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Abstract: The unprecedented Pd-catalyzed 

(ethoxycarbonyl)difluoromethylthiolation reaction of various 

unsaturated derivatives was studied. In the presence of the 

(ethoxycarbonyl)difluoromethylsulfenamide reagent I and under mild 

reaction conditions (60 °C), both 2-(hetero)aryl and 2-(-aryl-

vinyl)pyridine derivatives were smoothly functionalized with this 

methodology (37 examples, up to 87% yield). Moreover, the synthetic 

interest of this fluorinated moiety was further showcased by its 

conversion into various original fluorinated residues. Finally, a 

plausible mechanism for this transformation was suggested. 

Introduction 

In a society fully aware about the next challenges towards greener 

chemistry and the global welfare, the prevalence of 

organofluorinated molecules in our daily life should be taken into 

consideration. Cognizant about their pivotal role in medicinal 

chemistry programs and material science,[1] the quest for efficient 

and sustainable routes to novel fluorinated molecules is of prime 

importance.[2] In that context, the design of fluorinated residues 

that might be easily converted in various other fluorinated 

functional groups like a swiss-army knife is of paramount 

importance. Therefore, over the last years, a strong interest of the 

scientific community was dedicated to the synthesis of original 

and functionalized fluorinated moieties such as CF2R and SCF2R 

(R = H, CO2Et, PO(OEt)2, SO2Ph…).[3] 

Besides, transition metal catalyzed C–H bond activation has 

completely revolutionized the field of organic chemistry and has 

become a sustainable tool to reach molecular complexity.[4] 

Despite significant advances, the formation of C–S bond by C–H 

bond activation remains an underexplored area.[5] Pursuing our 

efforts on the development of innovative transformations to forge 

C–S bond by Pd-catalyzed C–H bond activation,[6] we aimed at 

tackling the unmet challenge to build up a C(sp2)–SCF2FG (FG = 

functional group) by C–H bond activation, with a particular focus 

on the SCF2CO2Et moiety, due to its versatility and the lack of 

available methods to introduce it on molecules. 

So far, such strategy is mostly restricted to the 

trifluoromethylthiolation reaction (Scheme 1, eq.1.). These 

reaction manifolds mainly used Cu,[7] Pd,[6b-c],[8] Rh,[9] and Co[10] 

complexes as catalysts. Of note, a unique report dealing with the 

difluoromethylthiolation of acrylamides was recently depicted 

(Scheme 1, eq. 2).[11] In light of the conspicuous absence of 

methodology to introduce other possible SRf motifs by C–H bond 

activation, and particularly functionalized ones, we sought to 

dedicate efforts to broaden the current portfolio of available 

transformations. In this context, we disclosed herein the Pd-

catalyzed C–H (ethoxycarbonyl)difluoromethylthiolation reaction 

of C(sp2) centers (Scheme 1, eq. 3).  

 

Scheme 1. Introduction of SRf motifs by C–H bond activation, state of the art 

and present work. 
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Scheme 2. A. Optimization of the reaction conditions. B. Other suitable directing groups. C. Assessment of the sensitivity. [a] 19F NMR yields using ,,-

trifluoroacetophenone as an internal standard. [b] Isolated yields.

Results and Discussion 

At the outset of the study, we chose the reagent I, previously 

reported by our group,[12] as the electrophilic source of the 

SCF2CO2Et residue, in combination with a Pd(II) catalyst. After an 

extensive set of optimization reactions, we found that pyridine was 

the most efficient directing group in this transformation (Scheme 

2A).[13] Indeed, the corresponding product 1 was isolated in 74% 

yield, using 10 mol% of Pd(MeCN)2Cl2, one equivalent of AgOAc 

as an additive in DMF under mild reaction conditions (60 °C) for 

16 h (Scheme 2A, entry 1). Importantly, the addition of 2.5 

equivalents of PhCOCl as an additive to activate the reagent I, as 

disclosed by Liu, was crucial to ensure the reaction (Scheme 2A, 

entry 2).[8b] It is worth mentioning that Pd(MeCN)2Cl2 was the most 

efficient catalyst (Scheme 2A, entry 3). Lower reaction 

temperature was detrimental to the reaction, while the use of 

higher reaction temperature did not improve the reaction 

efficiency (Scheme 2A, entries 4 and 5). The nature of the solvent 

was important and DMF remained the most efficient one (Scheme 

2A, entry 6). Finally, a decrease in catalyst loading or the amount 

of the reagent I provided 1 in lower yields (entries 7 and 8). Note 

that among the other tested directing groups,[13] two N-

heterocycles were suitable as the directing group, although the 

yields were lower (Scheme 2B). To highlight the versatility and the 

reproducibility of our reaction conditions, the sensitivity 

assessment with regard to the reaction parameters was 

achieved.[14] This transformation was insensitive to an increase of 

the reaction temperature, the scale of the reaction, the presence 

of oxygen and the concentration. However, the yields dropped 

significantly when the reaction was carried out at low temperature 

or in the presence of H2O. 

Then, having delineated the optimal reaction conditions, the 

scope of this methodology for the introduction of the SCF2CO2Et 

residue by C–H bond activation was evaluated (Scheme 3). First, 

we successfully scaled up the reaction to a 3 mmol scale, and 1 

was isolated in 50% yield. Pleasingly, the reaction was extended 

to the functionalization of the benzo[h]quinoline, giving the 

corresponding SCF2CO2Et-containing molecule 4 in 80% yield. 

The replacement of the phenyl ring by a naphthyl ring did not 

affect the reaction outcome, since the 2-(2-naphthyl)-pyridine was 

successfully functionalized in 87% yield with a complete 

selectivity for the C–3 position of the naphthalene residue. The 

introduction of an electron-donating substituent at the para-

position of the phenyl residue was well-tolerated. Indeed, methyl, 

phenyl, methoxy, a N-Boc-protected amine as well as an acetal 

group were compatible, affording the desired products 6-10 in 

good to high yields. Halogen atoms (bromide, chloride and 

fluoride) were not altered during the reaction, offering possibilities 

for further orthogonal C–C or C–N bond formation, for instance. 

The introduction of electron-withdrawing groups, like 

trifluoromethyl, aldehyde, ester, cyano, as well as a nitro group 

did not affect the efficiency of the reaction and the desired 

SCF2CO2Et-containing products 14-18 were obtained in 

moderate to good yields (36% to 70%). Interestingly, the 

SCF2CO2Et product 19, bearing a OCF3 substituent, an important 

motif in drug discovery programs,[15] was isolated in 55% yield. 

Then, we evaluated the effect of the substitution pattern on the 

outcome of the reaction. The introduction of a methyl or a cyano 

substituent at the meta position of the phenyl ring did not impact 

the reaction and the products 20 and 21 were isolated in 63% and 

47% yields, respectively. Then, the 2-(2-fluorophenyl)-pyridine 

was functionalized in 61% yield into the product 22. Moreover, 

polysubstituted 2-phenyl pyridines 23 and 24 were readily 

obtained in 39% and 72% yields, respectively. Finally, the 

thiophene derivative 25 was obtained in 65% yield, showcasing 

the possibility to functionalize a heteroaromatic derivative. Then, 

to further broaden the versatility of our method, we conjectured 

that our reaction manifold could be extended to the 

functionalization of 2-vinyl pyridine derivatives. Indeed, such 

pyridine derivatives highlight a similar reactivity as the aryl-

substituted congeners.[16] Moreover, such appealing extension 

would offer a privileged access to di-, tri- and tetra-substituted 

SCF2CO2Et-containing alkenes in a stereoselective fashion.  

N
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Scheme 3. Evaluation of the scope of the transformation. Reactions were carried out on a 0.3 mmol scale, isolated yields were given. [a] Reaction was carried out 

on a 3 mmol scale.

To our delight, our reaction conditions allowed the straightforward 

introduction of the SCF2CO2Et motif on the 2-(-phenyl-vinyl)-

pyridine and the alkene 26 was isolated in a 65% yield as a single 

diastereoisomer Z, according to 2D NMR analysis.[13] Then, we 

extended this process to the functionalization of other 2-aryl-vinyl-

pyridine derivatives. The presence of halogen atoms (i.e. bromide 

and fluoride) as well as a trifluoromethyl group at the para position 

of the phenyl ring was compatible, giving the products 27-29 in 

very good yields. Likewise, the substrates having an electron-

donating group at the para position (30-31) were smoothly 

functionalized. The substitution pattern on the aromatic ring did 

not affect the reaction efficiency, SCF2CO2Et-containing 

derivatives having a meta and even ortho-substituent on the aryl 

residue were isolated in good to excellent yields (32-35, 59% to 

85% yield). 

Finally, the reaction conditions were suitable for the 

stereoselective synthesis of the tetra-substituted olefins 36 and 

37 in 48% and 28% yields, respectively. Then, to highlight the 

synthetic interest of the products and the versatility of the 

SCF2CO2Et residue, some key transformations were carried out 

(Scheme 4). First, the ester residue was readily converted into the 

corresponding amide 38 in 59% yield, likewise the formation of 

the acid 39 was performed in an excellent 86% yield. Then, the 
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synthetically useful alcohol 40 was obtained in 90% yield upon the 

reduction of 1 with LiAlH4.  

 

Scheme 4. Synthetic utility of the products. a) PhNH2 (1.2 equiv.), t-BuOK (2 
equiv.), THF, 22 °C, 1 h, Ar. b) LiOH (3 equiv.), THF/H2O, 22 °C, 1 h. c) LiAlH4 
(1.5 equiv.), THF, 0 °C, 10 min, Ar. d) m-CPBA (1.2 equiv.), DCM, -15 °C, 2 h, 
Ar. e) H5IO6 (4 equiv.), K2Cr2O7 (8 mol%), MeCN, 22 °C, 2 h, Ar. Py = 2-pyridyl. 

Finally, we have been able to selectively convert the SCF2CO2Et 

group into the corresponding sulfoxide 41 in 53% yield using m-

CPBA, while the use of H5IO6 in the presence of a catalytic 

amount of K2Cr2O7 allowed the formation of the corresponding 

sulfone 42 in 78% yield. These last transformations offered an 

unprecedented access to novel fluorinated motifs. Finally, we 

showcased the conversion of the SCF2CO2Et group into the 

important SCF2H motif (product 43), according to a 

saponification/decarboxylation sequence in an overall yield of 

32%. 

Then, to gain insights into the reaction mechanism, control 

experiments were carried out (Scheme 5). 

 

Scheme 5. Control experiments. Isolated yields were given. 

To preclude a radical pathway, the addition of various additives 

as radical scavengers or inhibitors was performed (Scheme 5, eq. 

1). In the presence of BHT (butylhydroxytoluene) or 1,4-

dinitrobenzene, the reactions proceeded, albeit with a slight 

decrease of the reaction yield. In the presence of TEMPO 

(2,2,6,6-tetramethylpiperidin-1-yl)oxyl), the reaction was shut 

down and no product was observed. A complementary 

experiment (Scheme 5, eq. 2) showcased that the reagent I 

decomposed in the presence of TEMPO, thus explaining the 

inhibition of the reaction in the presence of TEMPO. Indeed, the 

TEMPO-SCF2CO2Et adduct was detected by HRMS analysis of 

the crude reaction mixture. Hence, with these data in hand, a free 

radical pathway might be excluded. 

Therefore, according to our observations and along with the 

literature reports,[17] we suggested the following plausible 

mechanism for this transformation (Scheme 6). 

 

 

Scheme 6. Suggested mechanism for the Pd-catalyzed (ethoxycarbonyl)-
difluoromethylthiolation reaction. 
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addition with the reagent I, activated with PhCOCl,[8a] would 

provide the high valent Pd(IV) species B, which upon reductive 

elimination would afford the desired product and regenerate the 

[Pd(II)] catalyst. 

Conclusion 

In summary, we disclosed the unprecendeted direct C(sp2)–

SCF2CO2Et bond formation by transition metal catalyzed C–H 

bond activation under mild reaction conditions. This novel 

transformation allowed the successful synthesis of a large panel 

of aromatic and olefinic derivatives bearing this emergent 

fluorinated motif. The versatility of the products was demonstrated 

through post-functionalization reactions. Finally, a plausible 

mechanism for this transformation was suggested. We believe 

that this study will open new perspectives to access 

unprecedented fluorinated molecules by building up C–SCF2FG 

(FG = functional group) bond by C–H bond activation, which were 

so far restricted to the introduction of the SCF3 and SCF2H groups. 
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The unprecedented construction of a C(sp2)-SCF2CO2Et bond was successfully achieved by Pd-catalyzed C-H bond activation. This 

robust protocol allowed the functionalization of a broad panel of aromatic and olefinic derivatives (37 examples, up to 87% yield), a real 

advance as existing routes were restricted to the SCF3 and SCF2H residues. Post-functionalization reactions further illustrated the 

synthetic value of this fluorinated motif. 
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