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Abstract: Dendrimers are highly branched macromolecules possessing, in most cases, identical
terminal functions. However, it is sometimes desirable to have two types of surface functions in order
to fulfil specific properties. The stochastic functionalization is frequently used for such purposes,
but the presence of an uncontrolled number of each type of terminal function, albeit acceptable for
research purposes, has no practical use. Thus, it is highly desirable to find strategies suitable for the
precise grafting of two different functional groups on the surface of dendrimers. The easiest way, and
the most widely used, consists in using a bifunctional monomer to be grafted to all of the surface
functions of the dendrimers. Two other strategies are known but are rarely used: the modification of
an existing function, to generate two functions, and the sequential grafting of one function then of
a second function. The three methods are illustrated in this review with polyphosphorhydrazone
(PPH) dendrimers, together with their properties as catalysts, for materials, and as biological tools.
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1. Introduction

Dendrimers [1] are highly branched three-dimensional macromolecules, which proper-
ties are essentially dependent on the type of their terminal functions. Numerous properties
have been explored already, most of them being related to catalysis, materials, or biol-
ogy/nanomedicine [2]. Dendrimers are synthesized by iterative processes, which afford
a new generation at the end of each sequence, characterized by a multiplication of the
number of terminal functions, most generally by two [3] or three [4], depending on the
branching motives. Such processes generate identical terminal functions on the surface
of the dendrimers, of course depending on the type of dendrimers, and on the synthetic
process used. Such terminal functions can be modified uniformly to bring new properties.
However, it is desirable in some cases to have two types of terminal functions, each type
of functions affording eventually its own properties (for instance, one function for the
solubility, the other affording properties for catalysis or biology, or one type of function for
the grafting (for instance to materials), with the other functions bringing another property).

In most cases, the presence of two (or even more) functions on the surface of den-
drimers is carried out using a stochastic approach (i.e., an uncontrolled number and location
of each type of functions). However, this approach is contradictory with the aim of having
a perfectly controlled and reproducible structure for the dendrimers, contrarily to classi-
cal polymers. Even if efforts have been carried out to increase the purity of compounds
issued from the stochastic approach [5], batch-to-batch inconsistencies are unavoidable,
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and induce in particular undesirable varying biological activities [6]. To solve this type of
problem, it is highly desirable to synthesize dendrimers precisely bifunctionalized on their
surface. Figure 1 displays the difference between both approaches.
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pounds have been used for synthesizing by click chemistry multifunctional nanocarriers 
bearing as terminal functions a model drug (R-lipoic acid), a fluorescent dye (BODIPY), 
and a poly(ethylene glycol) (PEG) chain [11]. Other recent examples of grafting directly 
two functions concern PPI (polypropyleneimine) dendrimers functionalized with both an 
electroactive carbazole and a mesogenic unit, all dendrimers of this family being liquid 
crystalline [12], and also Newkome-type polyamide dendrimers, functionalized with both 
one azide and two olefins [13]. A series of bifunctional dendrimers has been obtained from 
either a polyester-polyamide, or polyester-lysine, or polyamine-lysine hybrid internal 
structure functionalized on the surface with orthogonally protected aspartic acid [14]. The 
selective and sequential deprotection of the amine and of the carboxylic acid of the pro-
tected aspartic acid was carried out to graft a long PEG (115 units in average), and either 
a gadolinium complex [15,16] or diverse other lanthanide complexes (Dy, Yb [17], Eu, and 
Sm [18]) for magnetic resonance imaging (MRI), or two synthetic tubulysin analogues 
against C26 colon carcinomas [19]. Lysine derivatives protected by two different protect-
ing groups, were grafted on the surface of lysine dendrimers and dendrons. Selective 
deprotection afforded dendrimers bearing both gadolinium complexes and PEG as MRI 
contrast agents [20]. The same process was applied to a series of dendrons having a car-
boxylic acid at the core and both a gadolinium complex and galactosyl moieties on the 

Figure 1. Examples of batches of bifunctionalized dendrimers. (A) Stochastic functionalization on
the surface of dendrimers. (B) Precise bifunctionalization on the surface of dendrimers.

The easiest way to get dendrimers specifically bifunctionalized on their surface con-
sists in grafting on each terminal function a compound bearing already both desired
functions (Scheme 1A). Such a method has been applied to different types of dendrimers
and functions. One can cite for instance as an early example the presence of both a phenyl
and a pyrene on the surface of a series of dendrimers built on an arylether scaffold, and
used for studying charge-transfer processes from the core to the surface [7]. More recent
examples concern PAMAM (polyamidoamine) dendrimers functionalized with different
aminoacids, to have NH2 groups together with either OH, SH, or other functional groups,
and tested for drug delivery [8]. Polyester dendrimers functionalized with both OH and
azide, used later on in click chemistry to afford biosensors [9], or functionalized with both
azide and alkyne, as a multipurpose platform, in particular to afford implant adhesives in
bone fracture applications [10] are other more recent examples. Azide alkyne monomeric
compounds have been used for synthesizing by click chemistry multifunctional nanocarri-
ers bearing as terminal functions a model drug (R-lipoic acid), a fluorescent dye (BODIPY),
and a poly(ethylene glycol) (PEG) chain [11]. Other recent examples of grafting directly
two functions concern PPI (polypropyleneimine) dendrimers functionalized with both an
electroactive carbazole and a mesogenic unit, all dendrimers of this family being liquid
crystalline [12], and also Newkome-type polyamide dendrimers, functionalized with both
one azide and two olefins [13]. A series of bifunctional dendrimers has been obtained
from either a polyester-polyamide, or polyester-lysine, or polyamine-lysine hybrid inter-
nal structure functionalized on the surface with orthogonally protected aspartic acid [14].
The selective and sequential deprotection of the amine and of the carboxylic acid of the
protected aspartic acid was carried out to graft a long PEG (115 units in average), and
either a gadolinium complex [15,16] or diverse other lanthanide complexes (Dy, Yb [17], Eu,
and Sm [18]) for magnetic resonance imaging (MRI), or two synthetic tubulysin analogues
against C26 colon carcinomas [19]. Lysine derivatives protected by two different protecting
groups, were grafted on the surface of lysine dendrimers and dendrons. Selective deprotec-
tion afforded dendrimers bearing both gadolinium complexes and PEG as MRI contrast
agents [20]. The same process was applied to a series of dendrons having a carboxylic acid
at the core and both a gadolinium complex and galactosyl moieties on the surface, as liver
targeting imaging probes [21]. Another lysine-dendron bearing a long PEG chain at the
core (114 units in average) and both a porphyrin analogue and cholic acid, was used for
near-infrared fluorescence imaging (NIRFI), magnetic resonance imaging (MRI), positron
emission tomography (PET) and dual modal PET-MRI [22].
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lung inflammation in vivo [28], or of fluorescein isocyanate grafted to a dendrimer bearing 
azabisphosphonate terminal functions, able to positively influence the human immune 
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functions on the surface of dendrimers. (A) grafting on each terminal function a compound bearing
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Other methods to get two types of terminal functions have been very rarely used.
One can cite the possibility to modify one function already on the surface, to generate
two functions (Scheme 1B). Such type of reaction has been illustrated with functionalized
amines used for opening cyclic carbonates on the surface of polyester dendrimers [23].

The last method concerns the sequential grafting of one function, followed by the
grafting of the second one, as illustrated in Scheme 1C. Such a type of reaction is rare, and
has been used essentially with dendrimers having dichlorotriazine as terminal functions,
reacted in sequential nucleophilic aromatic substitution with two different amines [24].
MRI (Magnetic Resonance Imaging) contrast agents have been obtained in this way, one
amine bearing a ligand suitable for complexing gadolinium, the other an alcohol [25].

Besides the different types of dendrimers indicated above, another type of dendrimer
is known for the versatility of its chemistry, namely phosphorus dendrimers, and partic-
ularly polyphosphorhydrazone (PPH) dendrimers, which possess a phosphorus atom at
each branching point [26]. They are generally built from either P(S)Cl3 or hexachlorocy-
clotriphosphazene as core [27]. Their structure is illustrated in Figure 2 with the first and
second generations. Both generations are displayed as the full chemical structure, but also
in a linear form with parentheses after each layer of branching points. The presence of
either P(S)Cl2 or aldehyde terminal functions, depending on the step considered, enables a
versatile reactivity to fulfil the desired properties. In this review, we will display the differ-
ent methods used for the bifunctionalization of phosphorus dendrimers, carried out using
the three methods shown in Scheme 1. Besides the synthesis, the particular properties of
such specifically bifunctionalized dendrimers in different fields such as catalysis, materials,
and biology will be also emphasized.

As for other types of dendrimers, the stochastic grafting of two different terminal
functions was carried out in a few cases on PPH dendrimers. One can cite the stochas-
tic grafting of a julolidine fluorophore to mannose-capped dendrimers, able to prevent
acute lung inflammation in vivo [28], or of fluorescein isocyanate grafted to a dendrimer
bearing azabisphosphonate terminal functions, able to positively influence the human
immune system [29]. Such method was also used for grafting different ratios of copper
complexes [30], gold complexes and polyethylene glycol as terminal functions of PPH
dendrimers having anti-cancer properties [31], bearing eventually fluorophores inside the
structure to decipher the biological mechanism of action [32]. However, the precise number
of terminal functions is an important criterium, in particular for biological purposes.
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2. Bifunctional Monomers Grafted to the Surface of PPH Dendrimers

As for the other types of dendrimers, the grafting of a bifunctional monomer on the
surface of polyphosphorhydrazone dendrimers is easy to carry out (way A in Scheme 1).
The first attempts concerned only fundamental researches. For instance, the Horner-
Wadsworth-Emmons reaction was applied to aldehyde terminal functions for the grafting
of diverse amino acids, up to generation 4 (Scheme 2) [33].

Organics 2022, 3, FOR PEER REVIEW 4 
 

 

having anti-cancer properties [31], bearing eventually fluorophores inside the structure to 
decipher the biological mechanism of action [32]. However, the precise number of termi-
nal functions is an important criterium, in particular for biological purposes. 

 
Figure 2. Two ways for drawing the 1st and 2nd generations of polyphosphorhydrazone den-
drimers: full chemical structure, and linear structure with parenthesis after each layer of branching 
points.  

2. Bifunctional Monomers Grafted to the Surface of PPH Dendrimers 
As for the other types of dendrimers, the grafting of a bifunctional monomer on the 

surface of polyphosphorhydrazone dendrimers is easy to carry out (way A in Scheme 1). 
The first attempts concerned only fundamental researches. For instance, the Horner-
Wadsworth-Emmons reaction was applied to aldehyde terminal functions for the grafting 
of diverse amino acids, up to generation 4 (Scheme 2) [33]. 

 
Scheme 2. Generation 4 PPH dendrimer functionalized with amino acid terminal functions, ob-
tained by Horner-Wadsworth-Emmons reactions on aldehyde terminal groups. 
Scheme 2. Generation 4 PPH dendrimer functionalized with amino acid terminal functions, obtained
by Horner-Wadsworth-Emmons reactions on aldehyde terminal groups.

However, the use of bifunctional units was essentially applied in the fields of catalysis
and biology. In the case of catalysis, many examples of phosphine complexes as terminal
functions of dendrimers are known [34]. In a first example of PPH dendrimers, the ter-
minal phosphines were used to complex gold, to facilitate imaging of single molecules
with high-resolution transmission electron microscopy (HRTEM) [35]. Later on, dendritic
complexes were used as catalysts for instance in Stille couplings [36], to dramatically
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decrease palladium leaching in Suzuki couplings [37], to increase enantioselectivity in
Rhodium-catalyzed [2+2+2] cycloadditions [38], to be efficiently recycled using a magnet in
Pd-catalyzed couplings [39], and to switch on and off the catalytic efficiency through a re-
dox control [40]. In all cases of catalysis, the efficiency of different generations is compared
using the same number of catalytic sites (i.e., for instance the efficiency of 4 equiv. of the 1st
generation is compared with that of 1 equiv. of the 3rd generation). An example of cataly-
sis with bifunctionalized monomeric phosphines concerned a 3rd generation dendrimer
decorated with chiral iminophosphines derived from (2S)-2-amino-1-(diphenylphosphinyl)-
3-methylbutane, obtained by condensation reactions on the aldehydes (Scheme 3). The
Pd complex of this dendrimer was used as catalysts in asymmetric allylic alkylation of
rac-(E)-diphenyl-2-propenyl acetate or pivalate, using N,O-bis(trimethylsilyl)acetamide
(BSA) as base and either LiOAc or KOAc as co-catalyst to produce the nucleophile from
dimethylmalonate, and to afford 2-(1,3-diphenylallyl)-malonic acid dimethylester. Conver-
sions were almost quantitative in all cases, with isolated yields up to 97% in the best cases,
and ee (enantiomeric excess) up to 94–95%. Contrarily to the monomeric catalysts, this
dendritic catalyst could be recovered and reused with the same efficiency at least 3 times
(Figure 3) [41].
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Another example of bifunctional monophosphine concerns a thiazolyldiphenylphos-
phine grafted on the surface of generations 1 and 3 of PPH dendrimers (Scheme 4A). These
dendrimers were able to complex palladium, and were used as catalysts in Suzuki cou-
plings (Figure 4A). It was possible to recover and reuse even the first generation at least
four times with the same efficiency, contrarily to a dendrimer having triphenylphosphine
as terminal functions. Interestingly, palladium leaching could not be detected with the den-
drimer bearing the thiazolyldiphenylphosphines, whereas it was found to be 173 (±3) ppm
with the dendrimer bearing the triphenylphosphine [37]. Recently, a series of dendrimers
(generations 1 and 2) functionalized with chiral ferrocenylphosphines was synthesized
(Scheme 4B). These dendrimers were used as catalysts in the ruthenium-catalyzed redox-
switchable transfer hydrogenation of a ketone, yielding a slighlty enantioenriched alc ohol
(Figure 4B). It has been shown previously that, thanks to the presence of the ferrocene,
adding a chemical oxidant or reductant, modified the catalytic activity of the complexes,
which was reversibly switched off, and back on again [40]. The same phenomenon was
observed with the chiral ferrocenylphosphines shown in Scheme 4B. The first generation
was more active than the second, but practically no difference in activity was observed
depending on the type of substituents on the phosphine [42].
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Besides monophosphines, symmetrical diphosphine derivatives grafted on the surface
of phosphorhydrazone dendrimers have been proposed for the complexation of palladium,
platinum, rhodium [43], and ruthenium [44]. The Pd complexes were used as catalysts
in Stille couplings, whereas the Ru complexes were used as catalysts in Knoevenagel
condensations and diastereoselective Michael additions [45]. There is also an example of
a diphosphine bearing a chiral substituent based on L-tyrosine methyl ester, as shown in
Scheme 5 for the first and third generations of the polyphosphorhydrazone dendrimers.
The catalytic properties of this series of dendrimers complexing palladium were compared
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with that of the corresponding diphosphine dendritic ligands not bearing the L-tyrosine
derivative, but derived from tyramine. Both families of dendrimers were studied in C-C
cross-coupling reactions, namely, Suzuki, Sonogashira, and Heck reactions, all of them
being carried out in the presence of water (Figure 5). In all cases, the series built from
L-tyrosine is less efficient than the series built without it, showing the negative influence of
the local hindrance on the catalytic efficiency. However, in all cases, the dendritic catalysts
are more efficient than the corresponding monomeric complexes, of course considering the
same number of catalytic entities in all experiments. Indeed, the efficiency of 12 equivalents
of monomeric catalyst is compared with that of 1 equivalent of the 1st generation dendrimer,
which bears 12 catalytic entities in a single molecule [46].
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Even if the use of dendrimers can enable a large decrease of metal leaching as indicated
above [37], organocatalysis has been recognized as an interesting alternative to avoid metals,
including in the field of dendrimeric catalysts [47]. For instance, polyphosphorhydrazone
dendrimers of first- and fourth-generations were decorated with (+)-cinchonine moieties,
and used as efficient organocatalysts in the α-amination of several types of β-dicarbonyl
compounds. It was possible to recover and reuse the dendritic organocatalyst 10 times
without loss of activity [48]. Another example concerned a bifunctional derivative of
(+)-cinchonine. In that case, the dendrimer of the first generation had to be modified in
three steps from the aldehyde terminal functions, to obtain iodine surface functions. This
dendrimer was found suitable for the quaternization of the quinuclidinic N atom of several
types of (+)-cinchonine (variation of the OR group, see Scheme 6). These compounds
were used as organocatalysts in the asymmetric alkylation of a glycinate Schiff base with
different types of bromides, in particular benzyl bromide derivatives (Figure 6). The case
where R is an allyl group was found the most efficient. Recovery and reuse of the catalysts
was carried out five times without a loss of efficiency and with only a minor decrease in
enantioselectivity [49].

The grafting of 15-membered tri-olefinic triazamacrocycles on PPH dendrimers was
carried out in different ways, one of them consisting in the grafting of a diamine on the
P(S)Cl2 terminal functions from generations 1 to 4. This reaction creates a five-membered
non-symmetrical heterocycle on each terminal function (Scheme 7), suitable for complex-
ing Pt2(dba)3. Instead of discrete complexes, platinum nanoparticles were generated in
very mild conditions [50], which organized as unprecedented branched supramolecular
assemblies of dendrimers and coalesced Pt nanoparticles. Both the size and the degree of
branching vary with the generation of the dendrimer, with the G4 dendrimer producing
longer networks than smaller dendrimers [51]. These 15-membered macrocycles were also
condensed onto the aldehyde terminal functions of dendrimers, followed by reduction
of the imine, and affording palladium complexes or palladium nanoparticles, suitable for
catalyzing Heck reactions [52]. Analogous compounds bearing long alkyl chains on the
aryl groups of the sulfonamides displayed columnar liquid crystal properties [53].

Besides these examples as catalysts, all of the other bifunctional PPH dendrimers
synthesized by grafting bifunctional derivatives were synthesized for biological purposes.
A series of dendrimers having labile hydrogen atoms (carboxylic acid or phosphonic
acid terminal functions) were used for electrostatic interactions with galactosylceramide
analogs, potentially suitable against HIV [54]. Within this series, several compounds
having a pendant alkyl chain were synthesized, especially in the case of phosphonic acids
as terminal groups (Scheme 8). They were synthesized by grafting the bifunctional phenols
based on tyramine onto the P(S)Cl2 terminal functions. These compounds alone were
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found non-toxic, but displayed interesting anti-HIV properties in vitro in the 10−5–10−6 M
range [55]. The galactosyl ceramide analogues were associated with all of these dendrimers
in a second step, and were found efficient, but also toxic, inducing a low safety index [56].
Investigations about the stability of the self-associations demonstrated a partial segregation
of the different partners, which could explain the cytotoxicity [57]. The use of a fluorescent
analog of galactosylceramide, having a coumarine derivative in replacement of the alkyl
chain, confirmed the ion pair disassembly hypothesis [58].
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Scheme 8. Synthesis of phosphonate dendrimers bearing a pendant alkyl chain and a phosphonic
acid, and their association with a derivative of galactosylceramide, having anti-HIV properties.

Other types of phosphonate terminal functions were obtained by synthesizing the
appropriate phenol derivatives. (D-L) tyrosine was first reacted with formaldehyde and
dimethylphosphite, then the carboxylic acid was protected with a methyl group, to be
suitable to react with the P(S)Cl2 surface functions of dendrimers, mostly of first genera-
tion (Scheme 9A). These dendrimers bearing azabisphosphonate terminal functions were
then tested among others to activate human monocytes through an anti-inflammatory
pathway [29,59], but also to multiply natural killer (NK) cells, which play in particular
a key role against cancers [60]. These first properties then led to cure inflammation in
mice models of rheumatoid arthritis [61], of multiple sclerosis [62], of Uveitis [63], and of
psoriasis [64]. In view of all of these biological properties, a large study to decipher the
structure/activity relationship has been carried out [65]. The synthesis of non-symmetrical
azabisphosphonate terminal functions was carried out for this purpose. It started from
4-hydroxybenzaldehyde, to which diverse primary amines were condensed in the first
step. Addition of dimethylphosphite induced the grafting of one phosphonate. A reaction
with formaldehyde and dimethylphosphite induced the grafting of the second phospho-
nate, affording a series of non-symmetric azabisphosphonate monomers (Scheme 9B), also
grafted to the 1st generation dendrimer. The primary amines used were, for the first time,



Organics 2022, 3 250

methylamine and benzylamine [29,60], then allyl, butyl, and decyl amines [66]. All of
these compounds were tested, but they were found less efficient than the symmetrical
azabisphosphonate functions for the anti-inflammatory activation of monocytes.
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Scheme 9. Synthesis of bifunctional phenols from tyrosine (way A) and from 4-hydroxybenzaldehyde
(way B), and structure of 1st generation of PPH dendrimers modified with them. The anti-
inflammatory properties of these dendrimers were then tested.

3. Modification of a Function Already on the Surface of PPH Dendrimers

The generation of secondary amines induced by the grafting of functional groups on
the surface of PPH dendrimers was the only way to obtain bifunctionalized dendrimers by
a second modification after a first modification (related to way B of Scheme 1). In a first
example, the reaction of Ph2PCH2OH, obtained from the reaction of diphenylphosphine
with paraformaldehyde occurred on one among two allylamines previously grafted to
the P(S)Cl2 terminal functions of the dendrimers (Scheme 10). Such specific reaction
was carried out from generation 1 to generation 7 of the PPH dendrimers built from a
trifunctional core, and from generation 1 to generation 4 of the PPH dendrimers built from
the hexafunctional N3P3 core. The phosphines were used for the complexation of either
Fe(CO)4 or W(CO)5 [67].
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An easy way to get secondary amines as terminal functions consists in the condensa-
tion of a primary amine on the aldehyde terminal functions of the dendrimers, followed
by the reduction of the imine, to generate a secondary amine. It must be noted that this
reduction occurs only on the imine functions on the surface, and not on the hydrazone
linkages constituting the internal structure of the PPH dendrimers. Such reaction was
carried out first with (S)-(–)-α-methylbenzylamine and (R)-(+)-α-methylbenzylamine (both
separated enantiomers), followed by the reduction of the imine bonds with NaBH3CN.
In that case, the reaction of diphenylphosphine and paraformaldehyde occurred on all of
the NH groups on the surface of the dendrimer (Scheme 11), contrarily to the example
shown in Scheme 10. The reactions were carried out on generations 1 to 4, built from
a trifunctional core. Study of the chiroptical properties of all of these families of chiral
dendrimers allowed to demonstrate for the first time that the value of the molar specific
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rotation of dendrimers with stereogenic end groups linearly increased with the increase of
the number of stereogenic groups [68].
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Related two-step processes were applied in particular to the 1st generation dendrimers
ended with aldehyde groups, to afford phosphonate terminal functions, using different
primary amines in the first step. This work is related to the one shown in Scheme 9
concerning the synthesis of dendrimers having anti-inflammatory properties. In the first
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example, condensation with allylamine was followed by the addition of dimethylphos-
phonate (HP(O)(OMe)2) onto the imine bonds. Such a reaction induced the presence of a
phosphonate and a secondary amine on each terminal function. Attempts to graft another
phosphonate on the N-H function failed (Scheme 13), whereas such reaction was possible
on the corresponding monomer (as already shown in Scheme 9) [66]. A similar reaction was
carried out with benzylamine. In this case also, it was not possible to react the secondary
amine, but the phosphonate could be transformed into phosphonic acid sodium salt. The
same bifunctional dendrimer was also obtained in another way, by adding P(OSiMe3)3 on
the imine (Scheme 13) [60]. However, all of these non-symmetrical compounds were found
poorly or non-active for the activation of monocytes.
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An analogous strategy, involving the formation of imino-PEG terminated dendrimers,
which were subsequently hydrophosphorylated led to a series of amino-PEG-phosphonate-
terminated PPH dendrimers from G1 to G3, using two different ways (Scheme 14). Theo-
retical and experimental size measurements revealed an efficient surface capping with PEG
chains. A favorable effect of PEG-capping on cytotoxic properties was also evidenced [69].
An analogous work was carried out with PPH dendrimers grafted to silica nanoparticles.
These materials were suitable for hosting Ag and Ag2O nanoparticles (Figure 8). The
resulting composites exhibited antibacterial activity [70].

The addition of dimethylphosphonate (HP(O)(OMe)2) was also carried out directly on
aldehyde terminal functions, instead of on imines, on generations 2 to 4 of PPH dendrimers.
An alcohol and a phosphonate were directly generated, the latter can be converted to a
phosphonic acid salt, as shown in Scheme 15. These dendrimers, reacted with titanium
tetraisopropoxide, Ti(OiPr)4, enabled its controlled mineralization. A new family of hi-
erarchically porous dendrimer-bridged titanium dioxide materials was obtained in this
way [71]. Further studies demonstrated that the dendritic medium provided at low temper-
ature, discrete anatase nanocrystals (4.8 to 5.2 nm in size), whereas amorphous titanium
dioxide phase is generally obtained in standard conditions. Furthermore, upon thermal
treatment, the ring opening polymerization of the cyclophosphazene core prevented, up to
800 ◦C, the commonly observed anatase-to-rutile phase transformation [72].
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efficiently controlled the mineralization of Ti(OiPr)4.

4. Sequential Grafting of a First, then a Second Function on the Surface of
PPH Dendrimers

As indicated in the introduction, sequential grafting on the surface of dendrimers, as
shown in Scheme 1C, is very rare, and has been carried out only and recently with triazine
dendrimers [24,25]. On the contrary, such a type of reaction is carried out since a long time
with polyphosphorhydrazone dendrimers, thanks to the specific reactivity of the P(S)Cl2
terminal functions. The possibility of such sequential reaction was discovered first with
secondary amines. Indeed, only one Cl of each P(S)Cl2 terminal functions was able to react
with diallylamine (even when used excessively). However, the remaining Cl was able to
react with primary amines, such as propargylamine (Scheme 16). This sequential reaction is
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not limited to secondary amines. Indeed, depending on the conditions used (temperature
and quantity of amine), it is possible to react only one allylamine on each P(S)Cl2 terminal
function. Some reactions were carried out up to the seventh generation [73].
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In some cases, the surface functions are P(O)Cl2 instead of P(S)Cl2, but they display
the same specific reactivity. In particular, one propargylamine or one allylamine could
be grafted on each P(O)Cl2 function. As in the previous case, the second reaction can be
carried out with propargylamine when allylamine was already grafted (Scheme 17) [73].
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Scheme 17. Sequential addition of two different amines on the surface of polyphosphorhydrazone
dendrimers having P(O)Cl2 terminal functions.

The same type of reaction was carried out more recently to obtain compounds bearing
both a triethoxysilane and a primary amine. Boc-monoprotected ethylene diamine as the
amino part, and 3-(triethoxysilyl) propylamine as the silyl part were chosen. The first step
was the grafting of one of the two amines (way a or way b, Scheme 18), followed by the
grafting of the other amine in the second step, affording the same compound in both cases.
Besides, a large excess of 1,3-diaminopropane can be used as the second amine, to directly
afford a free amine as terminal function (Scheme 18) [74]. These compounds were tested
among other dendritic structures possessing both types of functions for the grafting to
silica, followed by attempts for trapping CO2, after deprotection of the Boc-protected amine,
to form a carbamate. These compounds having both types of functions on the surface were
not the most efficient. Indeed, dendrons possessing a single triethoxysilyl group at the core
and several primary amines on the surface were found to be more efficient [75].

Besides the grafting of two amines, it is also possible to graft both an amine and
a phenol. Such type of reaction was carried out up to now only on P(O)Cl2 terminal
functions. After the grafting of either allyl amine or propargylamine, the second step was
the grafting of 4-hydroxybenzaldehyde, in basic conditions. The aldehydes were then used
for the condensation with hydrazine in large excess, or for Wittig reactions with the ylide
Ph3P=CH-C≡N (Scheme 19) [73]. Hydroxybenzaldehyde could react also when bulky
diallylamine was grafted in the first step [76].
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The presence of the aldehydes as shown in Scheme 19 enabled the continuation of
the synthesis of dendrimers having pendant internal functions inside the structure. These
pendant groups were either an allylamine, or 1-aminomethylpyrene, or 1-pyrenebutanoic
hydrazide. The aldehydes were reacted with H2NNMeP(S)Cl2, as in the classical synthesis
of PPH dendrimers (Scheme 20) [77].
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Scheme 20. Amino derivatives of allyl or pyrene as pendant functions inside
polyphosphorhydrazone dendrimers.

Besides the sequential use of two amines, or of an amine and a phenol shown in the
previous Schemes, the sequential use of two phenols was also attempted on the surface
of polyphosphorhydrazone dendrimers. The reaction is less clean than with amines, as
it is difficult to avoid a small percentage (less than 5%) of either homodisubstitution, or
unreacted P(S)Cl2. The grafting of a phenol derivative of ethacrynic acid, followed by the
grafting of either 4-hydroxybenzaldehyde or the phenol of the azabisphosphonate were
carried out (Scheme 21). Ethacrynic acid grafted on the entire surface of phosphorhydrazone
dendrimers was shown to display strong anti-proliferative activities against both liquid
and solid tumors [78]. However, these unsymmetrical compounds were not tested [79].
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5. Conclusions

The specific bifunctionalization on the surface of dendrimers is still an ongoing chal-
lenge. Among the three different ways that have been already proposed, the easiest and
most widely used with all types of dendrimers is the grafting of a monomer possessing
already both desired functions. The other two methods (i.e., the modification of a first
function by a second one, and the sequential grafting of the first and then the second func-
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tion) have been rarely used on dendrimers in general, but relatively more frequently with
polyphosphorhydrazone dendrimers than with other types of dendrimers. For example,
the condensation of primary amines with the aldehyde terminal functions affords imines,
which can be either reduced, for further reactivity on the NH, or directly reacted with com-
pounds such as phosphonates or P(OSiMe3)3. The sequential grafting of two functions on
P(X)Cl2 (X = S, O) terminal functions was carried out essentially with two different amines,
but also in some cases with an amine and a phenol, or with two different phenols. Besides
the pioneering works with polyphosphorhydrazone dendrimers which were carried out
for purely fundamental researches, the presence of two different functions was also used
for catalysis, for materials, and for biological purposes. Despite being challenging, the
specific presence of two functions on the surface of dendrimers offers new opportunities
for the future, in particular for increasing the solubility in specific media such as water and
for dendrimers having catalytic or biological properties. In this regard, efforts should be
engaged to develop efficient new strategies leading to sophisticated and highly controlled
multifunctional dendrimeric architectures.
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