ

(
P
θ
(p)
i

(j)

Pi(j)

)
Pi(j),

where φ
(
P
θ
(p)
i

, P(L−1),i

)
is the plug-in estimators of φ

(
P
θ
(p)
i

, P
θ
?(p)
i

)
, with Pi(j) given by (32).

In the following we consider three divergences :

1. modified Kullback-Leibler divergence ;

2. Hellinger divergence ;

3. Pearson’s χ2 divergence.

Maximum likelihood Estimator. For any loading state i ∈ L, the maximum likelihood estimator of
θ

(p)
i is associated with the modified Kullback-Leibler divergence, denoted KLm, and defined by the
convex function ϕ(x) = − log(x) + x − 1. The maximum likelihood estimator, θ̂(p)

i,ML, is the unique
solution of the equation, for all given loading state i

θ̂
(p)
i,ML = argmax

θ
(p)
i ∈Θ

(p)
i

∑
j∈L
j 6=i

log
(
P
θ
(p)
i

(j)
)
Pi(j).

The minimum of the Hellinger divergence estimator. The Hellinger φ-divergence, denoted H is
associated with the convex function ϕ(x) = 2 (

√
x− 1)

2. For any loading state i ∈ L, the minimum
of the Hellinger divergence estimator of θ?(p)i , noted θ̂(p)

i,H is the unique solution of the equation

θ̂
(p)
i,H = argmin

θ
(p)
i ∈Θ

(p)
i

∑
j∈L
j 6=i

√P
θ
(p)
i

(j)

Pi(j)
− 1

2

Pi(j).

The minimum of Pearson’s χ2 divergence estimator. The Peason’s χ2 divergence is associated

with the convex function ϕ(x) =
1

2
(x− 1)2. For any loading state i ∈ L, the minimum the Pearson’s

χ2 divergence noted θ̂(p)
i,χ2 is the unique solution of the equation

θ̂
(p)
i,χ2 = argmin

θ
(p)
i ∈Θ

(p)
i

∑
j∈L
j 6=i

(
P
θ
(p)
i

(j)− Pi(j)
)2

Pi(j)
.

Estimation results

Tab. 6 shows that for all loading zones, the estimators are interior points of the optimization domain
(except for Luxembourg (BE34) and its β estimator), and that the estimators are very close. The
performance in terms of MSE is also of the same order as shown in Tabs. 6 and 8. Moreover, Tab. 7
shows that the vectors of αi estimators and of Ei emission rates are significantly and positively
correlated, and that there is no significant difference between the three criteria. The Huff model that
we propose recovers a large part of the economic weight of the loading zone.
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NUTS Names KLm H χ2 KLm H χ2

αi βi αi βi αi βi MSEi

BE10 Brussels 0.30 1.38 0.29 1.40 0.27 1.47 0.00106 0.00108 0.00118
BE21 Antwerp 1.34 1.28 1.38 1.36 1.48 1.51 0.00581 0.00577 0.00573
BE22 Limburg 1.16 2.39 1.21 2.44 1.32 2.58 0.00654 0.00646 0.00627
BE23 East Flanders 1.76 0.54 1.79 0.62 1.87 0.70 0.01200 0.01180 0.01170
BE24 Flemish Brabant 0.93 0.89 0.93 0.92 0.95 0.99 0.00536 0.00548 0.00589
BE25 West Flanders 1.34 1.04 1.41 1.05 1.58 1.17 0.00850 0.00848 0.00813
BE31 Walloon Branbant 0.32 0.64 0.32 0.70 0.28 0.92 0.00346 0.00353 0.00396
BE32 Hainaut 1.01 0.56 1.03 0.61 1.12 0.83 0.00684 0.00690 0.00723
BE33 Liège 0.87 2.50 0.94 2.55 1.14 2.69 0.00353 0.00356 0.00366
BE34 Luxembourg 1.01 0.10 1.01 0.10 1.01 0.10 0.00294 0.00294 0.00294
BE35 Namur 0.84 3.28 0.90 3.40 0.98 3.68 0.00601 0.00619 0.00664

Tab. 6: Estimator values of θ(p)
i =

(
α

(p)
i , β

(p)
i

)
, for all i ∈ L, under KLm, H and χ2 divergences.

KLm H χ2

Pearson coefficient 0.81 0.81 0.80

Tab. 7: Pearson correlation between {α(p)
i , i ∈ L} and {Ei, i ∈ L}

KLm H χ2

MSE 0.00564 0.00565 0.00575

Tab. 8: Global MSE

C Estimation of the conditional loading distribution given the unloading

In this Appendix we present very briefly the estimation method as it is similar to the one in Ap-
pendix B.

For any given unloading state j ∈ L, assume we observe an i.i.d. sample
(
Y

(j)
` , ` ∈ L \ {j}

)
with common and unknown unloading conditional probability distribution, P

θ
?(d)
j

. Assume also that

θ
?(d)
j ∈ Θ

(d)
j , an open set of R+ × R+. Define Qi(j) the empirical unloading distribution given that

loading pertaining to these samples given by Eq (12), namely

Qi(j) = Fi|j = Tij/T•j , i ∈ L \ {j}.

For any unloading state j ∈ L, the parametric statistical model considered is the following

M(d)
j =

{
P
θ
(d)
j

, θ
(d)
j ∈ Θ

(d)
j

}
, (36)

with,

Θ
(p)
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{
θ

(d)
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(
α

(d)
j , β

(d)
j

)}
⊆ R+ × R+, (37)
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j
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k /C
β
(d)
j

jk

, i ∈ L \ {j} (38)

The model (36)-(37)-(38) is identifiable, so that the minimum of the φ-divergences estimator of
θ

(d)
j , denoted by, θ̂(d)

j,ϕ is defined as the unique solution of the minimisation problem, for any given
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unloading zone j ∈ L

θ̂
(d)
j,ϕ = argmin

θ
(d)
j ∈Θ

(d)
j

φ

(
P
θ
(d)
j

, Qi(j)

)
= argmin

θ
(d)
j ∈Θ

(p)
j

∑
i∈L
i 6=j

ϕ

 P
θ
(d)
j

(i)

Qi(j) (i)

Qi(j),

where, φ
(
P
θ
(p)
j

, Qi(j)

)
= φ̂

(
P
θ
(d)
j

, P
θ
?(d)
i

)
, with Qi(j) given by Eq. (12).

Estimation results

From Tabs. 9-10-11 the same conclusion is made as in Appendix B. As a result, with a theoretical
argument of robustness and similar goodness of fit between the three criteria for θ(p) and θ(d), the
most suitable criterion is Hellinger’s. For this reason, we have chosen this criterion for the numerical
simulations of Section 7.

NUTS Names KLm H χ2 KLm H χ2

αj βj αj βj αj βj MSEj

BE10 Brussels 0.67 1.28 0.66 1.30 0.65 1.38 0.0285 0.0220 0.0250
BE21 Antwerp 1.28 1.23 1.30 1.30 1.35 1.51 0.0435 0.0372 0.0451
BE22 Limburg 1.08 2.21 1.15 2.29 1.34 2.61 0.0542 0.0475 0.0547
BE23 East Flanders 1.62 0.70 1.67 0.75 1.79 0.83 0.0429 0.0386 0.0514
BE24 Flemish Brabant 0.96 0.65 0.97 0.65 0.98 0.63 0.0474 0.0422 0.0556
BE25 West Flanders 1.55 1.24 1.67 1.23 1.85 1.24 0.0365 0.0339 0.0501
BE31 Walloon Branbant 0.16 1.36 0.19 1.43 0.27 1.60 0.0326 0.0266 0.0324
BE32 Hainaut 0.70 0.40 0.72 0.51 0.80 0.76 0.0489 0.0536 0.0593
BE33 Liège 0.68 1.94 0.77 1.94 1.02 2.09 0.0434 0.0383 0.0495
BE34 Luxembourg 1.00 0.10 1.00 0.10 1.00 0.10 0.0592 0.0483 0.0323
BE35 Namur 1.00 3.61 1.08 4.00 1.11 4.00 0.0240 0.0236 0.0439

Tab. 9: Estimator values of θ(d)
j =

(
α

(d)
j , β

(d)
j

)
, for all unloading zones j ∈ L, under KLm, H and χ2

divergences.

KLm H χ2

Pearson coefficient 0.73 0.72 0.72

Tab. 10: Pearson correlation between {α(d)
j , j ∈ L} and {Ej , i ∈ L}

KLm H χ2

MSE 0.0419 0.0374 0.0454

Tab. 11: Global MSE

D Stochastic transportation cost

The measure we use to evaluate the distance of the conditional Huff model we have proposed in
Section 6.2.1 is the generalised transport cost between two centroids i and j, noted Cij in the presence of
uncertainties. We can refer to Combes et Lafourcade (2005) and reference therein for the bibliography
on the subject in the non stochastic framework. The transport cost represents the expenditure required
to transport goods between a loading location and a delivery location. This measure includes both
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distance-related costs and time-related costs. For the costs related to the time duration, we consider
two time units: the hour and the day. The definition we use is the one used by the French National
Road Comity (CNR), the so-called "trinome’s formula".

Sources of uncertainties in transportation cost modeling

The sources of uncertainty are outlined in Tab. 12.

Variables Distributions

Speed (V )
Weibull

shape : k = 36.57189
scale : λ = 65.99397

Working hours per day (W )

Translated Beta
shape1 : k1 = 5.039663
shape2 : k2 = 2.918150
lower Bound : m = 9
upper Bound : M = 12

Tab. 12: Transport cost uncertainties

Transportation cost formulation

The transportation cost depends on reference costs related to distance between two centroids and time
measured in hours and days. In 2018, the CNR updated its road trucking Belgian survey of companies
dating back to 2013. This new study was carried out in 2017 among trucking companies, drivers
and professional organisations. The vehicles chosen by the CNR to carry out long-term statistics
on the operating costs of road carriers are 40-tonne articulated vehicles, considered representative of
industrial goods transported by road. Tabs. 13-14-15 list annual averages and statistics reported by
the CNR’s Belgian trucking survey of the various components composing the cost.

Distance reference cost. The distance-related reference costs incurred when connecting the centroids
of areas i and j is related to the distance dij , and the cost per kilometer Ck, as follows

dij Ck, (39)

where Ck is expressed in terms of the yearly mileage of vehicule, fuel price, maintenance and toll costs
as given in Tab. 13.

Hour-time reference cost. Similarly, we define the time-related costs per hour in terms of the random
route travel time from i to j, ∆Tij , and the cost per hour Ch, namely,

∆Tij Ch, (40)

with ∆Tij := dij/V , where V is the random speed given in Tab. 12, and the cost per kilometer Ch
is expressed in terms of driving time per year, wages/primes, employer’s contributions, and travel
allowance as provided by Tab.14.

Remark. For the estimation parameters procedure, we don’t take into account the loading and the
unloading times. If any, we should have instead a service time (route travel time plus loading and
loading times following the CNR’s definition), such that dij/V + S` + Su, with S` and Su the loading
and the unloading times.
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Daily-time reference cost. The daily-time related reference costs is expressed in terms of route travel
time ∆Tij , the random number of working hours per week W (Tab. 12), and the cost per day Cd,
namely,

∆Tij
W

Cd, (41)

where ∆Tij is defined as above, and Cd is the cost per day expressed in terms of working days per
year, taxes, insurances, vehicle ownership and structure costs as provided by Tab.15.

Total transport cost. Finally, the total cost connecting the centroids of i and j is given by the sum
of (39), (40), and (41), i.e.,

Cij := dij Ck + ∆Tij Ch +
∆Tij
W

Cd.

Since both the driving time ∆Tij and the working hours per day are non-negative random variables
the total cost Cij is a non-negative random variable.

Table 1. Distance-related reference costs (2017)
Average values

Annual mileage (km/year) 117 000 (1)
Fuel (e/year) 30 134 (2)
Maintenance (e/year) 11 115 (3)
Toll (e/year) 8000 (4)
Cost per kilometre (Ck in e/km)
((2)+(3)+(4))/(1)

0.42

Source: CNR (2017)

Tab. 13: Average annual cost associated with the distance reference cost

Table 2. Time-related reference costs per hour (2017)
Average values

Driving time (h/year) 1672 (1)
Wages/Primes (e/year) 29 942 (2)
Employer’s contribution 0.6056 (3)
Travel allowance (e/year) 8 211 (4)
Cost per hour (Ch in e/h)
((2)+(2)×(3)+(4))/(1)

33.66

Source: CNR (2017)

Tab. 14: Average annual cost associated with the hourly reference cost
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Table 3. Time-related reference costs per day (2017)
Average values

Number of working days (d/year) 220 (1)
Axle tax (e/year) 515 (2)
Insurance (vehicle) (e/year) 1900 (3)
Insurance (goods) (e/year) 250 (4)
Vehicle ownership (e/year) 14 769 (5)
Synthesis-cost(except structural costs) 126 658 (6)
Structure (%) 9.1 (7)
Cost per day (Ch in e/d)
((2)+(3)+(4)+(5)+((6)×100)/(100-
(7))/(1)

136.88

Source: CNR (2017)

Tab. 15: Average annual cost associated with the daily reference cost
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