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Abstract

Cosmological simulations aim to understand the matter distribution in the universe either by following a semi-analytic
approach or by formulating a hydrodynamical version of the matter distribution. Both approaches describe the evo-
lution of baryonic structures inside potential wells created by dark matter, while the dark matter itself is modelled as
self gravitating collision-less system. While major advancements have been made to reduce the computational costs,
these simulations still take millions of CPU hours to converge to a stable set of solutions. This naturally leads to the
question: can generative models predict the properties of a galaxy, given a partial history of its dynamical evolution?

Given that computing conditional probabilities is intractable in general, tractable probabilistic models such as sum-
product networks have emerged, where conditional marginals can be computed in time linear in the size of the model.
In this work, we investigate how sum-product networks can be used to compactly represent and learn distributions
for prediction in concordance cosmology. Our results study the extent to which they can infer the relation between
baryonic matter and dark matter. We test the algorithm on the Eagle suite of cosmological hydrodynamical simulations
to show that graphical models can satisfactorily reproduce mock catalogs of galaxies.
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1. Introduction

Probabilistic representations, such as Bayesian and Markov networks, are fundamental to statistical machine learn-
ing. The attractiveness of such networks is that they can express probabilistic dependencies in a compact manner.
However, owing to the intractability of inference, learning also becomes challenging, since learning typically uses
inference as a subroutine [21], and moreover, even if such a representation is learned, prediction will suffer because
inference has to be approximated. Tractable learning is a powerful new paradigm that attempts to learn representa-
tions that support efficient probabilistic querying. Much of the initial work focused on low tree-width models, [2],
but later, building on properties such as local structure [10], numerous proposals based on arithmetic circuits (ACs)
emerged. These circuit learners can also represent high tree-width models and enable exact inference for a range of
queries in time polynomial in the circuit size. Sum-product networks (SPNs) [32], for example, are instances of ACs
with an elegant recursive structure; essentially, an SPN is a weighted sum of products of SPNs, and the base case
is a leaf node denoting a tractable probability distribution (e.g., a univariate Bernoulli distribution). In so much as
deep learning models can be understood as graphical models with multiple hidden variables, SPNs can be seen as a
tractable deep architecture. Of course, learning the architecture of standard deep models is very challenging [4], and
in contrast, SPNs, by their very design, offer a reliable structure learning paradigm. While it is possible to specify
SPNs by hand, weight learning is additionally required to obtain a probability distribution, but also the specification of
SPNs has to obey conditions of completeness and decomposability, all of which makes structure learning an obvious
choice. Since SPNs were introduced, a number of structure learning frameworks have been developed for those and
related data structures, e.g., [14, 18, 23]. (Note that these related structures are not necessarily equivalent in terms of
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its features and properties; see works such as [23] for discussions. We will focus on SPNs here owing to their simple
specification for generative modelling.)

In this work, we study how SPNs can be used to model a novel and challenging problem related to the evolution
of galaxies; in particular, we consider the concordance cosmology in the backdrop of hydrodynamical simulations. In
essence, in cosmology, there is no scope of actual experiments and therefore, the need to simulate universes to test
various cosmological parameters, galactic properties and theories of universes require computationally efficient meth-
ods. One of the most effective tools to study astrophysical phenomena are numerical simulations. This is primarily
due to the inability to arrive at analytic solutions for gravitationally interacting particles which immediately leads to
an investigation of the computational methods. The mutual gravitational interactions between large sets of particles
forms the basis of all simulations. This is easy to see: in simulations, dark matter is modelled as particles that can
only interact with each other through gravity and since all matter must form in wells of dark matter, n-body simula-
tions of billions of particles are of paramount importance. When juxtaposed with suitable numerical techniques that
permit a realistic treatment of baryonic physics, this allows numerical simulations to be used as a tool for validating
cosmological models and provide a general picture of structure formation in the universe.

Numerical simulations attempt to describe the cosmological picture by painting galaxies inside dark matter halos.
This task, however, is extremely difficult: first, it involves making certain assumptions which cannot be substantiated,
[38] and second, the computation process is prohibitively expensive as indicated by the millions of hours of com-
putation times on CPU for simulations such as the Eagle simulations or the Illustris simulations [36, 24]. Various
algorithms have been proposed to reduce the exorbitant computations time and increase the accuracy of the process
[24, 15]. Scalable machine learning architectures are used in a variety of particle physics and cosmology experiments
but their use has been restricted to particle tracing and classification [16]. We believe the role of machine learning can
be enhanced extensively in cosmological settings, and in this work, we take first steps towards that goal. In particular,
given the recent advances in tractable probabilistic models, we study the question of how those advances could be
leveraged in service of yielding a generative model. Thus, we reiterate that the thrust of this paper is purely on the
applicability of tractable learning for the identified cosmological domain, and not about extending existing algorithms.
As we demonstrate below, this requires a non-trivial understanding of the mathematical concepts surrounding concor-
dance cosmology, and raises considerable challenges in feature selection and engineering. In the long term, we hope
our results here will lead to more interdisciplinary research, and enable machine learning and probabilistic logical
learning to tackle the deep, existing problems in cosmology.

2. Problem Statement

In this section, we will formulate the problem statement, first by giving a fairly informal picture of the cosmologi-
cal model, before turning to the equations driving the computational task. (As we expect both physicists and machine
learning practitioners to be readers of the article, our exposition will generally follow the style of introducing the
overall background at an intuitive level, but then describing the core concepts using mathematical notation.)

Preliminaries. Of the many pictures that can be painted about origins of universe, the widely celebrated one is the
Big Bang theory. The universe began with a bang, a hot big bang, so much so that the temperatures of the particles
within 10−33s of Big Bang far surpasses the particles produced in current high energy physics experiments. Inflation
soon took over and morphed space by a factor of 1026 over time of the order 10−32s and so began epochs where the
finest grains of the universe combined, decoupled and synthesized to establish the order that was to follow. The order
that followed is usually described by one particular parametrization of the Big Bang theory, the ΛCDM model.

Concordance Cosmology. The concordance cosmological model is the ΛCDM model of the universe, founded on the
Copernican principles of isotropy and homogeneity [34]. To build the concordance model of the universe, we start
by assuming that observers in any location in the universe can never be the principle observers of the universe. This
simple assumption immediately leads to the proposition that the universe is isotropic and homogeneous.

However a few things need to be kept in mind. Any theory is only as good as the initial assumptions made to form
that theory. The properties of isotropicity and homogeneity are only apparent on the largest scales of the universe.
As an example, consider the solar system. If we imagine a sphere engulfing the solar system, then the criteria of
isotropicity and homogeneity are not met. The sun is located in a specific point in the sphere and on observing the
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Figure 1: The galaxy stellar mass function (GSMF). The evolution of the stellar mass density of the universe provides a good overview of the
growth of stellar mass in the simulation. The GSMF can generally be described approximately by a Schechter function [37], i.e. a power law and
an exponential break which starts at a characteristic mass. The figure describes the relation between galaxy stellar mass density and redshift based
on data taken from Eagle simulations. The Eagle simulation is described in §4.1

sphere of solar system, we can immediately conclude that the sphere is not homogeneous. Planets in solar system are
not alike and the sun outshines them all. Similarly, if we take into account the local group of galaxies – Andromeda,
Milky Way, Large and Small Magellanic Clouds with the remaining fifty dwarf satellite galaxies – we observe that
Andromeda and Milky Way are the two most pronounced galaxies in terms of mass, luminosity and size while the
remaining can be classified as dwarf satellites. Only at largest scales of multiple superclusters of galaxies when
differences between baryonic features like star formation rate, size, luminosity can be smoothed over, we assume the
Copernican principle to hold.

Under the assumptions of isotropy and homogeneity, the currently accepted cosmological model describes a uni-
verse with rotational and translational symmetry, where the matter content is dominated by dark matter. In the energy
context of the universe, dark energy accounts for the overwhelming majority of the energy in the universe while dark
matter plays the second fiddle. Baryonic content, out of which structures like galaxies form, accounts for a very
small portion of the universe. While the nature and the physical properties of dark energy and dark matter are not
fully established, the prevalent theory of cosmological structure formation assumes that the central aspect of galaxy
formation is the hierarchical assembly of dark matter halos with the properties of dark energy being not necessarily
germane to galaxy formation [35]. This is the ΛCDM cosmological model [6] of the universe where the curvature
of spacetime is described by the Robertson-Walker metric. If we further hypothesize that the universe is filled with
perfect fluid, then the evolution of the universe follows the Friedmann equations as outlined in [30]:( ȧ
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where G is the universal gravitational constant, c is the speed of light, ε and P are the energy density and pressure
of the mass-energy in the universe. The scale factor a(t) models an expanding universe. Conventionally, a(t0) = 1
where t0 is present day. Λ represents the cosmological constant.

The concordance cosmology states that the present day large scale structure of baryonic matter can be traced back
to its seeds embedded within dark matter halos in a very young universe, with the morphology of a galaxy, at any point
in cosmic time, predominantly dependent on the properties of the surrounding halo, merger history of that galaxy and
feedback effects. As is evident from Figures 1 and 2, galaxies rarely evolve or are found in complete seclusion, but a
necessary condition for formation of galaxies is the presence of a dark matter halo. Each dark matter halo typically
contains a few subhalos inside which baryonic matter collapses to form galaxies. The most massive subhalo lies at
the center of potential of the halo and contains the central galaxy of the halo. Therefore, modeling the universe for a
better understanding is essentially painting a temporal picture of the cosmic web.
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Figure 2: Dependence of baryonic features on dark matter. In fact, as we can see, the baryonic features of a galaxy are indeed dependent on the
dark matter features of the galaxy. We provide a concise description of the features in Table 1 and present a more detailed analysis of the features
in §4.2

There are broadly two flavors of simulations that model matter distribution in the universe [12]: semi-analytic
simulations and hydrodynamical simulations. There is, however, no reason for supposing the superiority of hydrody-
namics over semi-analytic modeling. The predictive power of both of these approaches is in agreement with actual
observations. We refer the reader to [5] for a comparison between semi-analytic methods and hydrodynamical mod-
elling. In particular, physical processes critical to galaxy formation and evolution such as core collapse supernovae,
accretion shocks, stellar winds, involve multiple sets of partial differential equations [38] such that modeling structure
formation through either approach becomes extremely difficult. The already intractable complexity of this problem is
further compounded by the addition of approximations of physical phenomena which cannot be derived ab initio.

Related Work. Using machine learning algorithms to model structure formation has inevitably resulted in a difference
of efficacy. Algorithms like k-nearest neighbors and support vector machines used in [41] have conclusively shown
that machine learning galaxy-halo relation is not unsuccessful. The work was further extended in [19], [1] and [9] by
including other discriminative or ensemble algorithms like decision trees and/or random forests. However, focusing
on the algorithmic aspects of the task is equally important since the choice of algorithms usually involve some trade
offs between scalability and accuracy while certain algorithms like decision trees are prone to overfitting. To our
knowledge, tractable graphical models have never been applied to this problem. Our contribution in this paper is to
apply a deep architecture with probabilistic semantics, sum product networks (SPNs) [32], to estimate a generative
model for the data such that a mock catalog of galaxies can be build. The added advantage of using SPNs is that it
guarantees that inference will always be in time linear in the size of the model [13].

3. Method

Making machines learn to recognize halos and their corresponding baryonic content broadly involves two steps.
The first step is finding features which are good representatives of a halo-galaxy system and indicate a strong

correlation between the potential well of host dark matter halo and the galaxy inside it. This is usually followed up
by providing a merger history of the galaxy-halo system to the machine. The choice of the depth of history to be
provided is generally the prerogative of the machine learning practitioner. However, this choice comes with a few
caveats. Since galaxy clusters generally formed in a very early universe, their merger histories usually cover billions
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Dark Matter Features
Feature Description
Halo Group Mass Aggregate Group Mass of all subhalos within a

larger halo
Mass Critical 200, M200 Defines the mass of a halo
Radius Critical 200, R200 The Radius that bounds Mass Critical 200
Number of Subhalos Representative of the number of smaller subhalos

that make up a larger halo

Baryonic Matter Features
Feature Description
Black Hole Mass The mass of the central black hole in a halo
Stellar Mass Representative of the stellar content of a galaxy
Velocity Dispersion Provides a measure of velocity of a galaxy
Maximum of Circular Velocity, Vmax Maxima of the circular velocity curve of a galaxy

Table 1: A concise description of the features of dark and baryonic matter.

of years and involve thousands of progenitors. Providing a description of all the progenitors of any galaxy is simply
an impractical task. A good way to approach this choice is by constraining the number of progenitors of a galaxy
(subhalo) and providing their corresponding properties only for a subset of the cosmic time. This is done keeping
in mind that even though a subhalo may have thousands of progenitors and continuously morphs through multiple
collisions and accretions, only a few of its progenitors play an overwhelming role in its overall shape and so only
these few progenitors are sufficient to indicate the overall lineage of the subhalo. A partial merger history is choosing
how far to travel along the main branch of a galaxy. As shown in Figure 3, the morphology of a galaxy at some
redshift, is the result of evolution along many branches, but its protogalaxies along the main branch can adequately
trace the history of a galaxy.

An alternate approach is to provide the algorithm with only a few random snapshots of the universe corresponding
to different look-back times. In this approach, merger history need not be provided. The algorithm learns the under-
lying generative model which can be subsequently used to infer the morphology of galaxies at different redshifts. The
motivation behind this is the drastic reduction in the dimensionality of the dataset. This then reduces the computation
time.

In this paper, we find the set of progenitors of a galaxy along the main branch between redshift 0 and 0.5 sufficient
for our purposes. We provide progenitor history in our first approach. In our second approach to model the relation
between dark and baryonic matter, we do not provide progenitor history at all. The dataset construction is described
in detail in §4.3. We compare and contrast the results of our approaches in §5.

The added advantage of using a graphical model is the greater interpretability. SPNs augment this by allowing
probabilistic semantics even when there are no conditional dependencies present [8], while guaranteeing inference in
time linear in tree width of the network. In the next section, we briefly review SPNs. We generate the dataset using
the results of the Eagle suite of smoothed particle hydrodynamical simulations [36].

3.1. Tractable Probabilistic Graphical Models

Computing the modes and marginals of a probability distribution efficiently while learning the underlying dis-
tribution accurately is the main challenge of probabilistic modeling. This is more often than not done by exploiting
the inherent relations present in the dataset to learn a joint distribution. However, inference remains the primary
bottleneck in probabilistic modeling; in general, inference in Bayesian networks is intractable [11, 10].

3.1.1. Sum Product Networks
A graphical model represents a probability distribution over a d dimensional vector x, where x ∈ X, as a product

of factors φk such that P(X = x) = 1
Z Πkφk(xk), where Z is the partition function and φk is a function over a subset xk :

k = 1, 2, 3,. . . , d.
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While the representation is expressive and compact, practical realizations of graphical models often fail to take
advantage of their generative nature due to the computation cost of computing an intractable partition function, Z,
which itself is made up of an exponential number of terms, Z = Σx∈XΠkφk(xk). This immediately results in intractable
inference queries.

Sum Product Networks ameliorate this problem by imposing certain restriction on the nodes in the graph. In
its simplest description, SPNs are directed acylic graphs with alternate layers of sums and products. SPNs can be
recursively defined as follows [32]:

• A (tractable) univariate distribution is an SPN

• A product of SPNs over disjoint variables is a SPN

• A weighted sum of SPNs over the same set of variables is a SPN.

Formally:
Let X = {X1, · · · Xn} be a set of variables. A Sum-Product Network (SPN) defined over X is a rooted directed

acyclic graph. The leaves are indicators [Xp = ·], where the indicator function [.] has value 1 when its argument
is true, 0 otherwise. The internal nodes are sum nodes and product nodes. Each edge (i, j) from sum node i has a
non-negative weight wi j. The value of a sum node is

∑
j∈Ch(i) wi jv j, where Ch(i) is the children of i and v j is the value

of its jth child. The value of a product node is the product of the values of its children. The value of an SPN is the
value of its root.

We use S to denote an SPN as a function of the leaves. Let x be an instantiation of the indicator variables, that is,
a full state. Let e be the evidence (partial instantiation). For a given node i, we use S i to denote the sub-SPN rooted at
i. Also, we use xa

p to mean [Xp = a] is true, and use x̄a
p to mean its negation. We are interested in learning SPNs with

the following properties:

• Validity: A SPN is valid if and only if it always correctly computes the probability of evidence: S (e) = ΦS (e),
where ΦS (e) is the unnormalized probability of e.

• Consistency: A SPN is consistent if and only if for every product node i, there is no variable Xp that has
indicator xa

p as one leaf of the sub-SPN S i and indicator xb
p with b , a as another leaf.

• Completeness: A SPN is complete if and only if all children of the same sum node have the same scope. (The
scope of an SPN is the set of variables in ~X that the indicators of an SPN are defined on)

• Decomposability: A SPN is decomposable if and only if the children of every product node have disjoint
scopes.

To ensure the tractability at the root node, the descendant sum nodes are forced to have children nodes with
identical scope, where the scope of a node is defined as the set of variables encoded in that node, while the descendant
product nodes must have children with disjoint scopes. It is easy to see that a sum node is a symbolic mixture model
made from the decomposable product nodes with leaf nodes at the bottom attached to univariate distributions. The
parameters of the networks are the priors over the mixture components in the sum node. This allows the computation
of the partition function to remain tractable, which in turn, allows exact inference.

3.2. Structure Learning

Typically, the network can be learned in two ways. The first method involves initializing a random SPN and then
estimating the parameters (the weights) of the network from the data either discriminatively as shown in [13], or
generatively as described in [14]. For the former case, stochastic gradient descent is usually applied to estimate the
parameters of the network. The pervasive gradient diffusion problem in layered networks [17] can be overcome by
doing hard expectation-maximization (EM). For the generative case, expectation-maximization is generally employed
to learn the weights. Once the weights have been learned, unnecessary edges and nodes can be pruned away.

The size, shape and the weights of the network can also be learned from the data itself. To build a valid SPN such
that the conditions of decomposability and completeness are satisfied, instances and variables are recursively split
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and partitioned. Sum nodes are assigned to the clusters of instances using any of the cluster estimation algorithms,
whereas independence tests are usually employed to partition variables and assign them to product nodes. Leaf nodes
are assigned to univariate distributions. We learn generatively with the leaf nodes of our SPN explicitly encoded
to contain univariate Bernoulli distributions. This is however not a strict requirement: as shown in works such as
[27, 28, 33, 18, 7], SPNs can also be learned online with Gaussian, Poisson and other distributions.

4. Empirical Evaluations

4.1. Simulation overview

The suite of Eagle simulations [36] uses a modified version of Gadget3 hydrodynamical code, last described
in [39], to evolve resolution elements in boxes of size 12, 25, 50 and 100 comoving mega parsecs (cMpc) on a
side. The cosmology employed in the simulations is consistent with the results of [31], where ΩΛ = 0.693, Ωm =
0.307, Ωb = 0.04825, σ8 = 0.8288, ns = 0.9611, h = 0.677, where, ΩΛ,Ωm,Ωb, σ8, ns, h stand for the contributions to
matter/energy content of the universe from cosmological constant, matter, baryons respectively, h is the dimensionless
Hubble parameter, ns is the spectral index of the primordial power spectrum while σ8 is the rms amplitude of the linear
mass fluctuations. High resolution simulations correspond to simulations with an initial baryonic particle mass of mg

= 2.26 x 105 M� while intermediate resolution simulations have a higher initial baryonic particle mass, mg = 1.81∗106

M�, where M� is 1 solar mass.
The key run of the simulations, which we use in this paper, the Fiducial Ref-L0100N1504 simulation is an interme-

diate resolution simulation with periodic box with a volume of (100cMpc)3, initially containing 15043 gas particles,
with an initial mass of 1.81 ∗ 106 M� and the same amount of dark matter particles with 9.70 ∗ 106 M�.

Substructures, like galaxies, in Eagle simulations were identified using the the standard SUBFIND algorithm
(developed in [40]). Galaxies were defined as gravitationally bound subhalos and identified using three steps. First,
halos were identified by running the Friends-of-Friends algorithm (FOF) [29] on the dark matter particles with linking
length 0.2 times the mean interparticle separation. Gas and star particles are assigned to the same, if any, halo as their
nearest dark matter particles. Second, SUBFIND defines substructure candidates by identifying overdense regions
within the halos bounded by saddle points in the density distribution. Finally, particles that are not gravitationally
bound to the substructure are removed and the resulting substructures are referred to as galaxies.

The simulations themselves have a finite resolution and are generally not reliable on lower mass range of satellite
galaxies and dwarf halos; the physics on lower scales is more influenced by feedback effects and stellar winds which
are poorly understood and have no analytic solutions. The properties of low mass galaxies are not entirely reliable
due to the finite resolution of the simulations. In general, many galaxy properties are unreliable below a stellar mass
of 109 M�. Due to this, we only select central galaxies with halo mass above 1010 M�. For a more comprehensive
discussion on the parameters of the simulation, we refer the readers to [36].

4.2. Feature Engineering

Physical processes critical to galaxy formation and evolution such as core collapse supernovae, accretion shocks,
stellar winds, involve multiple sets of partial differential equations [38] such that modeling structure formation be-
comes extremely difficult. The already intractable complexity of this problem is further compounded by the addition
of approximations of physical phenomena which cannot be derived ab initio. This is where the dependence between
baryonic matter and dark matter can be exploited in a probabilistic machine learning setting to generate mock catalogs
of galaxies. If baryonic matter and dark matter are modelled as random variables, then a joint distribution over these
random variables can give a very good indication of the dynamical co-evolution of the universe. But this again is a
complex task since the effectiveness of any machine learning algorithm dramatically increases with a good choice of
features. This crucial aspect of probabilistic modeling plays a more pronounced role in rich, high dimensional datasets
such as cosmological simulations since these simulations essentially take snapshots of the state of particles, the state
of any particle itself is an aggregate of multiple non-linear couplings between various physical processes. The choice
of features to make up the input space of machine learning algorithms rests solely on the domain knowledge. The
domain here is the universe, a universe where majority of the energy content is completely dark and the properties of
the overwhelming majority of matter is a mystery and the features of the remaining matter are only finitely resolvable.
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To better illustrate the difficulty of the problem, let us consider a simple toy example: assume that a galaxy is
a system with just four components: dark matter halo, stellar halo, central black hole and stellar bulge. Suppose
we further fix the location of the central black hole of a galaxy as the starting point of a galaxy. In this simplistic
scenario, the answer to the question: what is the size of a galaxy or equivalently, where does a galaxy end?, is reduced
to heuristics. To answer this question, we normally assume that the galaxy with all its components are in a state of
equilibrium. This leads to definition of a virialized state of that system such that the virial radius of the galaxy can act
as a representative of the galaxy size. But, can virial radius, established under the assumptions of lack of perturbations,
be a good indication of the size of a galaxy like Milky Way, which at the moment is undergoing tidal stress and is on
a collision course with Andromeda Galaxy? It is obvious that making a generative model of dark and baryonic matter
so as to understand the overall matter distribution in the universe and using it to learn the mapping between dark and
baryonic matter is not a trivial task. To reiterate the point let us consider another example. If we take into account that
star formation rate peaked at redshift 1∼2, see [25] for stages of evolution in cosmology, while the first stars were born
just 200 million years after the Big Bang, then an interesting formulation of the task is defining the word partial. If
we are to predict the the baryonic content of a halo using at any redshift using the halo merger history, then modeling
the dynamical evolution of the galaxy depends, in no small measure, on the kind of history provided.

Overall, the baryonic features we model as random variables are: mass of central super massive black hole, stellar
mass, velocity dispersion and the maximum of circular velocity of the galaxy, which are described below, followed
by a short description of dark matter features.

4.2.1. Black Hole Mass
The Eagle simulations implement a quasar mode active galactic nuclei feedback to model black hole with black

hole seeds only planted in halos with masses more than 1010 M�h-1, that do not already contain a black hole. The
black hole grows through mergers and accretion.

4.2.2. Stellar Mass
The stellar mass of the central galaxies is chosen to be the mass contained within a 3 dimensional aperture centred

on the minimum of potential of that galaxy. In this paper, we use stellar mass within an aperture of size 30 proper
kiloparsecs to describe the stellar content of the galaxy. As shown in Figure 1, the galaxy stellar mass function
produced in the simulations corresponds well with the observations from Galaxy And Mass Assembly [3] and SDSS
[22] surveys.

4.2.3. Velocity Dispersion
The Eagle simulations model the velocity dispersion of the stars as

√
2Ek/3M, where the kinetic energy, Ek and

mass M, is calculated for all the stars within a spherical 30 physical kiloparsecs aperture centered on the galaxy’s
center of potential.

4.2.4. Maximum of Circular Velocity

The maximum value of the circular velocity (hereafter Vmax) is derived through vc(r) ≡
√

GN M(<r)
r , where M(< r)

is the mass enclosed within a sphere of radius r.

4.2.5. Mass Critical 200
The halo mass, M200, is defined as the total mass contained within the virial radius R200,

4.2.6. Radius Critical 200
The corresponding radius term for Mass Critical 200 is Radius Critical 200 (R200). Formally, it is the physical

radius within which the mean density is 200 times the critical density of the universe.
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4.2.7. Halo Group Mass
The halo features, Radius Critical 200 (R200) and Mass Critical 200 (M200), we use were derived by placing a

sphere at the minimum of gravitational potential centered on the central galaxy. The halo group mass is the aggregate
mass of all the dark matter subhalos within a group while the number of subhalos refers to the number of galaxies
inside a halo. As previously noted in §4.1, the (sub)halos within a group were identified through SUBFIND and FOF
algorithms. The halo group mass is the aggregate mass of all subhalos within any group.

4.3. Dataset Construction
Since our method involves two different approaches, we construct four datasets by querying both the fiducial and

dark matter-only models in the database for the properties of sub-halos (galaxies) with their corresponding dark matter
halos and halos only.

The first approach, where we provide a merger history, corresponds to Dataset 1 and Dataset 3.
With Dataset 1, we provide SPNs with a selection of properties of the central galaxy at zero redshift in each halo

along with a description of their corresponding central subhalo merger history from redshift 0 to redshift 0.50. This is
equivalent to providing the halo history for approximately the last 5 billion years. The merger tree was traversed only
along the main branch, see Fig.3, of every galaxy.

Figure 3: Merger history of a galaxy with stellar mass, Mstar > 105 M�. Figure taken from the Eagle Database [26]. As described before, a galaxy
at the present time, is the result of mergers of multiple galaxies over the course of billions of years. Redshift 0 corresponds to the present day,
while redshift 10 corresponds to a lookback time of 12 Gigayears. The merger history of a galaxy usually follows a main progenitor branch. The
Eagle simulations model the merger history as shown in the figure, where the Descendant ID represent a galaxy at a specific point in time, while
the TopLeafID represents the first progenitor of that galaxy along the main branch. The main progenitor branch is indicated with a thick black line,
all other branches with a thin line. To get the merger history, we only traverse along the main progenitor branch.

The galactic properties we model are the mass of its central black hole, stellar mass, velocity dispersion of the
stars and the maximum of the circular velocity rotation curve of the galaxy.

Dataset 3 was generated in a similar way through the Dark Matter-Only snapshots in the Eagle simulations. In
Dataset 3, we only use halo properties and halo merger histories, from redshift 0 to redshift 0.50, as inputs and query
for properties redshift 0. The common factors in Dataset 1 and Dataset 3 are the halo properties and merger histories.

Through the second approach, corresponding to Dataset 2 and Dataset 4 where halo history was not provided at
all, SPN builds generative models of matter distribution out of snapshots.

Dataset 2 and Dataset 4 were generated again from the fiducial and the dark matter-only run. These datasets
contain the same properties of galaxy-halo systems and only halos as in the first approach, but between redshifts 3.5
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to 1.7 respectively. We chose this particular redshift range so that our dataset can better model the universe since
the peak of star formation rate is generally supposed to have occurred within this regime [25]. The generative model
created by training the machine on the values between these particular redshifts were tested by querying for the values
of the corresponding properties at redshift 0. We wanted to see how well the SPN picks up on the underlying matter
distribution of the simulated universe, when given only the state of cosmic web at different redshifts. The ulterior
motive for using the dark matter-only runs was to see how well the algorithm approximates the N-body calculations.
The dark matter-only simulations use gravity as the governing law for evolution of billions of particles. Since there
is no analytic solution for this case and convergence is usually established through the use of energy or momentum
conservation laws, so we can, to some extent, see how well SPNs can approximate the convergence.

5. Analysis

In this section, we present and discuss the results that were obtained when we applied the algorithm to the Eagle
data. Using the dark matter internal halo properties as our inputs, the following baryonic features were are predicted:
black hole mass, stellar mass of the galaxies, velocity dispersion and Vmax. These attributes are the result of evolution
over billions of years through dissipative, nonlinear baryonic processes. As discussed earlier, the overall picture of
large scale structure formation is the ΛCDM model; but, on smaller scales, the details are incredibly rich and vastly
more complicated.

In Fig 4 we first show the performance of SPNs in reproducing the simulated properties of the galaxies in Eagle
and subsequently follow it up by discussing the implications of our results for the halo-galaxy connection. We use the
following statistics to quantify the effectiveness of SPNs in predicting the galaxy properties.

• First, we use the standard mean squared error (MSE) metric, which is defined as:

MS E =
1

Ntest

i=Ntest−1∑
i=1

(
Xi

test − Xi
predicted

)2
(3)

Here, Xi
test is the ith value of the test set, Xi

predicted is the ith value of the predicted set and Ntest is the size of the
test set.

• The Pearson correlation coefficient is perhaps the most widely used measure for linear relationships between
two normal distributed variables and thus often just called ”correlation coefficient”. The Pearson correlation co-
efficient measures the linear relationship between two variables. Usually, the Pearson coefficient is obtained via
a Least-Squares fit and a value of 1 represents a perfect positive relationship, -1 a perfect negative relationship,
and 0 indicates the absence of a relationship between variables.

For two variables X and Y:
ρ =

cov(X,Y)
σxσy

(4)

with cov(X, Y) as the covariance between X and Y and σx and σy the standard deviations of X and Y respec-
tively.

The estimate:

r =

∑n
i=1(xi − x)(yi − y)√∑n
i=1(xi − x)2(yi − y)2

(5)

where xi, yi, denote the ith element of the vector X and Y.

x, y are the respective means of X and Y.

• The Coefficient of Determination is defined as:

R2 = 1 −

∑
i(Xi

test − Xi
predicted)2∑

i(Xi
test − Xmean,train)2

(6)
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Figure 4: The structure of the SPN for Dataset 1. The SPN has 143 edges with 144 nodes in 20 layers. The network has 19 sum nodes, 40 product
nodes and 85 leaf nodes. Each leaf node contains a univariate Bernoulli distribution. The single node at the top is the root sum node. The structure
took 149 seconds to be learned

Once the SPN has captured the joint distribution over all the variables in the dataset at its root node, it can be
easily queried for conditional and marginal likelihoods for any random variable like stellar mass or mass of central
black hole. The root node in SPN can also be sampled to generate synthetic datasets that follow the learned joint
distribution.

Tables 2 and 3 clearly show that there is not much difference in the errors between the two approaches. The
computation time taken to learn the joint distribution however, is much less when just snapshots are provided. So
merger histories of halos do not really play much role in building richer models. Tables 4 and 5 are analogous, but for
dark matter properties only.

The results shown in Tables 2, 3, 4, 5 demonstrate that SPNs are able to recreate mock catalogs with properties
strikingly similar to those produced by extensive hydrodynamic codes. The baryonic properties which are heavily

Table 2: Dataset 1: The structure of SPN for this dataset was learned in 847.6 seconds. Progenitor history was provided.

Feature MSE R2 Accuracy Score PearsonR
Central Black Hole Mass 0.041714 0.464182 0.958286 0.743506
Stellar Mass 0.019964 0.732150 0.980036 0.870518
Velocity Dispersion 0.118812 0.464540 0.881188 0.727086
Vmax 0.065533 0.680239 0.934467 0.837789

Table 3: Dataset 2: The structure of SPN for this dataset was learned in 144.7 seconds. Only random snapshots were provided.

Feature MSE R2 Accuracy Score PearsonR
Central Black Hole Mass 0.039717 0.469593 0.960283 0.735701
Stellar Mass 0.019542 0.727792 0.980458 0.867607
Velocity Dispersion 0.107178 0.512861 0.892822 0.751796
Vmax 0.055159 0.728921 0.944841 0.863211

Table 4: Dataset 3: The structure of SPN for this dataset was learned in 1890.15 seconds. Dark Matter Only run with halo history.

Feature MSE R2 Accuracy Score PearsonR
Number of Subhalos 0.053304 0.442150 0.946696 0.701084
Halo group Mass 0.014672 0.799276 0.985328 0.905383
M200 0.005449 0.929433 0.994551 0.965560
R200 0.012702 0.938336 0.987298 0.969134
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dependent on mass are predicted extremely well. This is the direct consequence of gravity being the most dominant
force at large scale. The mass of the central black hole and the stellar content of a galaxy, given by stellar mass, is
linearly dependent on the mass of the halo, M200 around it. Velocity Dispersion and Vmax are implicitly governed by
kinetic and potential energies which are in turn, dependent on mass and radius. The predicted and true distributions
are almost identical in the case of stellar mass and mass of central black hole.

A striking feature is the inability of progenitor history to increase the accuracy of the predictions, even at the cost
of increased computation time. As we can see from Tables 2 and 3, the mean squared errors for stellar mass of a
galaxy when the progenitor history is provided is 0.019964, while the mean squared error when no progenitor history
is provided is 0.019542. The contrast becomes more pronounced when we compare the computation time taken by
our algorithm. For Dataset 1 and Dataset 2, the time taken for the same computation is 846 seconds and 144 seconds.
This clearly shows that even though large scale structure can only grow hierarchically through mergers over cosmic
time, progenitor history does not play any significant role in predictions.

The same is true for dark matter-only runs. Table 4 gives the result for dark matter-only simulation with progenitor
history of halos provided to SPNs, while Table 5 delineates the result when halo history is not provided. As we can see
in the mean squared errors for number of subhalos and halo group mass, there is not even an appreciable difference in
errors, while learning the structure of SPN to model the joint distribution takes drastically more time with Dataset 3,
relatively to the computation time taken by Dataset 4.

Overall, we get somewhat surprising results. Numerical simulations evolve many gaseous interactions on an ad
hoc basis and the baryonic physics is vastly complicated. We did not really expect the algorithm to pick up so well
on the galaxy halo relation. However it is important to note that our model is purely a phenomenological one. Unlike
hydrodynamics, machine learning does not presume a relation between dark matter halos and the galaxies in it. This
implies that machine learning can never be used as a replacement for numerical simulations, instead it can be used as a
tool to study galaxy-halo connection and explore the influence of different simulation physics, like the one employed
in semi-analytic modelling, to explore structure formation in the universe.

6. Conclusions

We performed an empirical study of the relation between dark matter halo and the corresponding galaxies it
encloses through the use of a tractable probabilistic graphical model, sum product network, in the backdrop of one of
the largest hydrodynamic simulations of cosmology.

The core underlying physics is the dependence of baryonic matter like stars and galaxies on dark matter. Dark
matter itself cannot be seen by any form of instruments. We only infer the presence of dark matter. Dark matter itself
must be modelled through simulations and the properties of dark matter must be defined through heuristics. This is
where simulations are necessary to generate the dataset. Without the simulation, we will not have any dataset to begin
with. But on the other hand, a full simulation will take hours to complete. To this end, we showed that given the data
from a partial simulation, SPNs can provide a generative model for full simulation. So, one possible idea for future
work is to let a simulation run for a small amount of time and then train SPNs to generate newer data.

The goal of this project was not to construct a numerically identical population of galaxies, but to explore how
much information can be extracted from dark matter properties about the eventual evolutionary properties of galaxies.
The conclusion seems to indicate that SPNs can clearly mimic the evolution of galaxies in a hydrodynamic setting.
Furthermore, the runtime of SPN is of the order of minutes, in sharp contrast to millions of hours spend by numerical
simulations. Challenges for the future include using more advanced algorithms to fully explore the extent to which

Table 5: Dataset 4: The structure of SPN for this dataset was learned in 149.5 seconds. Dark Matter Only run with just snapshots.

Feature MSE R2 Accuracy Score PearsonR
Number of Subhalos 0.051744 0.464274 0.948256 0.714493
Halo group Mass 0.015195 0.793547 0.974805 0.914319
M200 0.004964 0.933783 0.994036 0.963175
R200 0.010756 0.947684 0.989244 0.973857

12



machine learning can be assimilated in cosmology. Potential applications of such an extended framework include a
new approach to obtaining a halo mass function, which can be directly tested against existing fitting formulae adopted
by analytic approaches. A second interesting avenue is the use of machine learning to compare and contrast different
cosmologies. If we train machines to learn galaxy-halo connection based on the concordance model, then the trained
model can be tested to see how well it can explain baryonic features generated by other parametrizations of the Big
Bang theory. A further ambitious project lies in using machine learning to constrain cosmological parameters using
weak lensing data or deep sky surveys. In this regard, tractable probabilistic models such as probabilistic sentential
decision diagrams (e.g [20]) that permit the structure learning process to incorporate symbolic constraints may be
particularly useful.
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