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Robin's criterion states that the Riemann Hypothesis is true if and only if the inequality σ(n) < e γ • n • log log n holds for all natural numbers n > 5040, where σ(n) is the sum-of-divisors function of n and γ ≈ 0.57721 is the Euler-Mascheroni constant. We require the properties of superabundant numbers, that is to say left to right maxima of n → σ (n) n . In this note, using Robin's inequality on superabundant numbers, we prove that the Riemann Hypothesis is true. This proof is an extension of the article "Robin's criterion on divisibility" published by The Ramanujan Journal on May 3rd, 2022.

Introduction

The Riemann Hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part n . We say that Robin(n) holds provided that

f (n) < e γ • log log n,
where the constant γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the natural logarithm. The Ramanujan's Theorem states that if the Riemann Hypothesis is true, then the previous inequality holds for large enough n. Next, we have the Robin's Theorem: Superabundant numbers were defined by Leonidas Alaoglu and Paul Erdős (1944). In 1997, Ramanujan's old notes were published where he defined the generalized highly composite numbers, which include the superabundant and colossally abundant numbers. Let q 1 = 2, q 2 = 3, . . . , q k denote the first k consecutive primes, then an integer of the form k i=1 q ai i with a 1 ≥ a 2 ≥ . . . ≥ a k ≥ 1 is called a Hardy-Ramanujan integer [2, pp. 367]. A natural number n is called superabundant precisely when, for all natural numbers m < n f (m) < f (n).

We know the following property for the superabundant numbers: 

c • log x • log log x (log log log x) 2 .
A number n is said to be colossally abundant if, for some ϵ > 0,

σ(n) n 1+ϵ ≥ σ(m) m 1+ϵ for (m > 1)
. There is a close relation between the superabundant and colossally abundant numbers.

Proposition 5. Every colossally abundant number is superabundant [1, pp. 455].

Several analogues of the Riemann Hypothesis have already been proved. Many authors expect (or at least hope) that it is true. However, there are some implications in case of the Riemann Hypothesis might be false. Proposition 6. If the Riemann Hypothesis is false, then there are infinitely many colossally abundant numbers n > 5040 such that Robin(n) fails (i.e. Robin(n) does not hold) [START_REF] Robin | Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann[END_REF]Proposition pp. 204].

In number theory, the p-adic order of an integer n is the exponent of the highest power of the prime number p that divides n. It is denoted ν p (n). Equivalently, ν p (n) is the exponent to which p appears in the prime factorization of n. Proposition 7. [3, Theorem 4.4 pp. 12]. Let n be a superabundant number such that p is the largest prime factor of n and 2 ≤ q ≤ p, then

log p log q ≤ ν q (n).
Putting all together yields the proof of the Riemann Hypothesis.

Main Results

The following is a key Lemma.

Lemma 1. If the Riemann Hypothesis is false, then there are infinitely many superabundant numbers n such that Robin(n) fails.

Proof. This is a direct consequence of Propositions 1, 5 and 6.

⊓ ⊔

For every prime number q k > 2, we define the sequence:

Y k = e 0.2 log 2 (q k ) (1 -1 log(q k ) )
.

As the prime number q k increases, the sequence Y k is strictly decreasing [5, Lemma 6.1 pp. 6]. We use the following Propositions:

Proposition 8. [5, Theorem 6.6 pp. 9]. Let k i=1 q ai i be the representation of a superabundant number n > 5040 as the product of the first k consecutive primes q 1 < . . . < q k with the natural numbers a 1 ≥ a 2 ≥ . . . ≥ a k ≥ 1 as exponents. Suppose that Robin(n) fails. Then,

α n < log log(N k ) Y k log log n ,
where N k = k i=1 q i is the primorial number of order k and α n = k i=1 q a i +1 i q a i +1 i This is the main insight.

Lemma 2. Let k i=1 q ai i be the representation of a superabundant number n > 5040 as the product of the first k consecutive primes q 1 < . . . < q k with the natural numbers a 1 ≥ a 2 ≥ . . . ≥ a k ≥ 1 as exponents. Suppose that Robin(n) fails. Then,

α n < (N k ) Y k n ,
where

N k = k i=1 q i is the primorial number of order k and α n = k i=1 q a i +1 i q a i +1 i -1
.

Proof. When n > 5040 is a superabundant number and Robin(n) fails, then we have

α n < log log(N k ) Y k log log n by Proposition 8. We assume that (N k ) Y k > n > 5040 > 11 since α n > 1. Consequently, log log(N k ) Y k log log n < (N k ) Y k n
by Proposition 9. As result, we obtain that

α n < (N k ) Y k n
and thus, the proof is done. ⊓ ⊔ This is the main theorem.

Theorem 1. The Riemann Hypothesis is true.

Proof. There are infinitely many superabundant numbers by Proposition 4. Let n k > 5040 be a large enough superabundant number such that q k is the largest prime factor of n k . Suppose that Robin(n k ) fails. At the same time, let n k ′ be another superabundant number much greater than n k with its largest prime factor q k ′ such that Robin(n k ′ ) fails too. By Lemma 2, we have

α n k < (N k ) Y k n k and α n k ′ < (N k ′ ) Y k ′ n k ′ .
Hence,

α n k ′ • α n k < (N k ′ ) Y k ′ n k ′ • α n k .
Consequently,

α n k ′ • α n k < (N k ′ ) Y k ′ n k ′ • (N k ) Y k n k . So, (α n k ′ • α n k ) 2 < (N k ′ ) Y k ′ n k ′ • (N k ) Y k n k . We know that (α n k ′ • α n k ) 2 > 1.
However, we can see that

(N k ′ ) Y k ′ n k ′ • (N k ) Y k n k ≤ 1
since the following inequality

Y k • Y k ′ ≤ log(n k ′ • n k ) log((N k ′ ) 1 Y k • (N k ) 1 Y
k ′ ) can be satisfied for n k ′ ≫ n k , where ≫ means "much greater than". Certainly, we can feasibly find a sufficiently large enough superabundant number n k ′ greater than n k such that log(n

k ′ • n k ) log((N k ′ ) 1 Y k • N k ) ≫ Y k .
This is possible because of Y k ≈ 1 and for every fixed prime number q, the value of ν q (n k ′ ) could go to infinity as long as n k ′ goes to infinity since n k ′ is superabundant according to Propositions 3 and 7. Certainly, the fraction

n k ′ N k ′
goes to infinity as long as n k ′ goes to infinity for the same reason. In this way, the inequality

Y k • Y k ′ ≤ log(n k ′ • n k ) log((N k ′ ) 1 Y k • (N k ) 1 Y k ′ ) can be satisfied for n k ′ ≫ n k due to lim k ′ →∞ Y k ′ = 1.
Therefore, we obtain a contradiction under the assumption that Robin(n k ) fails. To sum up, the study of this arbitrary large enough superabundant number n k > 5040 reveals that Robin(n k ) holds on anyway. Accordingly, Robin(n) holds for all large enough superabundant numbers n. This contradicts the fact that there are infinitely many superabundant numbers n, such that Robin(n) fails when the Riemann Hypothesis is false according to Lemma 1. By reductio ad absurdum, we prove that the Riemann Hypothesis is true.

⊓ ⊔

Conclusions

Practical uses of the Riemann Hypothesis include many propositions that are known to be true under the Riemann Hypothesis and some that can be shown to be equivalent to the Riemann Hypothesis. Indeed, the Riemann Hypothesis is closely related to various mathematical topics such as the distribution of primes, the growth of arithmetic functions, the Lindelöf Hypothesis, the Large Prime Gap Conjecture, etc. Certainly, a proof of the Riemann Hypothesis could spur considerable advances in many mathematical areas, such as number theory and pure mathematics in general.

1 2 .

 2 It is considered by many to be the most important unsolved problem in pure mathematics. It was proposed by Bernhard Riemann (1859). The Riemann Hypothesis belongs to the Hilbert's eighth problem on David Hilbert's list of twenty-three unsolved problems. This is one of the Clay Mathematics Institute's Millennium Prize Problems. As usual σ(n) is the sum-of-divisors function of n d|n d, where d | n means the integer d divides n. Define f (n) as σ(n)

Proposition 1 .

 1 Robin(n) holds for all natural numbers n > 5040 if and only if the Riemann Hypothesis is true [4, Theorem 1 pp. 188].

Proposition 2 .

 2 If n is superabundant, then n is a Hardy-Ramanujan integer [1, Theorem 1 pp. 450]. Proposition 3. [1, Theorem 7 pp. 454]. Let n be a superabundant number such that p is the largest prime factor of n, then p ∼ log n, (n → ∞).

Proposition 4 .

 4 [START_REF] Alaoglu | On highly composite and similar numbers[END_REF] Theorem 9 pp. 454]. For some constant c > 0, the number of superabundant numbers less than x exceeds

- 1 .

 1 Proposition 9. [3, Lemma 3.3 pp. 8]. Let x ≥ 11. For y > x, we have log log y log log x < y x .
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