
HAL Id: hal-03744715
https://hal.science/hal-03744715

Submitted on 3 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Papyri: better documentation for the scientific
ecosystem in Jupyter

Matthias Bussonnier, Camille Carvalho

To cite this version:
Matthias Bussonnier, Camille Carvalho. Papyri: better documentation for the scientific ecosystem in
Jupyter. Python in Science Conference, Jul 2022, Austin, United States. pp.75-82, �10.25080/majora-
212e5952-00c�. �hal-03744715�

https://hal.science/hal-03744715
https://hal.archives-ouvertes.fr

PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022) 75

Papyri: better documentation for the scientific
ecosystem in Jupyter

Matthias Bussonnier‡§∗, Camille Carvalho¶‖

F

Abstract—We present here the idea behind Papyri, a framework we are devel-
oping to provide a better documentation experience for the scientific ecosystem.
In particular, we wish to provide a documentation browser (from within Jupyter
or other IDEs and Python editors) that gives a unified experience, cross library
navigation search and indexing. By decoupling documentation generation from
rendering we hope this can help address some of the documentation accessi-
bility concerns, and allow customisation based on users’ preferences.

Index Terms—Documentation, Jupyter, ecosystem, accessibility

Introduction

Over the past decades, the Python ecosystem has grown rapidly,
and one of the last bastion where some of the proprietary competi-
tion tools shine is integrated documentation. Indeed, open-source
libraries are usually developed in distributed settings that can make
it hard to develop coherent and integrated systems.

While a number of tools and documentations exists (and
improvements are made everyday), most efforts attempt to build
documentation in an isolated way, inherently creating a heteroge-
neous framework. The consequences are twofolds: (i) it becomes
difficult for newcomers to grasp the tools properly, (ii) there is a
lack of cohesion and of unified framework due to library authors
making their proper choices as well as having to maintain build
scripts or services.

Many users, colleagues, and members of the community have
been frustrated with the documentation experience in the Python
ecosystem. Given a library, who hasn’t struggled to find the
"official" website for the documentation ? Often, users stumble
across an old documentation version that is better ranked in their
favorite search engine, and this impacts significantly the learning
process of less experienced users.

On users’ local machine, this process is affected by lim-
ited documentation rendering. Indeed, while in many Integrated
Development Environments (IDEs) the inspector provides some
documentation, users do not get access to the narrative, or the full
documentation gallery. For Command Line Interface (CLI) users,

* Corresponding author: bussonniermatthias@gmail.com
‡ QuanSight, Inc
§ Digital Ours Lab, SARL.
¶ University of California Merced, Merced, CA, USA
|| Univ Lyon, INSA Lyon, UJM, UCBL, ECL, CNRS UMR 5208, ICJ, F-69621,
France

Copyright © 2022 Matthias Bussonnier et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

documentation is often displayed as raw source where no naviga-
tion is possible. On the maintainers’ side, the final documentation
rendering is less of a priority. Rather, maintainers should aim at
making users gain from improvement in the rendering without
having to rebuild all the docs.

Conda-Forge [CFRG] has shown that concerted efforts can
give a much better experience to end-users, and in today’s world
where it is ubiquitous to share libraries source on code platforms,
perform continuous integration and many other tools, we believe
a better documentation framework for many of the libraries of the
scientific Python should be available.

Thus, against all advice we received and based on our own
experience, we have decided to rebuild an opinionated documen-
tation framework, from scratch, and with minimal dependencies:
Papyri. Papyri focuses on building an intermediate documentation
representation format, that lets us decouple building, and rendering
the docs. This highly simplifies many operations and gives us
access to many desired features that were not available up to now.

In what follows, we provide the framework in which Papyri
has been created and present its objectives (context and goals),
we describe the Papyri features (format, installation, and usage),
then present its current implementation. We end this paper with
comments on current challenges and future work.

Context and objectives

Through out the paper, we will draw several comparisons between
documentation building and compiled languages. Also, we will
borrow and adapt commonly used terminology. In particular, sim-
ilarities with "ahead-of-time" (AOT) [AOT], "just-in-time"" (JIT)
[JIT], intermediate representation (IR) [IR], link-time optimization
(LTO) [LTO], static vs dynamic linking will be highlighted. This
allows us to clarify the presentation of the underlying architecture.
However, there is no requirement to be familiar with the above
to understand the concepts underneath Papyri. In that context, we
wish to discuss documentation building as a process from a source-
code meant for a machine to a final output targeting the flesh and
blood machine between the keyboard and the chair.

Current tools and limitations

In the scientific Python ecosystem, it is well known that Docutils
[docutils] and Sphinx [sphinx] are major cornerstones for pub-
lishing HTML documentation for Python. In fact, they are used
by all the libraries in this ecosystem. While a few alternatives
exist, most tools and services have some internal knowledge of
Sphinx. For instance, Read the Docs [RTD] provides a specific

mailto:bussonniermatthias@gmail.com

76 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Sphinx theme [RTD-theme] users can opt-in to, Jupyter-book
[JPYBOOK] is built on top of Sphinx, and MyST parser [MYST]
(which is made to allow markdown in documentation) targets
Sphinx as a backend, to name a few. All of the above provide an
"ahead-of-time" documentation compilation and rendering, which
is slow and computationally intensive. When a project needs its
specific plugins, extensions and configurations to properly build
(which is almost always the case), it is relatively difficult to
build documentation for a single object (like a single function,
module or class). This makes AOT tools difficult to use for
interactive exploration. One can then consider a JIT approach,
as done for Docrepr [DOCREPR] (integrated both in Jupyter and
Spyder [Spyder]). However in that case, interactive documentation
lacks inline plots, crosslinks, indexing, search and many custom
directives.

Some of the above limitations are inherent to the design
of documentation build tools that were intended for a separate
documentation construction. While Sphinx does provide features
like intersphinx, link resolutions are done at the documentation
building phase. Thus, this is inherently unidirectional, and can
break easily. To illustrate this, we consider NumPy [NP] and SciPy
[SP], two extremely close libraries. In order to obtain proper cross-
linked documentation, one is required to perform at least five steps:

• build NumPy documentation
• publish NumPy object.inv file.
• (re)build SciPy documentation using NumPy obj.inv

file.
• publish SciPy object.inv file
• (re)build NumPy docs to make use of SciPy’s obj.inv

Only then can both SciPy’s and NumPy’s documentation refer
to each other. As one can expect, cross links break every time
a new version of a library is published1. Pre-produced HTML
in IDEs and other tools are then prone to error and difficult to
maintain. This also raises security issues: some institutions be-
come reluctant to use tools like Docrepr or viewing pre-produced
HTML.

Docstrings format

The Numpydoc format is ubiquitous among the scientific ecosys-
tem [NPDOC]. It is loosely based on reStructuredText (RST)
syntax, and despite supporting full RST syntax, docstrings rarely
contain full-featured directive. Maintainers are confronted to the
following dilemma:

• keep the docstrings simple. This means mostly text-based
docstrings with few directive for efficient readability. The
end-user may be exposed to raw docstring, there is no on-
the-fly directive interpretation. This is the case for tools
such as IPython and Jupyter.

• write an extensive docstring. This includes references, and
directive that potentially creates graphics, tables and more,
allowing an enriched end-user experience. However this
may be computationally intensive, and executing code to
view docs could be a security risk.

Other factors impact this choice: (i) users, (ii) format, (iii)
runtime. IDE users or non-Terminal users motivate to push for
extensive docstrings. Tools like Docrepr can mitigate this problem
by allowing partial rendering. However, users are often exposed to

1. ipython/ipython#12210, numpy/numpy#21016, & #29073

Fig. 1: The following screenshot shows the help for
scipy.signal.dpss, as currently accessible (left), as shown by
Papyri for Jupyterlab extension (right). An extended version of the
right pannel is displayed in Figure 4.

raw docstrings (see for example the SymPy discussion2 on how
equations should be displayed in docstrings, and left panel of
Figure 1). In terms of format, markdown is appealing, however
inconsistencies in the rendering will be created between libraries.
Finally, some libraries can dynamically modify their docstring at
runtime. While this sometime avoids using directives, it ends up
being more expensive (runtime costs, complex maintenance, and
contribution costs).

Objectives of the project

We now layout the objectives of the Papyri documentation frame-
work. Let us emphasize that the project is in no way intended to
replace or cover many features included in well-established docu-
mentation tools such as Sphinx or Jupyter-book. Those projects are
extremely flexible and meet the needs of their users for publishing
a standalone documentation website of PDFs. The Papyri project
addresses specific documentation challenges (mentioned above),
we present below what is (and what is not) the scope of work.

Goal (a): design a non-generic (non fully customisable)
website builder. When authors want or need complete control
of the output and wide personalisation options, or branding, then
Papyri is not likely the project to look at. That is to say single-
project websites where appearance, layout, domain need to be
controlled by the author is not part of the objectives.

Goal (b): create a uniform documentation structure and
syntax. The Papyri project prescribes stricter requirements in
terms of format, structure, and syntax compared to other tools
such as Docutils and Sphinx. When possible, the documentation
follows the Diátaxis Framework [DT]. This provides a uniform
documentation setup and syntax, simplifying contributions to the
project and easing error catching at compile time. Such strict envi-
ronment is qualitatively supported by a number of documentation
fixes done upstream during the development stage of the project3.
Since Papyri is not fully customisable, users who are already using
documentation tools such as Sphinx, mkdocs [mkdocs] and others
should expect their project to require minor modifications to work
with Papyri.

Goal (c): provide accessibility and user proficiency. Ac-
cessibility is a top priority of the project. To that aim, items
are associated to semantic meaning as much as possible, and

2. sympy/sympy#14963
3. Tests have been performed on NumPy, SciPy.

https://github.com/ipython/ipython/pull/12210
https://github.com/numpy/numpy/pull/21016
https://github.com/numpy/numpy/pull/20973
https://github.com/sympy/sympy/issues/14964
https://github.com/numpy/numpy/pulls?q=is%3Apr+is%3Aclosed+author%3ACarreau
https://github.com/scipy/scipy/pulls?q=is%3Apr+is%3Aclosed+author%3ACarreau

PAPYRI: BETTER DOCUMENTATION FOR THE SCIENTIFIC ECOSYSTEM IN JUPYTER 77

documentation rendering is separated from documentation build-
ing phase. That way, accessibility features such as high contract
themes (for better text-to-speech (TTS) raw data), early example
highlights (for newcomers) and type annotation (for advanced
users) can be quickly available. With the uniform documentation
structure, this provides a coherent experience where users become
more comfortable finding information in a single location (see
Figure 1).

Goal (d): make documentation building simple, fast, and
independent. One objective of the project is to make documenta-
tion installation and rendering relatively straightforward and fast.
To that aim, the project includes relative independence of doc-
umentation building across libraries, allowing bidirectional cross
links (i.e. both forward and backward links between pages) to
be maintained more easily. In other words, a single library can be
built without the need to access documentation from another. Also,
the project should include straightforward lookup documentation
for an object from the interactive read–eval–print loop (REPL).
Finally, efforts are put to limit the installation speed (to avoid
polynomial growth when installing packages on large distributed
systems).

The Papyri solution

In this section we describe in more detail how Papyri has been
implemented to address the objectives mentioned above.

Making documentation a multi-step process

When using current documentation tools, customisation made by
maintainers usually falls into the following two categories:

• simpler input convenience,
• modification of final rendering.

This first category often requires arbitrary code execution and
must import the library currently being built. This is the case
for example for the use of .. code-block:::, or custom
:rc: directive. The second one offers a more user friendly en-
vironment. For example, sphinx-copybutton [sphinx-copybutton]
adds a button to easily copy code snippets in a single click,
and pydata-sphinx-theme [pydata-sphinx-theme] or sphinx-rtd-
dark-mode provide a different appearance. As a consequence,
developers must make choices on behalf of their end-users: this
may concern syntax highlights, type annotations display, light/dark
theme.

Being able to modify extensions and re-render the documenta-
tion without the rebuilding and executing stage is quite appealing.
Thus, the building phase in Papyri (collecting documentation
information) is separated from the rendering phase (Objective (c)):
at this step, Papyri has no knowledge and no configuration options
that permit to modify the appearance of the final documentation.
Additionally, the optional rendering process has no knowledge of
the building step, and can be run without accessing the libraries
involved.

This kind of technique is commonly used in the field of
compilers with the usage of Single Compilation Unit [SCU] and
Intermediate Representation [IR], but to our knowledge, it has not
been implemented for documentation in the Python ecosystem.
As mentioned before, this separation is key to achieving many
features proposed in Objectives (c), (d) (see Figure 2).

Intermediate Representation for Documentation (IRD)

IRD format: Papyri relies on standard interchangeable
"Intermediate Representation for Documentation" (IRD) format.
This allows to reduce operation complexity of the documentation
build. For example, given M documentation producers and N
renderers, a full documentation build would be O(MN) (each
renderer needs to understand each producer). If each producer only
cares about producing IRD, and if each renderer only consumes it,
then one can reduce to O(M+N). Additionally, one can take IRD
from multiple producers at once, and render them all to a single
target, breaking the silos between libraries.

At the moment, IRD files are currently separated into four
main categories roughly following the Diátaxis framework [DT]
and some technical needs:

• API files describe the documentation for a single ob-
ject, expressed as a JSON object. When possible, the
information is encoded semantically (Objective (c)). Files
are organized based on the fully-qualified name of the
Python object they reference, and contain either absolute
reference to another object (library, version and identi-
fier), or delayed references to objects that may exist in
another library. Some extra per-object meta information
like file/line number of definitions can be stored as well.

• Narrative files are similar to API files, except that they do
not represent a given object, but possess a previous/next
page. They are organised in an ordered tree related to the
table of content.

• Example files are a non-ordered collection of files.
• Assets files are untouched binary resource archive files that

can be referenced by any of the above three ones. They are
the only ones that contain backward references, and no
forward references.

In addition to the four categories above, metadata about the
current package is stored: this includes library name, current
version, PyPi name, GitHub repository slug4, maintainers’ names,
logo, issue tracker and others. In particular, metadata allows
us to auto-generate links to issue trackers, and to source files
when rendering. In order to properly resolve some references and
normalize links convention, we also store a mapping from fully
qualified names to canonical ones.

Let us make some remarks about the current stage of IRD for-
mat. The exact structure of package metadata has not been defined
yet. At the moment it is reduced to the minimum functionality.
While formats such as codemeta [CODEMETA] could be adopted,
in order to avoid information duplication we rely on metadata
either present in the published packages already or extracted from
Github repository sources. Also, IRD files must be standardized
in order to achieve a uniform syntax structure (Objective (b)).
In this paper, we do not discuss IRD files distribution. Last, the
final specification of IRD files is still in progress and regularly
undergoes major changes (even now). Thus, we invite contributors
to consult the current state of implementation on the GitHub
repository [Papyri]. Once the IRD format is more stable, this will
be published as a JSON schema, with full specification and more
in-depth description.

4. "slug" is the common term that refers to the various combinations
of organization name/user name/repository name, that uniquely identifies a
repository on a platform like GitHub.

78 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Fig. 2: Sketch representing how to build documentation with Papyri. Step 1: Each project builds an IRD bundle that contains semantic
information about the project documentation. Step 2: the IRD bundles are publihsed online. Step 3: users install IRD bundles locally on their
machine, pages get corsslinked, indexed, etc. Step 4: IDEs render documentation on-the-fly, taking into consideration users’ preferences.

IRD bundles: Once a library has collected IRD repre-
sentation for all documentation items (functions, class, narrative
sections, tutorials, examples), Papyri consolidates them into what
we will refer to as IRD bundles. A Bundle gathers all IRD files
and metadata for a single version of a library5. Bundles are a
convenient unit to speak about publication, installation, or update
of a given library documentation files.

Unlike package installation, IRD bundles do not have the
notion of dependencies. Thus, a fully fledged package manager is
not necessary, and one can simply download corresponding files
and unpack them at the installation phase.

Additionally, IRD bundles for multiple versions of the same
library (or conflicting libraries) are not inherently problematic as
they can be shared across multiple environments.

From a security standpoint, installing IRD bundles does not
require the execution of arbitrary code. This is a critical element
for adoption in deployments. There exists as well an opportunity to
provide localized variants at the IRD installation time (IRD bundle
translations haven’t been explored exhaustively at the moment).

IRD and high level usage

Papyri-based documentation involves three broad categories of
stakeholders (library maintainers, end-users, IDE developers), and
processes. This leads to certain requirements for IRD files and
bundles.

On the maintainers’ side, the goal is to ensure that Papyri can
build IRD files, and publish IRD bundles. Creation of IRD files
and bundles is the most computationally intensive step. It may
require complex dependencies, or specific plugins. Thus, this can
be a multi-step process, or one can use external tooling (not related
to Papyri nor using Python) to create them. Visual appearance
and rendering of documentation is not taken into account in this
process. Overall, building IRD files and bundles takes about the
same amount of time as running a full Sphinx build. The limiting
factor is often associated to executing library examples and code
snippets. For example, building SciPy & NumPy documentation
IRD files on a 2021 Macbook Pro M1 (base model), including
executing examples in most docstrings and type inferring most
examples (with most variables semantically inferred) can take
several minutes.

End-users are responsible for installing desired IRD bundles.
In most cases, it will consist of IRD bundles from already
installed libraries. While Papyri is not currently integrated with

5. One could have IRD bundles not attached to a particular library. For
example, this can be done if an author wishes to provide only a set of examples
or tutorials. We will not discuss this case further here.

package managers or IDEs, one could imagine this process being
automatic, or on demand. This step should be fairly efficient as it
mostly requires downloading and unpacking IRD files.

Finally, IDEs developers want to make sure IRD files can be
properly rendered and browsed by their users when requested.
This may potentially take into account users’ preferences, and may
provide added values such as indexing, searching, bookmarks and
others, as seen in rustsdocs, devdocs.io.

Current implementation

We present here some of the technological choices made in the
current Papyri implementation. At the moment, it is only targeting
a subset of projects and users that could make use of IRD files and
bundles. As a consequence, it is constrained in order to minimize
the current scope and efforts development. Understanding the
implementation is not necessary to use Papyri neither as a project
maintainer nor as a user, but it can help understanding some of the
current limitations.

Additionally, nothing prevents alternatives and complementary
implementations with different choices: as long as other imple-
mentations can produce (or consume) IRD bundles, they should
be perfectly compatible and work together.

The following sections are thus mostly informative to under-
stand the state of the current code base. In particular we restricted
ourselves to:

• Producing IRD bundles for the core scientific Python
projects (Numpy, SciPy, Matplotlib...)

• Rendering IRD documentation for a single user on their
local machine.

Finally, some of the technological choices have no other
justification than the main developer having interests in them, or
making iterations on IRD format and main code base faster.

IRD files generation

The current implementation of Papyri only targets some compat-
ibility with Sphinx (a website and PDF documentation builder),
reStructuredText (RST) as narrative documentation syntax and
Numpydoc (both a project and standard for docstring formatting).

These are widely used by a majority of the core scientific
Python ecosystem, and thus having Papyri and IRD bundles
compatible with existing projects is critical. We estimate that
about 85%-90% of current documentation pages being built with
Sphinx, RST and Numpydoc can be built with Papyri. Future work
includes extensions to be compatible with MyST (a project to
bring markdown syntax to Sphinx), but this is not a priority.

PAPYRI: BETTER DOCUMENTATION FOR THE SCIENTIFIC ECOSYSTEM IN JUPYTER 79

To understand RST Syntax in narrative documentation, RST
documents need to be parsed. To do so, Papyri uses tree-sitter
[TS] and tree-sitter-rst [TSRST] projects, allowing us to extract an
"Abstract Syntax Tree" (AST) from the text files. When using tree-
sitter, AST nodes contain bytes-offsets into the original text buffer.
Then one can easily "unparse" an AST node when necessary. This
is relatively convenient for handling custom directives and edge
cases (for instance, when projects rely on a loose definition of
the RST syntax). Let us provide an example: RST directives are
usually of the form:

.. directive:: arguments

body

While technically there is no space before the ::, Docutils and
Sphinx will not create errors when building the documentation.
Due to our choice of a rigid (but unified) structure, we use tree-
sitter that indicates an error node if there is an extra space. This
allows us to check for error nodes, unparse, add heuristics to
restore a proper syntax, then parse again to obtain the new node.

Alternatively, a number of directives like warnings, notes
admonitions still contain valid RST. Instead of storing the
directive with the raw text, we parse the full document (potentially
finding invalid syntax), and unparse to the raw text only if the
directive requires it.

Serialisation of data structure into IRD files is currently us-
ing a custom serialiser. Future work includes maybe swapping
to msgspec [msgspec]. The AST objects are completely typed,
however they contain a number of unions and sequences of unions.
It turns out, many frameworks like pydantic [pydantic] do not
support sequences of unions where each item in the union may
be of a different type. To our knowledge, there are just few other
documentation related projects that treat AST as an intermediate
object with a stable format that can be manipulated by external
tools. In particular, the most popular one is Pandoc [pandoc], a
project meant to convert from many document types to plenty of
other ones.

The current Papyri strategy is to type-infer all code examples
with Jedi [JEDI], and pre-syntax highlight using pygments when
possible.

IRD File Installation

Download and installation of IRD files is done concurrently using
httpx [httpx], with Trio [Trio] as an async framework, allowing us
to download files concurrently.

The current implementation of Papyri targets Python doc-
umentation and is written in Python. We can then query the
existing version of Python libraries installed, and infer the ap-
propriate version of the requested documentation. At the moment,
the implementation is set to tentatively guess relevant libraries
versions when the exact version number is missing from the install
command.

For convenience and performance, IRD bundles are being post-
processed and stored in a different format. For local rendering, we
mostly need to perform the following operations:

1) Query graph information about cross-links across docu-
ments.

2) Render a single page.
3) Access raw data (e.g. images).

We also assume that IRD files may be infrequently updated,
that disk space is limited, and that installing or running services

Fig. 3: Sketch representing how Papyri stores information in 3
different format depending on access patterns: a SQLite database for
relationship information, on-disk CBOR files for more compact storate
of IRD, and RAW files (e.g. Images). A GraphStore API abstracts all
access and takes care of maintinaing consistency.

(like a database server) are not necessary available. This provides
an adapted framework to test Papyri on an end-user machine.

With those requirements we decided to use a combination of
SQLite (an in-process database engine), Concise Binary Object
Representation (CBOR) and raw storage to better reflect the access
pattern (see Figure 3).

SQLite allows us to easily query for object existence, and
graph information (relationship between objects) at runtime. It is
optimized for infrequent reading access. Currently many queries
are done at runtime, when rendering documentation. The goal is to
move most of SQLite information resolving step at the installation
time (such as looking for inter-libraries links) once the codebase
and IRD format have stabilized. SQLite is less strongly typed than
other relational or graph database and needs custom logic, but
is ubiquitous on all systems and does not need a separate server
process, making it an easy choice of database.

CBOR is a more space efficient alternative to JSON. In par-
ticular, keys in IRD are often highly redundant, and can be highly
optimized when using CBOR. Storing IRD in CBOR thus reduces
disk usage and can also allow faster deserialization without
requiring potentially CPU intensive compression/decompression.
This is a good compromise for potentially low performance users’
machines.

Raw storage is used for binary blobs which need to be accessed
without further processing. This typically refers to images, and
raw storage can be accessed with standard tools like image
viewers.

Finally, access to all of these resources is provided via an
internal GraphStore API which is agnostic of the backend, but
ensures consistency of operations like adding/removing/replacing
documents. Figure 3 summarizes this process.

Of course the above choices depend on the context where
documentation is rendered and viewed. For example, an online
archive intended to browse documentation for multiple projects
and versions may decide to use an actual graph database for object
relationship, and store other files on a Content Delivery Network
or blob storage for random access.

Documentation Rendering

The current Papyri implementation includes a certain number
of rendering engines (presented below). Each of them mostly
consists of fetching a single page with its metadata, and walking

80 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

through the IRD AST tree, and rendering each node with users’
preferences.

• An ASCII terminal renders using Jinja2 [Jinja2]. This
can be useful for piping documentation to other tools
like grep, less, cat. Then one can work in a highly
restricted environment, making sure that reading the docu-
mentation is coherent. This can serve as a proxy for screen
reading.

• A Textual User Interface browser renders using urwid.
Navigation within the terminal is possible, one can reflow
long lines on resized windows, and even open image files
in external editors. Nonetheless, several bugs have been
encountered in urwid. The project aims at replacing the
CLI IPython question mark operator (obj?) interface
(which currently only shows raw docstrings) in urwid with
a new one written with Rich/Textual. For this interface,
having images stored raw on disk is useful as it allows us
to directly call into a system image viewer to display them.

• A JIT rendering engine uses Jinja2, Quart [quart], Trio.
Quart is an async version of flask [flask]. This option
contains the most features, and therefore is the main one
used for development. This environment lets us iterate over
the rendering engine rapidly. When exploring the User In-
terface design and navigation, we found that a list of back
references has limited uses. Indeed, it is can be challenging
to judge the relevance of back references, as well as their
relationship to each other. By playing with a network
graph visualisation (see Figure 5)), we can identify clusters
of similar information within back references. Of course,
this identification has limits especially when pages have a
large number of back references (where the graph becomes
too busy). This illustrate as well a strength of the Papyri
architecture: creating this network visualization did not
require any regeneration of the documentation, one simply
updates the template and re-renders the current page as
needed.

• A static AOT rendering of all the existing pages that can
be rendered ahead of time uses the same class as the JIT
rendering. Basically, this loops through all entries in the
SQLite database and renders each item independently. This
renderer is mostly used for exhaustive testing and perfor-
mance measures for Papyri. This can render most of the
API documentation of IPython, Astropy [astropy], Dask
and distributed [Dask], Matplotlib [MPL], [MPL-DOI],
Networkx [NX], NumPy [NP], Pandas, Papyri, SciPy,
Scikit-image and others. It can represent ~28000 pages
in ~60 seconds (that is ~450 pages/s on a recent Macbook
pro M1).

For all of the above renderers, profiling shows that docu-
mentation rendering is mostly limited by object de-serialisation
from disk and Jinja2 templating engine. In the early project
development phase, we attempted to write a static HTML renderer
in a compiled language (like Rust, using compiled and typed
checked templates). This provided a speedup of roughly a factor
10. However, its implementation is now out of sync with the main
Papyri code base.

Finally, a JupyterLab extension is currently in progress. The
documentation then presents itself as a side-panel and is capable
of basic browsing and rendering (see Figure 1 and Figure 4). The
model uses typescript, react and native JupyterLab component.

Future goals include improving/replacing the JupyterLab’s ques-
tion mark operator (obj?) and the JupyterLab Inspector (when
possible). A screenshot of the current development version of the
JupyterLab extension can be seen in Figure 4.

Challenges

We mentioned above some limitations we encountered (in ren-
dering usage for instance) and what will be done in the future
to address them. We provide below some limitations related to
syntax choices, and broader opportunities that arise from the
Papyri project.

Limitations

The decoupling of the building and rendering phases is key in
Papyri. However, it requires us to come up with a method that
uniquely identifies each object. In particular, this is essential in
order to link any object documentation without accessing the IRD
bundles build from all the libraries. To that aim, we use the fully
qualified names of an object. Namely, each object is identified
by the concatenation of the module in which it is defined, with
its local name. Nonetheless, several particular cases need specific
treatment.

• To mirror the Python syntax, is it easy to use . to
concatenate both parts. Unfortunately, that leads to some
ambiguity when modules re-export functions have the
same name. For example, if one types
module mylib/__init__.py

from .mything import mything

then mylib.mything is ambiguous both with respect
to the mything submodule, and the reexported object.
In future versions, the chosen convention will use : as a
module/name separator.

• Decorated functions or other dynamic approaches to ex-
pose functions to users end up having <local>> in their
fully qualified names, which is invalid.

• Many built-in functions (np.sin, np.cos, etc.) do not
have a fully qualified name that can be extracted by object
introspection. We believe it should be possible to identify
those via other means like docstring hash (to be explored).

• Fully qualified names are often not canonical names (i.e.
the name typically used for import). While we made efforts
to create a mapping from one to another, finding the canon-
ical name automatically is not always straightforward.

• There are also challenges with case sensitivity. For ex-
ample for MacOS file systems, a couple of objects may
unfortunately refer to the same IRD file on disk. To address
this, a case-sensitive hash is appended at the end of the
filename.

• Many libraries have a syntax that looks right once ren-
dered to HTML while not following proper syntax, or a
syntax that relies on specificities of Docutils and Sphinx
rendering/parsing.

• Many custom directive plugins cannot be reused from
Sphinx. These will need to be reimplemented.

Future possibilities

Beyond what has been presented in this paper, there are several
opportunities to improve and extend what Papyri can allow for the
scientific Python ecosystem.

PAPYRI: BETTER DOCUMENTATION FOR THE SCIENTIFIC ECOSYSTEM IN JUPYTER 81

Fig. 4: Example of extended view of the Papyri documentation for
Jupyterlab extension (here for SciPy). Code examples can now include
plots. Most token in each examples are linked to the corresponding
page. Early navigation bar is visible at the top.

Fig. 5: Local graph (made with D3.js [D3js]) representing the
connections among the most important nodes around current page
across many libraries, when viewing numpy.ndarray. Nodes are
sized with respect to the number of incomming links, and colored
with respect to their library. This graph is generated at rendering
time, and is updated depending on the libraries currently installed.
This graph helps identify related functions and documentation. It can
become challenging to read for highly connected items as seen here
for numpy.ndarray.

The first area is the ability to build IRD bundles on Continuous
Integration platforms. Services like GitHub action, Azure pipeline
and many others are already setup to test packages. We hope
to leverage this infrastructure to build IRD files and make them
available to users.

A second area is hosting of intermediate IRD files. While the
current prototype is hosted by http index using GitHub pages,
it is likely not a sustainable hosting platform as disk space is
limited. To our knowledge, IRD files are smaller in size than
HTML documentation, we hope that other platforms like Read the
Docs can be leveraged. This could provide a single domain that
renders the documentation for multiple libraries, thus avoiding the
display of many library subdomains. This contributes to giving a
more unified experience for users.

It should be possible for projects to avoid using many dy-
namic docstrings interpolation that are used to document *args
and **kwargs. This would make sources easier to read, and
potentially have some speedup at the library import time.

Once a (given and appropriately used by its users) library uses
an IDE that supports Papyri for documentation, docstring syntax
could be exchanged for markdown.

As IRD files are structured, it should be feasible to provide
cross-version information in the documentation. For example, if
one installs multiple versions of IRD bundles for a library, then
assuming the user does not use the latest version, the renderer
could inspect IRD files from previous/future versions to indi-
cate the range of versions for which the documentation has not
changed. Upon additional efforts, it should be possible to infer
when a parameter was removed, or will be removed, or to simply
display the difference between two versions.

82 PROC. OF THE 21st PYTHON IN SCIENCE CONF. (SCIPY 2022)

Conclusion

To address some of the current limitations in documentation
accessibility, building and maintaining, we have provided a new
documentation framework called Papyri. We presented its features
and underlying implementation choices (such as crosslink main-
tenance, decoupling building and rendering phases, enriching the
rendering features, using the IRD format to create a unified syntax
structure, etc.). While the project is still at its early stage, clear
impacts can already be seen on the availability of high-quality
documentation for end-users, and on the workload reduction for
maintainers. Building IRD format opened a wide range of tech-
nical possibilities, and contributes to improving users’ experience
(and therefore the success of the scientific Python ecosystem). This
may become necessary for users to navigate in an exponentially
growing ecosystem.

Acknowledgments

The authors want to thank S. Gallegos (author of tree-sitter-rst), J.
L. Cano Rodríguez and E. Holscher (Read The Docs), C. Holdgraf
(2i2c), B. Granger and F. Pérez (Jupyter Project), T. Allard and I.
Presedo-Floyd (QuanSight) for their useful feedback and help on
this project.

Funding

M. B. received a 2-year grant from the Chan Zuckerberg Initia-
tive (CZI) Essential Open Source Software for Science (EOS)
– EOSS4-0000000017 via the NumFOCUS 501(3)c non profit to
develop the Papyri project.

REFERENCES

[AOT] https://en.wikipedia.org/wiki/Ahead-of-time_
compilation

[CFRG] conda-forge community. (2015). The conda-forge
Project: Community-based Software Distribution Built
on the conda Package Format and Ecosystem. Zenodo.
http://doi.org/10.5281/zenodo.4774216

[CODEMETA] https://codemeta.github.io/
[D3js] https://d3js.org/
[DOCREPR] https://github.com/spyder-ide/docrepr
[DT] https://diataxis.fr/
[Dask] Dask Development Team (2016). Dask: Library for

dynamic task scheduling, https://dask.org
[IR] https://en.wikipedia.org/wiki/Intermediate_

representation
[JEDI] https://github.com/davidhalter/jedi
[JIT] https://en.wikipedia.org/wiki/Just-in-time_

compilation
[JPYBOOK] https://jupyterbook.org/
[Jinja2] https://jinja.palletsprojects.com/
[LTO] https://en.wikipedia.org/wiki/Interprocedural_

optimization
[MPL-DOI] https://doi.org/10.5281/zenodo.6513224
[MPL] J.D. Hunter, "Matplotlib: A 2D Graphics Environ-

ment", Computing in Science & Engineering, vol. 9,
no. 3, pp. 90-95, 2007,

[MYST] https://myst-parser.readthedocs.io/en/latest/
[NPDOC] https://numpydoc.readthedocs.io/en/latest/format.html
[NP] Harris, C.R., Millman, K.J., van der Walt, S.J. et al. Ar-

ray programming with NumPy. Nature 585, 357–362
(2020). DOI: 10.1038/s41586-020-2649-2

[NX] Aric A. Hagberg, Daniel A. Schult and Pieter J. Swart,
“Exploring network structure, dynamics, and function
using NetworkX”, in Proceedings of the 7th Python
in Science Conference (SciPy2008), Gäel Varoquaux,
Travis Vaught, and Jarrod Millman (Eds), (Pasadena,
CA USA), pp. 11–15, Aug 2008

[Papyri] https://github.com/jupyter/papyri

[RTD-theme] https://sphinx-rtd-theme.readthedocs.io/en/stable/
[RTD] https://readthedocs.org/
[SCU] https://en.wikipedia.org/wiki/Single_Compilation_

Unit
[SP] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant,

Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, CJ Carey, İlhan Polat, Yu Feng,
Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef
Perktold, Robert Cimrman, Ian Henriksen, E.A. Quin-
tero, Charles R Harris, Anne M. Archibald, Antônio
H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and
SciPy 1.0 Contributors. (2020) SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python.
Nature Methods, 17(3), 261-272. 10.1038/s41592-
019-0686-2

[Spyder] https://www.spyder-ide.org/
[TSRST] https://github.com/stsewd/tree-sitter-rst
[TS] https://tree-sitter.github.io/tree-sitter/
[astropy] The Astropy Project: Building an inclusive, open-

science project and status of the v2.0 core package,
https://doi.org/10.48550/arXiv.1801.02634

[docutils] https://docutils.sourceforge.io/
[flask] https://flask.palletsprojects.com/en/2.1.x/
[httpx] https://www.python-httpx.org/
[mkdocs] https://www.mkdocs.org/
[msgspec] https://pypi.org/project/msgspec
[pandoc] https://pandoc.org/
[pydantic] https://pydantic-docs.helpmanual.io/
[pydata-sphinx-theme] https://pydata-sphinx-theme.readthedocs.io/en/stable/
[quart] https://pgjones.gitlab.io/quart/
[sphinx-copybutton] https://sphinx-copybutton.readthedocs.io/en/latest/
[sphinx] https://www.sphinx-doc.org/en/master/
[Trio] https://trio.readthedocs.io/

https://en.wikipedia.org/wiki/Ahead-of-time_compilation
https://en.wikipedia.org/wiki/Ahead-of-time_compilation
http://doi.org/10.5281/zenodo.4774216
https://codemeta.github.io/
https://d3js.org/
https://github.com/spyder-ide/docrepr
https://diataxis.fr/
https://dask.org
https://en.wikipedia.org/wiki/Intermediate_representation
https://en.wikipedia.org/wiki/Intermediate_representation
https://github.com/davidhalter/jedi
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://jupyterbook.org/
https://jinja.palletsprojects.com/
https://en.wikipedia.org/wiki/Interprocedural_optimization
https://en.wikipedia.org/wiki/Interprocedural_optimization
https://doi.org/10.5281/zenodo.6513224
https://myst-parser.readthedocs.io/en/latest/
https://numpydoc.readthedocs.io/en/latest/format.html
https://github.com/jupyter/papyri
https://sphinx-rtd-theme.readthedocs.io/en/stable/
https://readthedocs.org/
https://en.wikipedia.org/wiki/Single_Compilation_Unit
https://en.wikipedia.org/wiki/Single_Compilation_Unit
https://www.spyder-ide.org/
https://github.com/stsewd/tree-sitter-rst
https://tree-sitter.github.io/tree-sitter/
https://doi.org/10.48550/arXiv.1801.02634
https://docutils.sourceforge.io/
https://flask.palletsprojects.com/en/2.1.x/
https://www.python-httpx.org/
https://www.mkdocs.org/
https://pypi.org/project/msgspec
https://pandoc.org/
https://pydantic-docs.helpmanual.io/
https://pydata-sphinx-theme.readthedocs.io/en/stable/
https://pgjones.gitlab.io/quart/
https://sphinx-copybutton.readthedocs.io/en/latest/
https://www.sphinx-doc.org/en/master/
https://trio.readthedocs.io/

	Introduction
	Context and objectives
	Current tools and limitations
	Docstrings format
	Objectives of the project

	The Papyri solution
	Making documentation a multi-step process
	Intermediate Representation for Documentation (IRD)
	IRD and high level usage

	Current implementation
	IRD files generation
	IRD File Installation
	Documentation Rendering

	Challenges
	Limitations
	Future possibilities

	Conclusion
	Acknowledgments
	Funding
	References

