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Let (G, G ) be a reductive dual pair in Sp(W) with rank G ≤ rank G and G semisimple. The image of the Casimir element of the universal enveloping algebra of G under the Weil representation ω is a Capelli operator. It is a hermitian operator acting on the smooth vectors of the representation space of ω. We compute the resonances of a natural multiple of a translation of this operator for small split orthosymplectic dual pairs. The corresponding resonance representations turn out to be GG -modules in Howe's correspondence. We determine them explicitly.

Introduction

The notion of resonances originated in the '30s in Quantum Mechanics. As described in [START_REF] Harrell | Perturbation theory and atomic resonances since Schrödinger's time[END_REF], the story goes back to 1926, when Schrödinger studied the Stark effect, i.e. the shifts caused to hydrogen's emission spectrum by the application of a constant field. The hydrogen Stark Hamiltonian is the unbounded operator on L 2 (R 3 ) given by

H = ∆ - 1 |x| + κx 1
where κ ≥ 0 is the electrical field strength and the field acts in the x 1 -direction. In Schrödinger's model, the energies were the eigenvalues of H and the model was based on eigenfunction expansions. This work was received with great enthusiasm by many physicists of the time. For example, Epstein's 1926 article in Nature, see [START_REF] Epstein | Schroedinger's quantum theory and the stark effect[END_REF], considered it to be "of extraordinary importance". It had great influence on modern physics. Nevertheless, Schrödinger's analysis contained a mistake: the hydrogen Stark Hamiltonian has no eigenvalues if κ > 0. This absence of eigenvalues was first noticed by Oppenheimer in 1928. Oppenheimer did not prove it, but referred for the proof to a work of Weyl, where there was no proof either. Finally, in 1951, Titchmarsh proved that the Stark Hamiltonian has no eigenvalues. The "phantom eigenvalues" in the Stark effect are in fact resonances and the "eigenfunction expansions" are resonant state expansions. Resonances are discrete spectral data, which might replace eigenvalues for differential operators with a continuous spectrum. Rigorous mathematical approaches to resonances were formulated only in the '70s and '80s. Consider for example a Schrödinger operator H = ∆ + V on L 2 (R n ). Here ∆ = -n j=1 ∂ 2 ∂x 2 j and V is a potential acting as a multiplication operator. Under suitable assumptions, H is an unbounded self-adjoint operator on L 2 (R n ) with continuous spectrum [0, +∞). For ζ ∈ C \ [0, +∞[, the resolvent of H, i.e. R H (ζ) = (H -ζ) -1 is a bounded operator on L 2 (R n ), depending holomorphically on ζ. As an operator on L 2 (R n ), R H (ζ) has no analytic extension across the spectrum of H. But we can replace L 2 (R n ) by a smaller dense subspace, like C ∞ c (R n ) and consider the map

C \ [0, +∞) ζ -→ R H (ζ) = (H -ζ) -1 ∈ Hom(C ∞ c (R n ), C ∞ c (R n ) *
) , which might have some continuation across [0, +∞), possibly to a Riemann surface. If the continuation is meromorphic, then the poles are called the resonances of H.

It turns out to be convenient to replace the variable ζ ∈ C \ [0, +∞) with z ∈ C + = {w ∈ C : Im w > 0} by substituting ζ = z 2 . Define

R(z) = R H (z 2 ) = (H -z 2 ) -1 .
The problem of meromorphic extension of R H as a function of ζ ∈ C\[0, +∞) is equivalent to that of R as a function of z ∈ C + .

The theory of resonances of H = ∆ + V appears naturally in many branches of mathematics, physics and engineering. We refer to [START_REF] Dyatlov | Mathematical theory of scattering resonances[END_REF] for more information.

The study of resonances of differential operators was extended beyond Euclidean settings. The most investigated situations concern the Laplacian on a complete noncompact Riemannian manifold with bounded geometry, such as hyperbolic and asymptotically hyperbolic manifolds, symmetric or locally symmetric spaces (mostly of rank 1). This is motivated by applications to geometric scattering, spectral theory, trace formulas, PDE's, and dynamical systems.

Riemannian symmetric spaces of the noncompact type are attractive because they have a well understood geometry, a well developed Fourier analysis (the Helgason-Fourier transform) and allow using tools from representation theory. Recall that such a space is of the form G/K, where G is a connected noncompact real semisimple Lie group with finite center and K is a maximal compact subgroup of G. The left-regular representation L of G on L 2 (G/K) decomposes into isotypic components according to

L 2 (G/K) = a * L 2 (G/K) π iλ dλ c(iλ)c(-iλ)
where a is Cartan subspace of the Lie algebra g of G, π iλ is the unitary principal series representation of G of parameter λ ∈ a * and c(iλ) is Harish-Chandra's c-function. This decomposition is realized via the Helgason-Fourier inversion formula:

f (x) = a * (f × ϕ iλ )(x) fπ iλ (x) dλ c(iλ)c(-iλ) (f ∈ C ∞ c (G/K)) , (1) 
where ϕ iλ is the spherical function of spectral parameter iλ and × denotes the convolution of functions on G/K. Let U(g) be the enveloping algebra of g, U(g) G the subalgebra of G-invariant elements and let C ∈ U(g) G be the Casimir element. Then ∆ = L(-C) is the (positive) Laplacian on G/K. It is an essentially self-adjoint unbounded operator on L 2 (G/K), with continuous spectrum [ρ 2 X , +∞[, where ρ 2 X is a positive constant. It acts by the scalar λ, λ + ρ 2 X on L 2 (G/K) π iλ . Hence ∆ -ρ 2 X has continuous spectrum [0, +∞) and acts by the scalar λ, λ on L 2 (G/K) π iλ . The resolvent R(z) = (∆ -ρ 2 X -z 2 ) -1 is a holomorphic function of z ∈ C + , with values in the space of bounded operators on L 2 (G/K). It extends meromorphically from C + to C (or to a Riemann surface over C) by considering it as an operator on C ∞ c (G/K). The explicit decomposition of L in (1) yields for z ∈ C + and f ∈ C ∞ c (G/K): (-iλ) .

R(z)f (x) = a * 1 λ, λ -z 2 f π iλ (x) dλ c(iλ)c
A meromorphic extension of R(z) may exist because the terms in the integrand admit a meromorphic extension in λ ∈ a * C . Namely: (1) {π iλ ; λ ∈ a * } ⊂ {spherical principal series representations π λ , λ ∈ a * C };

(2) f π λ = f × ϕ λ exists and is a Paley-Wiener type function of λ ∈ a * C ;

(3) the Plancherel density 1 c(iλ)c(-iλ) extends as a meromorphic function in a * C ; (4) 1 λ,λ -z 2 is meromorphic in a * C . Suppose that the resolvent has a meromorphic extension to C, as it does in the real rank-one case, see e.g. [START_REF] Miatello | The residues of the resolvent on Damek-Ricci spaces[END_REF][START_REF] Hilgert | Resonances and residue operators for symmetric spaces of rank one[END_REF], and let z 0 be a resonance. Since the Laplacian is G-invariant, the group G acts on the residue space

Res z=z 0 R(z)f ; f ∈ C ∞ c (G/K)
by the left-regular action. This is the resonance representation at z 0 .

To summarize, for the Laplacian on G/K we have:

(1) a unitary representation L of a reductive Lie group G, (2) a differential operator L(-C + constant), where C is the Casimir element;

(3) a representation of G at each resonance of L(-C + constant). It seems natural to replace L by an arbitrary unitary representation ω of G and study the resonances and the associated representations for ω(-C + constant) .

Consider a reductive dual pair (G, G ) in the sense of Howe (see section 4 for definitions) in a symplectic group Sp(W). Let U(g) denote the universal enveloping algebra of g, and similarly for g . Let ω denote the Weil representation of the metaplectic group Sp(W) corresponding to a fixed unitary character of R. Then the G-invariants U(g) G and Ginvariants U(g ) G are mapped by ω onto the same algebra of operators:

ω U(g) G = ω U(g ) G .
(2)

Any operator in this algebra is called a Capelli operator. The equality (2) is a consequence of [START_REF] Howe | Remarks on Classical Invariant Theory[END_REF]Theorem 7]. See also [START_REF] Przebinda | The duality correspondence of infinitesimal characters[END_REF] and [Ito05, (0.1)]. Suppose that G is semisimple. Then U(g ) G contains a well-defined Casimir element C . From the above equality, we know that there is C ∈ U(g) G such that ω(C ) = ω(C ). Moreover, C is unique because rankG ≤ rankG (see [START_REF] Przebinda | The duality correspondence of infinitesimal characters[END_REF]). In the example

of (O 1,1 , Sp 2 (R)), we have C = h 2 -1, where h = 0 1 -1 0 is a basis of o 1,1 ; see (15).
For the dual pairs

(Sp 2 (R), O p,p ), we have C = C -(p -1) 2 + 1, where C is the Casimir operator of Sp 2 (R); see (46).
The Capelli operator C + we study in this paper is a natural multiple of a translation of ω(C ) = ω(C ). It is chosen so that its continuous spectrum is [0, +∞). Furthermore, we consider orthosymplectic dual pairs (G, G ) with the rank of G or G equal to 1 and the orthogonal group is of the form O p,p . Our goal is to determine the resonances of the Capelli operator C + as an unbounded operator on the Hilbert space of ω. We use the easier of the two groups in the dual pair, which is G in our notation, to obtain the spectral analysis of the operator C + , the meromorphic continuation of its resolvent and the resonance representations as G-modules. We could have tried to do the analysis of resonances of ω(C ) working with the more difficult group G . Nevertheless, since ω(C ) = ω(C ) and because of Howe's correspondence, we do not have to do it: the result would be the same. This paper is organized as follows. In section 2 we outline the general idea of resonances for an operator of the form ω(C) where ω is a unitary representation of a Lie group E and C ∈ U(e) E , where e is the Lie algebra of E. In section 3, we provide a complete analysis of the resonances and residue representations for the Capelli operator C + for the dual pair (O 1,1 , Sp 2 (R)). The case (O 1,1 , Sp 2n (R)) with n > 1 could be treated in a similar way, but the description of the resonance representations would be less explicit. In section 4 we show how to decompose the restriction of the Weil representation to the smaller member of an orthosymplectic dual pair in the stable range. Finally, in the last section we apply the results of section 4 to the dual pair (Sp 2 (R), O p,p ) with p ≥ 2 and study the resonances and the associated resonance representations of C + . In Appendices A and B we recall some facts about the Weil representation.

Abstract resonances

Let E be a real Lie group with Lie algebra e and let (ω, V) be a unitary representation of E. Let (•, •) V denote the inner product of V and • V the associated norm. We denote by V ∞ the space of C ∞ -vectors for (ω, V). It consists of the elements v ∈ V for which the map

E g → ω(g)v ∈ V is C ∞ .
Let U(e) denote the universal enveloping algebra of the complexification of e. For short, the derived representation of U(e) acting on V ∞ will be indicated by the same symbol ω (in place of dω):

ω(X)v = d dt ω(exp(tX))v t=0 (X ∈ e, v ∈ V ∞ ) . (3) 
As shown by Segal in [Seg59], V ∞ is the largest subspace of V on which all the ω(u), u ∈ U(e), are defined (even if a specific ω(u) may be extended to a larger domain in V).

The space V ∞ has a topology defined by the family of seminorms {p D ; D ∈ U(e)} where

p D (v) = ω(D)v V for v ∈ V ∞ .
Then ω is a smooth representation of E on the Fréchet space V ∞ . For every u ∈ U(e), the operator ω(u) with domain V ∞ is closable, with closure denoted by ω(u). Let E 0 denote the identity connected component of E and let D be an E 0 -invariant dense subspace of V contained in V ∞ . Poulsen proved (see [START_REF] Poulsen | On C ∞ -vectors and intertwining bilinear forms for representations of Lie groups[END_REF]p. 91 and Corollary 1.2]) that ω(u) = ω(u)| D . This is useful because, despite the fact that V ∞ is a natural domain for the operators ω(u), for practical purposes, it might be convenient to work on smaller dense domains. The above property says that the choice of the (group invariant) dense domain inside V ∞ is immaterial.

Let u → u + denote the conjugate-linear involution of U(e) such that X + = -X for all X ∈ e. An element u ∈ U(e) is said to be hermitian if u

+ = u. For u ∈ U(e) and v, v ∈ V ∞ we have (ω(u)v, v ) V = (v, ω(u + )v ) V . So ω(u) * extends ω(u + ). For ζ ∈ C outside the spectrum σ(ω(u)) of ω(u) the operator R ω(u) (ζ) = (ω(u) -ζ) -1 : V → V
exists and is continuous. This is how we understand the resolvent of ω(u) at ζ. It is a holomorphic function on C \ σ(ω(u)) with values in the space of bounded linear operators on V.

A decomposition of ω into unitary representations leads to an explicit expression for R ω(u) . Indeed, suppose that the unitary representation (ω, V) of E decomposes as a direct integral

V = ⊕ E V π dµ(π) (4) 
of unitary isotypic representations V π of type π ∈ E, where the parameter set E is the unitary dual of E. (Recall that any unitary representation of a type I group on a separable Hilbert space has an essentially unique direct integral decomposition of the form (4), see e.g. [START_REF] Mackey | The theory of unitary group representations[END_REF]§2.4].) Notice that the support of the measure µ need not be the entire E.

Thus every element v ∈ V is represented by vectors v π ∈ V π and we will write this as

v = ⊕ E v π dµ(π) .
The inner product on V is given in terms of the inner products (•, •) π on the V π 's by

(u, v) = ⊕ E (u π , v π ) π dµ(π) ,
and the elements of V are precisely the measurable vector fields v : E → π∈ E V π which are square integrable, i.e. (v, v) < ∞. We identify two fields that are equal almost everywhere. For additional information on direct integrals and linear operators on them, see [Dix69, Chapitre II, §1-3] and [START_REF] Nussbaum | Reduction theory for unbounded closed operators in Hilbert space[END_REF]. The action of E on V diagonalizes according to:

(ω(g)v) π = π(g)v π (g ∈ E , π ∈ E) .
The following lemma was proved in [Arn76, Lemma 2].

Lemma 1. Keep the above notation and let {X j } be a basis of e. Then v = ⊕ E v π dµ(π) belongs to V ∞ if and only if the following two conditions are satisfied:

(1) v π ∈ V ∞ π for almost all π ∈ E;
(2) the fields (π(X i ) n v π ) are square integrable for every integer n ≥ 0. In this case, for every u ∈ U(e), we have

ω(u)v = ⊕ E π(u)v π dµ(π) .
A short argument based on Lemma 1 and the definitions involved proves the following corollary.

Corollary 2. Let (ω, V) be a unitary representation as above, with isotypic unitary decomposition V = ⊕ E V π dµ(π). Let u ∈ U(e) and let v = ⊕ E v π dµ(π) be in the domain of ω(u). Then the v π are in the domain of π(u) for almost all π and 

ω(u)v = ⊕ E π(u)v π dµ(π) .
v = ⊕ E v π dµ(π) ∈ V, R ω(u) (ζ)v = (ω(u) -ζ) -1 v = ⊕ E (π(u) -ζ) -1 v π dµ(π) . Since (π(u) -ζ) -1 v π π ≤ (ω(u) -ζ) -1 v π π for almost all π ∈ E by [Dix69, Ch. II, §2, 3 (1)], the operator (π(u) -ζ) -1 is bounded on V π for almost all π.
Let Z(e) denote the center of U(e). In [Seg59, Theorem and Corollary 3], Segal proved that if u ∈ Z(e) then the closure ω(u) of ω(u) is equal to the adjoint of ω(u + ). In particular, for every hermitian u ∈ Z(e), the operator ω(u) is essentially self-adjoint. The spectrum of ω(u) is therefore real. Likewise, the spectrum of π(u) is real for all π ∈ E.

The most important elements in Z(e) are the (quadratic) Casimir elements. Let B be a nondegenerate symmetric bilinear form on e that is invariant under the adjoint action of e on itself, i.e. B(ad X(Y ), Z) + B(Y, ad X(Z)) = 0 for all X, Y, Z ∈ e. (Usually, B is the Killing form if e is semisimple.) Let {X j } be a basis of e and let (b ij ) be the inverse of the matrix (b ij ) where b ij = B(X i , X j ). Then C B = ij b ij X j X k is the Casimir element associated with B. It is hermitian and belongs to Z(e) by the ad invariance of B. In fact, it belongs to U(e) E .

Remarks 1.

(1) The property of essential self-adjointness of ω(u) extends to other hermitian non-central elements of U(e). Suppose for instance that E is a noncompact semisimple Lie group with compact center and maximal compact subgroup K. Let U(e) K denote the subspace of K-invariant elements of U(e). Let D be an Einvariant dense subspace of V contained in V ∞ . Then the restriction ω(u)| D of ω(u) to D is essentially self-adjoint for every hermitian u ∈ U(e) K . See [Seg59, Corollary 3]. Nevertheless, there are hermitian u ∈ U(e) for which ω(u) is not essentially self-adjoint. We refer to to [Sch90, Section 10.2] for additional information and references, and to [START_REF]Symmetric nonself-adjoint operators in an enveloping algebra[END_REF] for some counterexamples.

(2) Recall that the Gårding subspace of V is defined as the subspace of V ∞ consisting of the finite linear combinations of the vectors ω(f

)v for f ∈ C ∞ c (E) and v ∈ V.
Here ω(f ) = E f (g)ω(g) dg and dg is a fixed left-invariant Haar measure on E. A remarkable theorem, proven by Dixmier and Malliavin [START_REF] Dixmier | Factorisations de fonctions et de vecteurs indéfiniment différentiables[END_REF], is that V ∞ coincides with the Gårding subspace of V. By Segal's infinitesimal version of Schur's lemma, if (π, V π ) is unitary and irreducible and u ∈ Z(e), then π(u) acts on V ∞ π as a real scalar multiple of the identity. This yields the following corollary.

Corollary 3. Let (ω, V) with V = ⊕ E V π dµ(π) be as above and let u ∈ Z(e) be hermitian. Then, for every π ∈ E there is a constant

λ ω(u),π ∈ R such that for all ζ ∈ C \ R and v = ⊕ E v π dµ(π) ∈ V, we have R ω(u) (ζ)v = (ω(u) -ζ) -1 v = ⊕ E (λ ω(u),π -ζ) -1 v π dµ(π) .
Considered as a bounded linear operator on V, the resolvent R ω(u) cannot be extended across the spectrum of ω(u). However, restricting R ω(u) (ζ) to a dense linear subspace U might allow it. More precisely, consider a linear topological space U, dense in V, endowed with a locally convex topology that is finer than the one induced from V, and let U the topological antidual space of U, i.e. the set of continuous conjugate-linear functionals on U. Endow U with the weak topology. We obtain the continuous inclusions

U ⊆ V ⊆ U , (5) 
where the inclusion V ⊆ U is the natural one, namely v ∈ V is identified with the functional U w → v, w ∈ C in U . A double inclusion as in ( 5) is often called a rigged Hilbert space (RHS), also known as an equipped Hilbert space, or a Gelfand triplet. We shall also consider the linear dual of U, denoted by U * , endowed with the weak topology.

If X is a manifold endowed with a regular Borel measure, and V = L 2 (X), then we have the antilinear isomorphism

L 2 (X) f → f ∈ L 2 (X). (6) Suppose that U = C ∞ c (X)
is the space of compactly supported smooth functions on X. Then (6) composed with the inclusion V = L 2 (X) ⊆ U gives a continuous linear embedding of L 2 (X) into C ∞ c (X) * . We obtain then the usual construction from distribution theory

C ∞ c (X) ⊆ L 2 (X) ⊆ C ∞ c (X) * .
Let us suppose that we are in this case, i.e. ω is a unitary representation of E on L 2 (X). We also suppose that ω(u) has spectrum equal to [0, +∞). We are then in a situation resembling the one of the introduction: considering the resolvent R ω(u) as an operator

C + ∈ z -→ Hom(C ∞ c (X), C ∞ c (X) * )
, it might admit a holomorphic or meromorphic extension across R (possibly to a Riemann surface). If the extension is meromorphic, then the poles of the meromorphically extended resolvent are the resonances of the operator ω(u).

Notice that this might not be the most general setting one can consider: it is the one suggested by the examples presented in the introduction, in particular the case of the Laplacian on Riemannian symmetric cases of the noncompact type. Moreover, even the choice of C ∞ c (X) is not canonical, but convenient to apply Paley-Wiener type theorems. Suppose now that u ∈ U(e) E . Then, for every z ∈ C + , the resolvent R ω(u) (z) intertwines the action of E via ω on C ∞ c (X) and the extended action (also called ω) on C ∞ c (X) * . Assume that the resolvent of ω(u) extends meromorphically across R and that z 0 is a resonance. The same happens for every meromorphic continuation of the resolvent.

The operator

C ∞ c (X) ∈ v -→ Res z=z 0 R ω(u) v ∈ C ∞ c (X)
* is called the residue operator at z 0 . Since ω is a representation (and hence strongly continuous)

ω(g) • Res z=z 0 R ω(u) = Res z=z 0 ω(g) • R ω(u) (g ∈ E) .
The group E therefore acts on the range of the residue operator. So this range is an E-module, called the residue representation. These are the objects we are studying in this article.

3. The pair

(O 1,1 , Sp 2 (R))
3.1. Action of the groups. The group O 1,1 is the subgroup of GL 2 (R) generated by SO 1,1 and the element

s = 0 1 1 0 , (7) 
where SO 1,1 is realized as the group of all matrices of the form

h a = a 0 0 a -1 (a ∈ R × ) . Then s 2 = 1 , sh a s -1 = h a -1 (a ∈ R × )
. The group structure of SO 1,1 together with this last relation determines the group structure of O 1,1 .

Identify

SO 1,1 h a ≡ a ∈ R × . The unitary dual SO 1,1 of SO 1,1 ≡ R × ≡ R >0 × Z/2Z consists of the characters χ ε,λ with ε ∈ {0, 1} and λ ∈ R, where χ ε,λ (h a ) = |a| iλ a |a| ε (a ∈ R × ) . For λ > 0, set π ε,λ = Ind O 1,1 SO 1,1 χ ε,λ . This is the two-dimensional irreducible unitary repre- sentation of O 1,1 = SO 1,1 sSO 1,1 determined by π ε,λ (h a ) = a |a| ε |a| iλ 0 0 |a| -iλ (a ∈ R × ) π ε,λ (s) = s .
Choosing ε, δ ∈ {0, 1}, one obtains four one-dimensional unitary representations of O 1,1 by setting

π 0;ε,δ (ηh a ) = det(η) δ χ ε,0 (h a ) (a ∈ R × , η ∈ {1, s}). Notice that π 0;0,1 (ηh a ) = det(η) is the determinant representation. These representations exhaust the unitary dual O 1,1 of O 1,1 .
Let X = M 1,2 (R) be the space of matrices consisting of one row of length two with real entries. We define an action ω 0 of the group SO 1,1 on L 2 (X) as follows:

ω 0 (h a )v(x) = |a| -1 v(a -1 x) (a ∈ R × , v ∈ L 2 (X) , x ∈ X) .
It is easy to check that this action preserves the L 2 -norm. Also, let

ω 0 (s)v(x ) = X e -2πix jx t v(x) dx (v ∈ L 2 (X) , x ∈ X) , (8) 
where

j = 0 1 -1 0 . ( 9 
)
Then

ω 0 (s) = R(j)F = FR(j) , (10) 
where

Fv(x ) = X e -2πix x t v(x) dx (v ∈ L 2 (X) , x ∈ X) (11) 
is the usual Fourier transform and

R(g)v(x) = v(xg) (g ∈ GL 2 (R) , v ∈ L 2 (X) , x ∈ X) .
In particular, ω 0 (s) is a unitary operator. Since F 2 = R(-1) we see that

ω 0 (s) 2 = R(j)FFR(j) = R(j)R(-1)R(j) = I .
Furthermore, a straightforward computation shows that

ω 0 (s)ω 0 (h a )ω 0 (s) -1 = ω 0 (h a -1 ) (a ∈ R × ) . ( 12 
)
Therefore the above formulas define a unitary representation (ω 0 , L 2 (X)) of the group O 1,1 . The group Sp 2 (R) = SL 2 (R) acts on L 2 (X) via the right translations R:

ω 0 (g)v(x) = v(xg) (g ∈ Sp 2 (R) , v ∈ L 2 (X) , x ∈ X) . ( 13 
)
This action is unitary and the two actions commute. Thus (ω 0 , L 2 (X)) may be viewed as a unitary representation of the group O 1,1 × Sp 2 (R), where we identify

O 1,1 = O 1,1 × {1} and {1} × Sp 2 (R) = Sp 2 (R).

The Casimir elements and the Capelli operators.

Let

h = 1 0 0 -1 .
Then the Lie algebra of SO 1,1 is so 1,1 = Rh. By taking the derivative along one parameter subgroups at the origin, see (3), we see that

ω 0 (h) = -x∂ x -y∂ y -1 ,
where we denote a typical element of X by (x, y). Moreover, let

e + = 0 1 0 0 , e -= 0 0 1 0 . ( 14 
) Then sp 2 (R) = Rh + Re + + Re -and C = h 2 -2h + 4e + e -∈ U(sp 2 (R))
is the Casimir element. Also, one may think of C = h 2 as a Casimir element in U(o 1,1 ). A straightforward computation shows that

ω 0 (C) = (x∂ x + y∂ y + 1) 2 = ω 0 (C ) + 1 . ( 15 
)
This is one of Capelli's identities. (For a general story, see [START_REF] Howe | The Capelli identity, the double commutant theorem, and multiplicityfree actions[END_REF].) Set

C + = -(x∂ x + y∂ y + 1) 2 (16) 
Notice that E = x∂ x + y∂ y is the Euler operator, with formal adjoint

E * = -E -2. So C + = (E + 1) * (E + 1
) is self-adjoint and positive. We would like to think of C + as of "the positive Capelli operator". The Schwartz space S(X)

is an O 1,1 × Sp 2 (R)-invariant dense subspace of the space of smooth vectors of the representation ω 0 of O 1,1 × Sp 2 (R). 3.3. Direct integral decomposition of the restriction of (ω 0 , L 2 (X)) to O 1,1 . Lemma 4. For λ ∈ C and v ∈ C ∞ c (X \ {0}) define v λ (w) = R >0 a -1-iλ v(a -1 w) d × a (w ∈ X \ {0}) , (17) 
where d × a = da a is the Haar measure on the multiplicative group R >0 . Then v λ is a homogeneous function of degree -1 -iλ, that is v λ (tw) = t -1-iλ v λ (w) for all t > 0 and w ∈ X \ {0}. For fixed w, v λ (w) is an entire function of Paley-Wiener type in λ ∈ C. Moreover

v(w) = 1 2π R v λ (w) dλ (18) and X u(x)v(x) dx = 1 2π R S 1 u λ (σ)v λ (σ) dσ dλ (u, v ∈ C ∞ c (X \ {0})) , (19) 
where S 1 ⊆ X is the unit circle centered at the origin and dσ is the rotation invariant measure on S 1 normalized so that the total length of S 1 is 2π.

Proof. The first two claims are immediate by change of variables and because, for a fixed w ∈ X\{0}, the function R >0 a → a -1 v(a -1 w) ∈ C is smooth and compactly supported.

The right-hand side of ( 18) is equal to

1 2π R >0 a -1 R a -iλ dλ v(a -1 w) d × a = R >0 a -1 δ 1 (a) v(a -1 w) d × a = v(w) .
The right-hand side of ( 19) is equal to

1 2π R S 1 u λ (σ)v λ (σ) dσ dλ = 1 2π S 1 R R >0 R >0 a -1-iλ b -1+iλ u(a -1 σ)v(b -1 σ) d × b d × a dλ dσ = S 1 R >0 R >0 δ 1 (ab -1 )a -1 b -1 u(a -1 σ)v(b -1 σ) d × b d × a dσ = S 1 R >0 a -2 u(a -1 σ)v(a -1 σ) d × a dσ = S 1 R >0 a 2 u(aσ)v(aσ) d × a dσ ,
which coincides with the left-hand side.

Lemma 5. For λ ∈ C let C ∞ λ (X \ {0}) ⊆ C ∞ (X \ {0}
) denote the subspace of functions homogeneous of degree -1 -iλ. Then (17) defines a continuous surjective map,

C ∞ c (X \ {0}) v → v λ ∈ C ∞ λ (X \ {0}) . (20) 
Furthermore,

X v(w)u(w) dw = 1 2π R S 1 v λ (σ)u -λ (σ) dσ dλ (u, v ∈ C ∞ c (X \ {0}). (21) 
Proof. The continuity and the surjectivity of (20) follow from [Hör83, (3.2.21)-(3.2.23)].

The last equation is a straightforward consequence of (19):

X v(w)u(w) dw = X v(w)u(w) dw = 1 2π R S 1 v λ (σ)u λ (σ) dσ dλ = 1 2π R S 1 v λ (σ)u -λ (σ) dσ dλ (u, v ∈ C ∞ c (X \ {0})) . Corollary 6. For λ ∈ C let L 2 λ (X) denote the closure of C ∞ λ (X \ {0}) with respect to the L 2 -norm on S 1 : v λ λ = S 1 |v λ (σ)| 2 dσ 1/2 (v λ ∈ C ∞ λ (X \ {0})) . (22) Then L 2 (X) = 1 2π ⊕ R L 2 λ (X) dλ (23)
is the decomposition of the Hilbert space L 2 (X) into the direct integral of the Hilbert spaces L 2 λ (X) with the Plancherel measure 1 2π dλ.

Notice that every element of L 2 λ (X) can be written in the form v λ (w) = r -1-iλ f (σ) where w = rσ with (r, σ) ∈ R >0 × S 1 and f ∈ L 2 (S 1 ).

The transformation (17) maps odd functions to odd functions and even functions to even functions.

For each λ ∈ R, let L 2 0,λ (X) ⊆ L 2 λ (X) be the subspace of even functions and let L 2 1,λ (X) ⊆ L 2 λ (X) be the subspace of odd functions. Then

L 2 (X) = 1 2π ⊕ R L 2 0,λ (X) ⊕ L 2 1,λ (X) dλ . Each v λ ∈ C ∞ λ (X \ {0}
) is a homogeneous function of degree -1 -iλ. Hence it extends uniquely to a homogeneous, and hence tempered distribution on X, see [Hör83, Theorem 3.2.3 and 7.1.18]. We write

v λ = v 0,λ + v 1,λ for the decomposition of v λ ∈ L 2 λ (X) = L 2 0,λ (X) ⊕ L 2 1,λ (X)
. From now on (in this section) we view L 2 λ (X) as a subspace of the tempered distributions S * (X), L 2 λ (X) ⊆ S * (X) and extend the action

ω 0 of O 1,1 to L 2 λ (X) ⊆ S * (X) by dualizing the action on S(X) ⊆ L 2 (X), that is (ω 0 (g)v λ )(u) = v λ (ω 0 (g -1 )u) (g ∈ O 1,1 , v λ ∈ L 2 λ (X) , u ∈ S(X)
) . The reason is that we want to apply the Fourier transform ω 0 (s), see (8), to elements of L 2 λ (X).

In particular, the Fourier transform of v λ ∈ L 2 λ (X) is homogeneous of degree -1 + iλ, see [Hör83, Theorem 7.1.24]. Hence, for ε ∈ {0, 1},

ω 0 (s) : L 2 ε,λ (X) → L 2 ε,-λ (X)
. The spaces L 2 ε,λ (X) are isotypic for the action of SO 1,1 via ω 0 , as can be seen from the formulas 12) and (24),

ω 0 (h a )v 0,λ = |a| iλ v 0,λ , ω 0 (h a )v 1,λ = |a| iλ a |a| v 1,λ (a ∈ R × , v ε,λ ∈ L 2 ε,λ (X)) . (24) Hence L 2 ε,λ (X) ⊕ L 2 ε,-λ (X) is preserved under the action of O 1,1 . If λ > 0, then this repre- sentation is isotypic, direct integral of a single 2-dimensional irreducible representation, which we denote by (π ε,λ , V ε,λ ). Indeed, fix v ε,λ ∈ L 2 (X) ε,λ and set V ε,λ = Cv ε,λ ⊕ Cv ε,-λ , where v ε,-λ = ω 0 (s)v ε,λ . Let B ε,λ = {v ε,λ , v ε,-λ }. Then the matrix of ω 0 (s)| V ε,λ with respect to B ε,λ is s. For a ∈ R × , by (
ω 0 (h a )| V 0,λ = |a| iλ 0 0 |a| -iλ with respect to B 0,λ ω 0 (h a )| V 1,λ = a |a| |a| iλ 0 0 |a| -iλ
with respect to B 1,λ .

Thus

ω 0 | V 0,λ = π 0,λ and ω 0 | V 1,λ = π 1,λ .
We have therefore proved the following corollary.

Corollary 7. For ε ∈ {0, 1} and λ > 0,

L 2 (X) π ε,λ = L 2 (X) ε,λ ⊕ L 2 (X) ε,-λ is an isotypic representation of O 1,1 of type π ε,λ .
The restriction of the representation (ω 0 , L 2 (X)) to O 1,1 decomposes into direct integral of irreducible unitary representations as follows,

L 2 (X) = O 1,1 L 2 (X) π dµ(π) , where dµ(π ε,λ ) = dλ 2π for (ε, λ) ∈ {0, 1} × R >0 , µ(π ε,0,δ ) = 0 for (ε, δ) ∈ {0, 1} 2 and L 2 (X) π denotes the isotypic component of type π.
3.4. The resonance. Lemma 8. Recall the densely defined differential operator C + on L 2 (X), see (16). For z ∈ C with Im z > 0 the operator C + -z 2 is invertible with inverse

(C + -z 2 ) -1 : L 2 (X) → L 2 (X) (25) 
given, in terms of (23), by

(C + -z 2 ) -1 1 2π R v λ dλ = 1 2π R (λ 2 -z 2 ) -1 v λ dλ .
Proof. This follows from the straightforward fact that

C + v λ = λ 2 v λ .
Proposition 9. If we shrink the domain and expand the range of the map (25)

(C + -z 2 ) -1 : C ∞ c (X \ {0}) → C ∞ c (X \ {0}) * (26)
by the formula

((C + -z 2 ) -1 v)(u) = X ((C + -z 2 ) -1 v)(w)u(w) dw (u, v ∈ C ∞ c (X \ {0})) , (27) 
then (26) extends from Im z > 0 to a meromorphic function of z ∈ C with a single simple pole at z = 0, with residue operator given by

Res z=0 ((C + -z 2 ) -1 v) = i 2 v 0 .
Here v 0 is viewed as a distribution on X \ {0} via integration against dw. This distribution extends uniquely to a homogeneous distribution on X.

Proof. The equality (21) shows that (27) means that

((C + -z 2 ) -1 v)(u) = 1 2π R S 1 (λ 2 -z 2 ) -1 v λ (σ)u -λ (σ) dσ dλ . (28) 
Notice that

(λ 2 -z 2 ) -1 = - 1 2z 1 z -λ + 1 z + λ .
Hence, the right hand side of ( 28) is equal to

- 1 4πz R S 1 1 z -λ v λ (σ)u -λ (σ) dσ dλ + R S 1 1 z + λ v λ (σ)u -λ (σ) dσ dλ . ( 29 
)
The function in the parenthesis extends to an entire function of z. Indeed, since the function

C λ → S 1 v λ (σ)u -λ (σ) dσ ∈ C
is of Paley-Wiener type, we may pick any N > 0 and, using Cauchy's theorem, show that

R S 1 1 z -λ v λ (σ)u -λ (σ) dσ dλ + R S 1 1 z + λ v λ (σ)u -λ (σ) dσ dλ = R-iN S 1 1 z -λ v λ (σ)u -λ (σ) dσ dλ + R+iN S 1 1 z + λ v λ (σ)u -λ (σ) dσ dλ . ( 30 
)
The right hand side of (30) is a holomorphic function for Im z > -N . Therefore (29) is a meromorphic function with a unique simple pole at zero. The residue at zero is equal to

- 1 4π R-iN S 1 1 -λ v λ (σ)u -λ (σ) dσ dλ + R+iN S 1 1 λ v λ (σ)u -λ (σ) dσ dλ = 1 4π S 1 R-iN 1 λ v λ (σ)u -λ (σ) dλ - R+iN 1 λ v λ (σ)u -λ (σ) dλ dσ = 1 4π S 1 |λ|=N 1 λ v λ (σ)u -λ (σ) dλ dσ = i 2 S 1 v 0 (σ)u 0 (σ) dσ ,
where we used again Cauchy's theorem and the Paley-Wiener property of v λ and u -λ (see Lemma 4), and finally Cauchy's integral formula. Thus

Res z=0 ((C + -z 2 ) -1 v)(u) = i 2 S 1 v 0 (σ)u 0 (σ) dσ = i 2 X v 0 (w)u(w) dw .
3.5. The resonance representation. By Proposition 9, the resonance space at λ = 0

is {v 0 ∈ C ∞ (X \ {0}) : v ∈ C ∞ c (X \ {0})} .
Its completion with respect to the inner product ( 22) is the Hilbert space L 2 0 (X). In this subsection we take a look at this space as representation of O 1,1 .

The elements of L 2 0 (X) are of the form r -1 f (e iθ ) where w = re iθ with (r, e iθ ) ∈ R >0 × S 1 and f ∈ L 2 (S 1 ). By the L 2 -Fourier expansion f (e iθ ) ∼ k∈Z f (k)e ikθ , it suffices to consider the action of ω 0 on r -1 e ikθ , k ∈ Z.

Lemma 10. The following formulas hold:

ω 0 (s) : r -1 e ikθ → r -1 e ikθ , if k ∈ Z, k ≥ 0 , (31) 
ω 0 (s) : r -1 e ikθ → (-1) k r -1 e ikθ , if k ∈ Z, k < 0 . ( 32 
)
Proof. For t > 0 define g k,t (w) = f t (r)e ikθ , where w = re iθ and f t (r) = r -1 e -2πtr . Then g k,t ∈ L 1 (X) and lim t→0 + g k,t = g k , where g k (re iθ ) = r -1 e ikθ and the limit is in S * (X).

As is well known, the two-dimensional Euclidean Fourier transform F, see (11), may be expressed in terms of Bessel functions by passing to polar coordinates. In particular, by [SW71, Ch. 4, Theorem 1.6], if g(w) = f (r)e ikθ ∈ L 1 (X), then (Fg)(w) = F (r)e ikθ where w = re iθ and

F (r) = 2πi k ∞ 0 f (ρ)J -k (2πrρ)ρ dρ = 2π(-1) k i k ∞ 0 f (ρ)J k (2πrρ)ρ dρ . (33) 
In (33), J k denotes the k-th Bessel function of the first kind, defined for k ∈ Z by

J k (x) = 1 2π
∞ 0 e ix sin θ e -ikθ dθ and satisfying

J -k (x) = (-1) k J k (x).
Recall from (10) that ω 0 (s) = FR(J). If w = (r cos θ, r sin θ) ≡ re iθ , then wJ = (-r sin θ, r cos θ) ≡ re i(θ+ π 2 ) . Hence

(ω 0 (s)g k,t )(w) = Fg k,t re i(θ+ π 2 ) = F k,t (r)e i(θ+ π 2 )
, where

F k,t (r) = 2πi k ∞ 0 e -2πtρ J -k (2πrρ) dρ = 2π(-1) k i k ∞ 0 e -2πtρ J k (2πrρ) dρ . (34) 
As t > 0, for k > -1 [START_REF] Watson | A treatise on the theory of Bessel functions[END_REF]formula (8) on page 386; this formula is due to Lipschitz (1859) for k = 0 and to Hankel (1875

2π ∞ 0 e -2πtρ J k (2πrρ) dρ = ∞ 0 e -tρ J k (rρ) dρ = ( √ t 2 + r 2 -t) k r k √ t 2 + r 2 by
) for k = ν with Reν > -1]. Hence for k ∈ Z, k ≥ 0, (ω 0 (s)g k )(re iθ ) = lim t→0 + (ω 0 (s)g k,t )(re iθ ) = lim t→0 + F k,t (r)e ik(θ+ π 2 ) = (-1) k i k i k lim t→0 + ( √ t 2 + r 2 -t) k r k √ t 2 + r 2 = r -1 e ikθ ,
which is (31). If k < 0, then one applies the above to the first formula in (34) and gets

(ω 0 (s)g k )(re iθ ) = (-1) k r -1 e ikθ ,
which is (32).

Lemma 11. The following formulas hold:

ω 0 (h a ) : r -1 e ikθ → r -1 e ikθ , if k ∈ Z, k even , ω 0 (h a ) : r -1 e ikθ → a |a| r -1 e ikθ , if k ∈ Z, k odd .
Proof. If g k is defined by g k (re iθ ) = r -1 e ikθ , then

|a| -1 g k (a -1 re iθ ) = r -1 e ikθ if a > 0 (-1) k r -1 e ikθ if a < 0 .
Corollary 12. The restriction of ω 0 to L 2 0 (X) decomposes as the direct sum

L 2 0 (X) = L 2 0;0,0 (X) ⊕ L 2 0;1,0 (X) ⊕ L 2 0;1,1 (X) of isotypic O 1,1 -representations. Explicitly, L 2 (X) 0;0,0 = k∈Z k even Cr -1 e ikθ , L 2 (X) 0;1,0 = k≥0 k odd Cr -1 e ikθ , L 2 (X) 0;1,1 = k<0 k odd Cr -1 e ikθ .
For (ε, δ) ∈ {(0, 0), (1, 0), (1, 1)}, the representation on L 2 0;ε,δ (X) is isotypic, with 1-dimensional type π 0;ε,δ . In particular, the determinant representation π 0;0,1 of O 1,1 does not occur in the decomposition.

Because of Corollary 12, L 2 (X) 0;ε,δ is the O 1,1 -isotypic component of type π 0;ε,δ . Hence we write L 2 (X) π 0;ε,δ = L 2 (X) 0;ε,δ . We summarize our result in the following theorem.

Theorem 13. The resonance representation L 2 (X) 0 of O 1,1 splits as follows:

L 2 (X) 0 = L 2 (X) π 0;0,0 ⊕ L 2 (X) π 0;1,1 ⊕ L 2 (X) π 0;1,0 , (35) 
where L 2 (X) π 0;ε,δ is isotypic, with one dimensional type π 0;ε,δ . In particular:

(1) O 1,1 acts trivially on L 2 (X) π 0;0,0 , (2) the group SO 1,1 acts by the sign representation on L 2 (X)

π 0;1,0 ⊕ L 2 (X) π 0;1,1 , (3) the element s ∈ O 1,1 acts trivially on L 2 (X) π 0;1,0 , (4 
) the element s ∈ O 1,1 acts via multiplication by -1 on L 2 (X) π 0;1,1 . The determinant representation of O 1,1 does not occur in the decomposition.

Each of the spaces (35) is contained in S * (X) and is preserved by the action of Sp 2 (R) via ω 0 , see (13).

The three representations on the right-hand side of (35) are unitary representations of Sp 2 (R) and we know that the Casimir ω 0 (C ) acts by -1 because of (15). We also know their K-types by Corollary 12. If we knew they are irreducible Sp 2 (R)-modules, then we would identify them by classification. Fortunately, this is a simple consequence of Howe's duality theory. In order to use this theory, we have to move to the metaplectic group Sp 4 (R) and relate its Weil representation ω to ω 0 . This is explained in Appendix A in general, and specifically in Appendix B for this pair, see (74). In fact, ω 0 agrees with ω| O 1,1 Sp 2 (R) twisted by a character, which is a representation of O 1,1 Sp 2 (R). The equality of these two representations is true by (73) for SO 1,1 Sp 2 (R). On the other hand, if s denotes a preimage of s under the metapletic cover, then ω( s) is computed in (78) and the twisting removes the ± ambiguity. Twisting by a character does not change the irreducibility. So the three representations are irreducible. By the classification of the irreducible unitary Sp 2 (R) = SL 2 (R)-modules, (see e.g. [Lan85, VI, §6]), one obtains the following corollary.

Corollary 14. The spaces (35) are irreducible unitary ω 0 (Sp 2 (R))-modules. Specifically,

(1) L 2 (X) π 0;0,0 = L 2 (X) π 0,1 is the spherical unitary principal series π 0,1 on which the Casimir element C acts by -1

(2) L 2 (X) π 0;1,0 = L 2 (X) D 0 + is the holomorphic limit of discrete series D 0 + , (3) L 2 (X) π 0;1,1 = L 2 (X) D 0
-is the anti-holomorphic limit of discrete series D 0 -. Hence the entire resonance space (35) is not irreducible under the joint action of O 1,1 × Sp 2 (R). It is the direct sum of three irreducible subspaces:

(π 0;0,0 ⊗ π 0,1 ) ⊕ π 0;1,0 ⊗ D 0 + ⊕ π 0;1,1 ⊗ D 0 -. Remark 2.
As observed in the introduction, one of the motivating examples for the study of resonances is the Casimir element acting by the left-regular representation on a Riemannian symmetric space of the noncompact type. One could consider other classes of homogenous spaces. For instance, if G = SL 2 (R) and N = 1 x 0 1 ; x ∈ R , then the homogeneous space G /N can be realized as X\{0}, where X = M 1,2 (R). Our computation in this section can also be interpreted in this sense.

Remark 3. The case (G, G ) = (O 1,1 , Sp 2n (R)) with n > 1 could be treated in a similar way, but the result on the resonance representations would be less explicit.

4. Decomposing the restriction to G of the (twisted) Weil representation using Harish-Chandra's Plancherel formula

In this section we outline the method of decomposing the restriction to G of the Weil representation (twisted by a suitable character) using Harish-Chandra's Plancherel formula. This method applies to orthosymplectic dual pairs of the form (G, G ) = (Sp 2n (R), O p,p ) or (O p,p , Sp 2n (R)) in the stable range, with G the smaller member. We first recall some facts concerning these pairs.

Any such pair (G, G ) is an irreducible real reductive dual pair of type I (see [START_REF] Howe | Remarks on Classical Invariant Theory[END_REF]) and can be constructed as follows. There exist real vector spaces V and V with nondegenerate bilinear forms (•, •) and (•, •) , one symmetric and the other skew-symmetric (or vice versa), such that G ⊆ GL(V) and G ⊆ GL(V ) are the isometry groups of (•, •) and (•, •) , respectively. Let W = Hom D (V , V). Define a map

Hom D (V , V) w → w * ∈ Hom D (V, V ) by (wv , v) = (v , w * v) (v ∈ V, v ∈ V ) .

Then the formula

w, w = tr D/R (ww * ) (w, w ∈ W) defines a non-degenerate symplectic form on W. We denote by Sp(W) the symplectic group of (W, •, • ). The groups G and G act on W by g(w) = gw and g (w) = wg -1

(g ∈ G, g ∈ G , w ∈ W). (36) 
These actions embed G and G as a subgroups of Sp(W). Let V = X ⊕ Y be a complete polarization of V . Assuming that (G, G ) is in the stable range, with G the smaller set, means that dim D X ≥ dim D V. Hence, (Sp 2n (R), O p,p ) is in the stable range, with Sp 2n (R) the smaller member, if and only if p ≥ 2n. Similarly, (O p,p , Sp 2n (R)) is in the stable range, with O p,p the smaller member, if and only if n ≥ 2p. (In particular, neither

(O 1,1 , Sp 2 (R)) nor (Sp 2 (R), O 1,1 ) are in the stable range.) Set X = Hom D (X , V) , Y = Hom D (Y , V) . (37) 
Then X, Y are isotropic and W = X ⊕ Y.

Let Sp(W) be the metaplectic group and let Sp(W) ∈ g → g ∈ Sp(W) be the metaplectic cover, which is a double cover of Sp(W). For a subgroup H of Sp(W) we denote by H its preimage in Sp(W).

Let (ω, L 2 (X)) be the Schrödinger model of the Weil representation of Sp(W) attached to the character χ(r) = e 2πir of R. See Appendix A. The space of smooth vectors of ω is S(X). By (36) and (37), G preserves both X and Y. Hence, by (72) there is a continuous group homomorphism det

-1/2 X : G → C × , with the property that det -1/2 X ( g) 2 = det(g| X ) -1 for all g ∈ G, such that ω( g)v(x) = det -1/2 X ( g)v(g -1 x) ( g ∈ G, v ∈ S(X), x ∈ X) .
Let Z 2 denote the kernel of the metaplectic cover. A representation Π of G is called genuine if its restriction to Z 2 is a multiple of the unique non-trivial character ε of Z 2 . Only genuine representations of G can occur in Howe's duality.

For an irreducible unitary representation Π of G, we denote by Θ Π its distribution character. By Harish-Chandra's regularity theorem [START_REF] Wallach | Real Reductive Groups I[END_REF]8.4.1], the distribution Θ Π coincides with the Haar measure on G multiplied by a locally integrable functions (which is real analytic on the set of regular semisimple elements of G and zero elsewhere). We identify Θ Π with this function. Furthermore, we denote by Π c the contragredient representation of Π. Notice that, if Π is a genuine representation of G, then the map

G g → Θ Π c ( g)ω( g) ∈ B(L 2 (X)),
where B(L 2 (X)) is the space of bounded linear operators on L 2 (X), is constant on the fibers of the metaplectic cover G → G and hence defines a function on G.

The following theorem was proved in [Prz93, Theorem 3.1] in a more general context.

Theorem 15. Let Π be a genuine irreducible tempered unitary representation of G. Then the formula

(ω(Θ Π c )u, v) = G Θ Π c (g)(ω(g)u, v) dg (u, v ∈ S(X)) (38) 
defines a non-trivial, hermitian, positive semidefinite G • G -invariant form on S(X).

Let R denote the radical of this form. Then the G • G -module S(X)/R, equipped with the form induced by the form (38), completes to an irreducible unitary representation of G • G on a Hilbert space H ω,Π⊗Π , infinitesimally equivalent to Π ⊗ Π for some Π in the unitary dual of G . Moreover Π corresponds to Π via Howe's correspondence. 

λ max = dim D V r -1 and r = 2 dim R g dim R V .
We are supposing that Π is tempered, which is equivalent to γ = 0 [Wal88a, 5.1.1]. The following table shows that the condition λ max > 1 is always satisfied under the stable range assumption.

G dim R g dim R V r -1 stable range condition λ max Sp 2n (R) n(2n + 1) 2n 2n p ≥ 2n 2p-1 2n O p,p p(2p -1) 2p 2p -1 n ≥ 2p 2n 2p-1
For the dual pairs (G, G ) we consider, we do not need to work with double covers. In fact, there is a unitary character χ + of G G -see (71) in Appendix A -such that

ω 0 = χ -1
+ ω is constant on the fibers of the metaplectic covering G G → GG and hence defines a representation of GG , which we denote by the same symbol ω 0 . Given representations Π and Π of G and G in Howe's correspondence, then π = χ -1 + Π and π = χ -1 + Π are representations of G and G , respectively. This gives a bijection between representations that are quotients of ω| G G and representations that are quotients of ω 0 . We refer to Appendix A for explanations. An adapted modification yields the following corollary.

Corollary 16. Let π be an irreducible tempered unitary representation of G. Then the formula

(ω 0 (Θ π c )u, v) = G Θ π c (g)(ω 0 (g)u, v) dg (u, v ∈ S(X)) (39) 
defines a non-trivial, hermitian, positive semidefinite GG -invariant form on S(X).

Let R denote the radical of this form. Then the GG -module S(X)/R, equipped with the form induced by the form (39), completes to an irreducible unitary representation of GG on a Hilbert space L 2 (X) π⊗π , infinitesimally equivalent to π ⊗π for some π in the unitary dual of G . Moreover Π = χ + π corresponds to Π = χ + π via Howe's correspondence.

Let X max denote the dense and open subset of X = Hom D (X , V) of endomorphisms of maximal rank. Since dim D X ≥ dim D V, the set X max consists of the D-linear surjective maps x : X → V. Each x ∈ X max defines an embedding of G into X max by g → g -1 x.

The following lemma will allow us to decompose the restriction of ω 0 to G using Harish-Chandra's Plancherel formula on G. Then G a e is closed because homeomorphic image of G a , which is closed as G is the isotropy subgroup of (•, •) in V. This proves (1). For (2), we only need to comment on the support. Notice that the map g → g -1 x is a homeomorphism of G onto the orbit Gx. It maps the support supp v x of v x onto supp v ∩ Gx, which is compact.

Lemma 17. Let x ∈ X max and let v ∈ C ∞ c (X max ). (1) The G-orbit Gx is a closed subset of X contained in X max . (2) Let v x : G → C be defined by v x (g) = v(g -1 x). Then v x ∈ C ∞ c (G).
The formula (40) below was stated and proved in [How79, (1)]. Our argument includes the explicit formula (42) for the projections on the isotypic components and the inverse (41).

Our main tool to decompose ω will be Harish-Chandra's Plancherel formula (see e.g. [Wal88b, Chapter 13]): for every

f ∈ C ∞ c (G), f (1) = G Θ π (f ) dµ(π) = G Θ π c (f ) dµ(π) ,
where in the last equality we have used the invariance of the Plancherel measure with respect to taking contragredients (see e.g. [Füh05, Lemma 4.10(a)]).

Corollary 18. Let µ denote the Harish-Chandra Plancherel measure on G. For π ∈ G, let L 2 (X) π⊗π denote the Hilbert space associated with π according to Corollary 16. Then the restriction to G of the representation (ω 0 , L 2 (X)) decomposes as direct integral of Hilbert spaces

L 2 (X) = G L 2 (X) π⊗π dµ(π) (40) 
i.e. for v ∈ S(X),

v = G v π dµ(π) (41)
where v π is defined by

v π (x) = ω 0 (Θ π c )v(x) = G Θ π c (g)(ω 0 (g)v)(x) dg = G Θ π c (g)v(g -1 x) dg (v ∈ C ∞ c (X max ), x ∈ X max ) . ( 42 
)
Also, for any

C ∈ U(g) G , ω 0 (C)v = G χ π (C)v π dµ(π) (v ∈ C ∞ c (X max )) , (43) 
where χ π : U(g) G → C is the infinitesimal character of π.

Proof. The expression for v π is a consequence of Lemma 42. Harish-Chandra's Plancherel formula applied to the function v x of Lemma 17,(2), implies that for v ∈ C ∞ c (X max ) and

x ∈ X max , G v π (x) dµ(π) = G G Θ π c (g)v(g -1 x) dg dµ(π) = G Θ π c (v x ) dµ(π) = v x (1) = v(x) .
By Theorem 16, for every u, v ∈ S(X), the inner product in L 2 (X)

π⊗π between u π = ω(Θ π c )u and v π = ω(Θ π c )v is (u π , v π ) L 2 (X) π⊗π = (ω(Θ π c )u, v) = (u, ω(Θ π c )v) . Hence, for u, v ∈ C ∞ c (X max ), G (u π , v π ) L 2 (X) π⊗π = G (ω(Θ π c )u, v) dµ(π) = G X max u π (x)v(x) dx dµ(π) = X max G u π (x) dµ(π) v(x) dx = X max u(x)v(x) dx = (u, v) L 2 (X)
This verifies (41) and (42). The statement (43) is obvious.

Remark 4. The algebra U(g) G is a subalgebra of Z(g) = U(g) g . It agrees with Z(g) when G is a real form of GL, Sp or O 2p+1 , but it is properly contained in Z(g) when G is a real form of O 2p (C), such as O p,p .

The pair (G

, G ) = (Sp 2 (R), O p,p ), p ≥ 2
Here we continue the previous section for the example mentioned in the title.

5.1. Action of G. Let X = M 2,p (R) be the space of matrices consisting of two rows of length p ≥ 2 with real entries. We define an action ω 0 of the group G on L 2 (X) as follows

ω 0 (g)v(x) = v(g -1 x) (g ∈ G , v ∈ L 2 (X) , x ∈ X) . ( 44 
)
It is easy to check that this action preserves the L 2 -norm. This is the restriction to G of the Weil representation for that dual pair twisted by the character χ + , as in section 4.

5.2. The Casimir elements and the Capelli operators. The Lie algebra g is spanned by the elements h, e + and e -given in ( 14). We shall denote a matrix x ∈ X as

x = x 1,1 x 1,2 • • • x 1,p x 2,1 x 2,2 • • • x 2,p
Then, by taking derivatives, we see that

ω 0 (h) = p j=1 x 2,j ∂ x 2,j -x 1,j ∂ x 1,j , ω 0 (e + ) = - p j=1
x 2,j ∂ x 1,j , ω 0 (e -) = -p j=1

x 1,j ∂ x 2,j .

Then C = h 2 -2h + 4e + e -∈ U(g) G (45)
is the Casimir element. Let g be the Lie algebra of O p,p . If C ∈ U(g ) G is the Casimir element, then [HT92, Ch. III, (2.3.4)] implies that

ω 0 (C ) = ω 0 (C) -(p -1) 2 + 1 . ( 46 
)
Formula ( 46) is one of Capelli's identities. We see from [HT92, Ch. III, (2.3.4)] that no translation of ±ω 0 (C) is non-negative. Nevertheless, the study of resonances involve only the continuous part of the spectrum of an operator and, for ω 0 (C), this is a half-line. See Proposition 20.

Direct integral decomposition of the representation

(ω 0 , L 2 (X)) of Sp 2 (R).
We consider the following representations of G = Sp 2 (R) = SL 2 (R) (see e. The discrete series D ±n and the principal series π ε,iλ are unitary and irreducible for all pairs (ε, λ) with ε ∈ {0, 1} and λ ∈ R except for (ε, λ) = (1, 0). In the latter case, π 1,0 = D 0 + ⊕D 0 decomposes as the direct sum of two irreducible representations, D 0 + and D 0 -, respectively called the holomorphic and anti-holomorphic limit of discrete series representations. The representation π 0,iλ is equivalent to π c 0,iλ = π 0,-iλ , and π 1,iλ is equivalent to π c 1,iλ = π 1,-iλ . For the discrete series, we have (D n ) c = D -n . Moreover, (D 0 + ) c = D 0 -. The D ±n with n ∈ Z >0 , the π ε,iλ with ε ∈ {0, 1} and λ > 0, π 0,0 , D 0 + , and D 0 -are the irreducible tempered unitary representations of G.

In these terms, Harish-Chandra's Plancherel formula reads as follows.

Theorem 19. For any

f ∈ C ∞ c (G), f (1) = ∞ n=1 Θ D n (f ) n 2π + ∞ n=1 Θ D -n (f ) n 2π + R Θ π 0,iλ (f ) λ 8π tanh( πλ 2 ) dλ + R Θ π 1,iλ (f ) λ 8π coth( πλ 2 ) dλ .
Here

Θ π 0,iλ = Θ π 0,-iλ and Θ π 1,iλ = Θ π 1,-iλ . (47) 
The Plancherel measure µ is given by:

dµ(D n ) = dµ(D -n ) = n 2π (n ∈ Z >0 ) , dµ(π 0,iλ ) = λ 8π tanh( πλ 2 ) dλ (λ ∈ R) , dµ(π 1,iλ ) = λ 8π coth( πλ 2 ) dλ (λ ∈ R) .
In this section, the set X max ⊆ X of matrices of maximal rank consist of matrices of rank equal 2.

Besides irreducible unitary representations, our computations will lead us to consider non-unitary principal series representations π ε,λ with ε ∈ {0, 1} and λ ∈ C. They still have distribution character Θ π which can be represented by a locally integrable function. For such representations π, we define

ω 0 (Θ π c ) : C ∞ c (X max ) u → u π ∈ C ∞ (X max ) ⊆ C ∞ c (X max ) * , (48) 
where

u π (x) = G Θ π c (g)u(g -1 x) dg (x ∈ X max ) . (49) 
Since the function u is compactly supported, u π ∈ C ∞ (X max ). Therefore it defines a distribution. Moreover, the integral (49) is absolutely convergent. Notice that, because of the growth of Θ π c , this integral might not converge if u, v ∈ S(X) and π is not unitary. Both spaces C ∞ c (X max ) and C ∞ c (X max ) * are G-modules, via the action by ω 0 , (44), and ω 0 (Θ π c ) is a G-intertwining map.

5.4.

The resonances of the Capelli operator. Let ν denote the restriction of the Plancherel measure to the unitary principal series,

dν(D n ) = dν(D -n ) = 0 (n ∈ Z >0 ) , dν(π 0,iλ ) = λ 8π tanh( πλ 2 ) dλ (λ ∈ R) , dν(π 1,iλ ) = λ 8π coth( πλ 2 ) dλ (λ ∈ R) .
In terms of Corollary 18, set

L 2 (X) cont = Ĝ L 2 (X) π dν(π) = R L 2 (X) π 0,iλ λ 8π tanh( πλ 2 ) dλ + R L 2 (X) π 1,iλ λ 8π coth( πλ 2 ) dλ .
Proposition 20. The Casimir element C, (45), acts on the principal series representation π ε,iλ via multiplication by -λ 2 -1.

Proof. This follows from [Lan85,pages 119 and 195].

Set C + = -ω 0 (C) -1.
Proposition 20 implies that the spectrum of C + viewed as a densely defined operator on the Hilbert space L 2 (X) cont is equal to [0, ∞). Hence the resolvent

(C + -z 2 ) -1 ∈ B(L 2 (X) cont ) (z ∈ C , Im z > 0) (50) 
is well defined. Therefore, for u, v ∈ C ∞ c (X max ) and z as in (50),

(C + -z 2 ) -1 (u)(v) = R (λ 2 -z 2 ) -1 X u π 0,iλ (x)v(x) dx λ 8π tanh( πλ 2 ) dλ + R (λ 2 -z 2 ) -1 X u π 1,iλ (x)v(x) dx λ 8π coth( πλ 2 ) dλ . (51) 
Lemma 21.

For ε ∈ {0, 1} and u, v ∈ C ∞ c (X max ), f ε (λ) = X u π ε,iλ (x)v(x) dx (52) 
is an even Paley-Wiener type function of λ ∈ C.

Proof. By Lemma 17, the functions g → u(gx) for x ∈ X max and

ψ(g) = X u(gx)v(x) dx (g ∈ G)
are smooth and compactly supported. Hence,

f ε (λ) = X G Θ π ε,iλ (g -1 )u(g -1 x)v(x) dg dx = G Θ π ε,iλ (g) X u(gx)v(x) dx dg = G Θ π ε,iλ (g)ψ(g) dg .
Let

A = h a = a 0 0 a -1 , a > 0 and set ρ (h a ) = a , D (h a ) = a -a -1 .
By [Lan85, VII, Theorem 4 and Corollary],

G Θ π ε,iλ (g)ψ(g) dg = (-1) ε 2 A (ρ(h a ) iλ + ρ(h a ) -iλ )|D(h a )| G/A ψ(gh a g -1 ) d ġ dh a = (-1) ε A ρ(h a ) iλ |D(h a )| G/A ψ(gh a g -1 ) d ġ dh a , (53) 
where d ġ is the invariant measure on G/A such that dg = d ġ dh a and where in the last equality we used the invariance of expression (53) under the transformation h a → h a -1 = h -1 a . Since the Harish-Chandra orbital integral

|D(h a )| G/A ψ(gh a g -1 ) d ġ
is a smooth compactly supported function on A, the claim follows.

The evenness is an immediate consequence of (47).

Now we look for resonances.

Lemma 22. Keep the notation of Lemma 21 and let L > 0 be a non-integer.

(1) For every z ∈ C such that Im z > 0:

R 1 λ 2 -z 2 f 0 (λ)λ tanh( πλ 2 ) dλ = R+iL 1 λ + z f 0 (λ) tanh( πλ 2 ) dλ + 4i k∈Z 0<2k+1<L 1 (2k + 1)i + z f 0 ((2k + 1)i) . (54) 
(2) For every z ∈ C such that 0 < Im z < 1:

R 1 λ 2 -z 2 f 1 (λ)λ coth( πλ 2 ) dλ = R+i 1 λ -z f 1 (λ) coth( πλ 2 ) dλ + R+iL 1 λ + z f 1 (λ) coth( πλ 2 ) dλ + F L (z) + 2i z f 1 (0) + 4i k∈Z 0<2k<L 1 2ki + z f 1 (2ki) , (55) 
where

F L is holomorphic for -L < Im z < 1. Proof. Observe that 2λ λ 2 -z 2 = 1 λ -z + 1 λ + z . ( 56 
) Then R (λ 2 -z 2 ) -1 f 0 (λ)λ tanh( πλ 2 ) dλ = 1 2 R 1 λ -z + 1 λ + z f 0 (λ) tanh( πλ 2 ) dλ .
Also, since the hyperbolic tangent is an odd function and

f 0 (λ) = f 0 (-λ) by Lemma 21, R 1 λ -z f 0 (λ) tanh( πλ 2 ) dλ = R 1 λ + z f 0 (λ) tanh( πλ 2 ) dλ . Therefore R (λ 2 -z 2 ) -1 f 0 (λ)λ tanh( πλ 2 ) dλ = R 1 λ + z f 0 (λ) tanh( πλ 2 ) dλ .
Since f 0 is of Paley-Wiener type, shifting the domain of integration to R + iL and the residue theorem yield (54) because

Res λ=(2k+1)i tanh( πλ 2 ) = 2 π .
The shifting argument above must be modified for the integral involving the hyperbolic cotangent because it has a pole at λ = 0. So, we first shift the contour of integration from R to R + i. We do not cross any singularity of λ coth πλ 2 but the integrand has a simple pole at λ = z, which satisfies 0 < Im z < 1. The residue theorem gives

R 1 λ 2 -z 2 f 1 (λ)λ coth( πλ 2 ) dλ = R+i 1 λ 2 -z 2 f 1 (λ)λ coth( πλ 2 ) dλ + πif 1 (z) coth(z) .
(57) We now apply (56) to the first term in (57) and obtain

R+i 1 λ 2 -z 2 f 1 (λ)λ coth( πλ 2 ) dλ = 1 2 R+i 1 λ -z f 1 (λ) coth( πλ 2 ) dλ + 1 2 R+i 1 λ + z f 1 (λ) coth( πλ 2 ) dλ . (58) 
Notice that, on the right-hand side of (58), the first integral defines a holomorphic function for λ / ∈ R+i, whereas the second defines a holomorphic function for λ / ∈ R-i. We therefore shift the domain of integration of the second integral and apply the residue theorem again. Since

Res λ=2ki coth( πλ 2 ) = 2 π ,
this yields (forgetting for a moment the constant 1 2 ):

R+i

1 λ + z f 1 (λ) coth( πλ 2 ) dλ = R+iL 1 λ + z f 1 (λ) coth( πλ 2 ) dλ + 4i k∈Z 0<2k<L 1 2ki + z f 1 (2ki) .
On the other hand, since f 1 is even,

iπf 1 (z) coth z = iπ k∈Z 0≤2k<L Res z=-2ki [f 1 (z) coth z] 1 2ki + z + F L = 2i k∈Z 0≤2k<L 1 2ki + z f 1 (2ki) + F L ,
where F L is holomorphic for -L < Im z < 1. By substituting all these expressions in (57) we then obtain (55).

Theorem 23. Considered as a C ∞ c (X max ) * -valued linear operator on C ∞ c (X max ), the resolvent (C + -z 2 ) -1 extends from the upper half-plane C + to a meromorphic function on C, with simples poles (the resonances of C + ) at z = -in with n ∈ Z ≥0 .

The residue operator at the resonance z = -2ki is

ω 0 (Θ π c 1,2k ) : C ∞ c (X max ) u -→ u π 1,2k ∈ C ∞ (X max ) ⊆ C ∞ c (X max ) * , where u π 1,2k (x) = G Θ π c 1,2k (g)u(g -1 x) dg (x ∈ X max ) .
The residue operator at the resonance z = -(2k + 1)i is

ω(Θ π c 0,2k+1 ) : C ∞ c (X max ) u -→ u π 0,2k+1 ∈ C ∞ (X max ) ⊆ C ∞ c (X max ) * , where u π 0,2k+1 (x) = G Θ π c 0,2k+1 (g)u(g -1 x) dg (x ∈ X max ) .
Proof. This is an immediate consequence of (51), since

(C + -z 2 ) -1 (u)(v) = 1 8π R (λ 2 -z 2 ) -1 f 0 (λ)λ tanh( πλ 2 ) dλ + 1 8π R (λ 2 -z 2 ) -1 f 1 (λ)λ coth( πλ 2 ) dλ ,
where f ε (λ) are defined from the fixed u, v ∈ C ∞ c (X max ) according to (52). Observe that integrals over R + iL in (54) and (55) are holomorphic on Im z > -L, whereas the integral over R + i in (55) is holomorphic on Im z < 1. Since L > 0 is an arbitrary non-integer, the required meromorphic extension follows. Up to the constant i 2π (or i 4π when n = 0), which does not play any special role and we will ignore, the residue operator R n at z = -in maps u into the distribution R n u such that (R n u)(v) is the residue of (C + -z 2 ) -1 (u)(v) at -in, i.e. f 0 (2ki) if n = 2k and f 1 ((2k + 1)i) if n = 2k + 1. 5.5. The residue representations. In this section we study the images of the residue operators, namely ω 0 (Θ π 1,2k )(C ∞ c (X max )) and ω 0 (Θ π 0,2k+1 )(C ∞ c (X max )), where k ∈ Z ≥0 , as G-spaces.

We have observed in subsection 5.4 that the images of the residue operators are spaces of distributions on X max and their elements are in fact in C ∞ (X max ). We first show that they are not only subspaces of C ∞ c (X max ) * , but of S(X) * , the space of tempered distributions on X.

Lemma 24. Let us view R p as a real Hilbert space with norm defined by the dot product. We identify the space of m × n matrices M m,n (R) with Hom(R n , R m ), where the matrix x sends a column vector v ∈ R n to the column vector xv ∈ R m . Denote by |x| the operator norm of x. Assume m ≤ n and let M max m,n (R) ⊆ M m,n (R) be the subset of matrices of maximal rank (= m). Then for any compact subset

E ⊆ M m,n (R) there is a constant 0 < C < ∞ such that |g| ≤ C|gx| (g ∈ M m,m (R) , x ∈ E) . Proof. For each x ∈ M max m,n (R) there is k x ∈ O n such that xk x = (y x , 0) ,
where y x ∈ GL m (R). Moreover the map x → y x is continuous. Hence

0 < C = max x∈E |y -1 x | < ∞ .
Thus, for every x ∈ E,

|g| = |gy x y -1 x | ≤ |gy x ||y -1 x | ≤ |gy x |C = C|gxk x | = C|gx| .
The following proposition holds for every principal series representation.

Proposition 25. For every ε ∈ {0, 1} and λ ∈ C,

ω(Θ π c ε,iλ )(C ∞ c (X max )) ⊂ S(X) * . ( 59 
)
Proof. Lemma 24 implies that for every fixed u ∈ C ∞ c (X max ) and N > 0 there is a seminorm q N,u on the space S(X) such that

X |u(x)v(gx)| dx ≤ q N,u (v)(1 + |g|) -N (g ∈ G , v ∈ S(X)) .
Recall the notation (53) and let

N = n r = 1 r 0 1 , r ∈ R .
Let | • | HS denote the Hilbert-Schmidt norm. Then

|h a n r | 2 HS = a ar 0 a -1 2 HS = a 2 + a -2 + (ar) 2 (h a ∈ A , n r ∈ N) .
Hence there is a constant

C N such that ρ(h a ) N (1 + |h a n r |) -N dn r ≤ C N ρ(h a ) N (1 + |h a n r | 2 HS ) -N/2 dn r ≤ C N ρ(h a ) R (1 + a 2 + a -2 ) -N/4 (1 + (ar) 2 ) -N/4 dr = C N R (1 + r 2 ) -N/4 dr (1 + a 2 + a -2 ) -N/4 .
For any fixed λ ∈ C,

G |Θ π c ε,iλ (g)|(1 + |g|) -N dg = A |Θ π c ε,iλ (h a )||D(h a )| 2 G/A (1 + |g -1 h a g|) -N d . g dh a ≤ A (|ρ(h a ) iλ | + |ρ(h a ) -iλ |)|D(h a )| G/A (1 + |g -1 h a g|) -N d . g dh a = A (|ρ(h a ) iλ | + |ρ(h a ) -iλ |)ρ(h a ) N (1 + |h a n r |) -N dn r dh a ≤ C N R (1 + r 2 ) -N/4 dr ∞ 0 2(1 + e 2t + e -2t ) -N/4 sinh 2t dt ,
where e t = a and we used integration formula [Lan85, VII, INT2]. The expression above is finite for N > 0 large enough. Hence there is a seminorm q u , which depends on Θ π c ε,iλ , on the space S(X) such that

G X |Θ c π ε,iλ (g)u(g -1 x)v(x)| dx dg ≤ q u (v) (u ∈ C ∞ c (X max ), v ∈ S(X)) .

This verifies (59).

For m ∈ Z, and for fixed λ ∈ C, let ϕ m be the function on G defined in terms of the Iwasawa decomposition G = KAN by

ϕ m (k θ h a n r ) = ρ(h a ) -(λ+1) e imθ ,
where k θ = cos θ sin θ -sin θ cos θ ∈ K = SO 2 (R). Then the (g, K)-module of π ε,λ is

V ε,λ,K = m∈Z m≡ε Cϕ m ,
where m ≡ ε means m -ε ∈ 2Z.

In other words, P m = ω 0 (χ m dk). Denote by P G m the projection of principal series representation π ε,n onto its its isotypic component of type χ m , i.e.

P G m ϕ(g) = K χ m (k)ϕ(k -1 g) dk (ϕ ∈ V ε,n,K , g ∈ G) ,
i.e. P G m = π ε,n (χ m dk). Moreover, for every n ∈ Z ≥0 , let ε ∈ {0, 1} such that ε ≡ n. Set 

By replacing P m with P G m , we similarly define the projections P G n,< , P G n,fin , and

P G n,> . Let u ∈ C ∞ c (X max ). Recall from Lemma 17 that u x : G → C, defined for g ∈ G by u x (g) = u(g -1 x), is in C ∞ c (G). For f : G → C, we set f ∨ (g) = f (g -1
) for all g ∈ G. To simplify notation, we will write u ∨

x instead of (u x ) ∨ . The following lemma links P n and P G n for such functions. Similar relations extend to their sums in (62).

Lemma 27. Let u ∈ C ∞ c (X max ). Then P G m (u ∨ x ) = (P m u) ∨ x (x ∈ X max ) . Proof. Since u ∨ x (k -1 g) = u x (g -1 k) = u(k -1 gx), we have for every g ∈ G P G m (u ∨ x ) (g) = K χ m (k)u ∨ x (k -1 g) dk = K χ m (k)u(k -1 gx) dk = (P m u)(gx) = (P m u) ∨ x (g) .
The following fact is well-known.

Lemma 28. For any subquotient π of the principal series representation π ε,n of G, we have

G (π(g)ϕ m , ϕ m ) L 2 (K) f (g) dg = G (π(g)ϕ m , ϕ m ) L 2 (K) (P G m f )(g) dg . (63) 
Proof. Replacing g by gk and integrating over K, the left-hand side of the equality becomes

K G (π(gk)ϕ m , ϕ m ) L 2 (K) f (gk) dg dk = K G (π(g)π(k)ϕ m , ϕ m ) L 2 (K) f (gk) dg dk = G (π(g)ϕ m , ϕ m ) L 2 (K) K χ m (k -1 )f (gk)dk dg ,
which is the right-hand side of (63).

Lemma 29. Let π ∈ {D 0 -, D 0 + , D -n , V n , D n } be a subquotient of π ε,n , where (ε, n) ∈ {0, 1} × Z ≥0 , and let P denote the projection of the (g, K)-module V ε,n,K of π ε,n onto the (g, K)-module of π. Then

(u, v) -→ (ω 0 (Θ π c )u, v) = X u π (x)v(x) dx = X max u π (x)v(x) dx ,
where u π is as in (49), is a hermitian bilinear form on C ∞ c (X max ). Moreover,

(ω 0 (Θ π c )u, v) = (ω 0 (Θ π c )Pu, Pv) (u, v ∈ C ∞ c (X max )) . Proof. The fact that (ω 0 (Θ π c )u, v) is a bilinear hermitian form on C ∞
c (X max ) -and even on S(X) -when π is D 0 -, D 0 + , D -n , or D n , is part of Corollary 16. For V n , this is a consequence of [Lan85, VII, §4, Lemmas 2 and 3], which shows that Θ V c n is real valued. To prove the last statement, let us suppose for definiteness that π = D n , so that 48) and ( 49) and Lemmas 28 and 27, we obtain:

P = P n,> . Notice that, for u ∈ C ∞ c (X max ), we have u(gx) = u x (g -1 ) = u ∨ x (g). Hence for every v ∈ C ∞ c (X max ), by ( 
(ω 0 (Θ (D n ) c )u, v) = X max G Θ (D n ) c (g)u(g -1 x)v(x) dg dx = X max G Θ D n (g -1 )u(g -1 x)v(x) dg dx = X max G Θ D n (g)u ∨ x (g)v(x) dg dx = m>n m≡ε X max G (D n (g)ϕ m , ϕ m ) L 2 (K) u ∨ x (g)v(x) dg dx = m>n m≡ε X max G (D n (g)ϕ m , ϕ m ) L 2 (K) P G m u ∨ x (g)v(x) dg dx = X max G (D n (g)ϕ m , ϕ m ) L 2 (K) P G n,> u ∨ x (g)v(x) dg dx = X max G (D n (g)ϕ m , ϕ m ) L 2 (K) (P n,> u) ∨ x (g)v(x) dg dx , which gives (ω 0 (Θ (D n ) c )u, v) = (ω 0 (Θ (D n ) c )P n,> u, v
) via the same computations in reverse order. The result now follows since the form is hermitian.

Let us define hermitians forms on

C ∞ c (X max ) by (u, v) 1,0 = (ω 0 (Θ π c 1,0 )u, v) , (u, v) 1,0,< = (ω 0 (Θ (D 0 -) c )u, v) , (u, v) 1,0,> = (ω 0 (Θ (D 0 + ) c )u, v) , and, for (ε, n) ∈ {0, 1} × Z >0 with n ≡ ε, (u, v) ε,n = (ω 0 (Θ π c ε,n )u, v) , (u, v) ε,n,< = (ω 0 (Θ (D -n ) c )u, v) , (u, v) ε,n,fin = (ω 0 (Θ V c n )u, v) , (u, v) ε,n,> = (ω 0 (Θ (D n ) c )u, v) .
Hence, by (60) and ( 61), for all u

, v ∈ C ∞ c (X max ), (u, v) 1,0 = (u, v) 1,0,< + (u, v) 1,0,> , (64) 
(u, v) ε,n = (u, v) ε,n,< + (u, v) ε,n,fin + (u, v) ε,n,> . (65) 
By Lemma 29, these forms agree with their restrictions to the corresponding projections

PC ∞ c (X max ). For every (ε, n) ∈ {0, 1} × Z ≥0 with n ≡ ε, set C ∞ n,< = P n,< (C ∞ c (X max )) , C ∞ n,fin = P n,fin (C ∞ c (X max )) , C ∞ n,> = P n,> (C ∞ c (X max )) . Let R 1,0 , R 1,0,< , R 1,0,> , R ε,n , R ε,n,< , R ε,n,fin , R ε,n,>
. respectively denote the radicals of the forms in ( 64) and (65) as forms on C ∞ c (X max ). We will treat in the following the cases corresponding to n ∈ Z >0 , the case for n = 0 being similar (and easier).

Lemma 30. Let (ε, n) ∈ {0, 1} × Z >0 with n ≡ ε. Then, corresponding to the direct sum decomposition with respect to the action of K

C ∞ c (X max ) = C ∞ n,< ⊕ C ∞ n,fin ⊕ C ∞ n,> , (66) 
we have

C ∞ c (X max )/R ε,n = C ∞ n,< / R ε,n,< | C ∞ n,< ⊕ C ∞ n,fin / R ε,n,fin | C ∞ n,fin ⊕ C ∞ n,> / R ε,n,> | C ∞ n,> , (67) 
where on the right-hand side we take the restriction of the considered forms to the ranges of the corresponding projections and

C ∞ n,< / R ε,n,< | C ∞ n,< = C ∞ c (X max )/R ε,n,< C ∞ n,fin / R ε,n,fin | C ∞ n,fin = C ∞ c (X max )/R ε,n,fin C ∞ n,> / R ε,n,> | C ∞ n,> = C ∞ c (X max )/R ε,n,> Proof. The K-type decomposition of C ∞ c (X max ) in (66) implies that R ε,n = R ε,n,< ∩ R ε,n,fin ∩ R ε,n,> . Since R ε,n,< = R ε,n,< | C ∞ n,< ⊕ C ∞ n,fin ⊕ C ∞ n,>
and similarly for the other two, we obtain that

R ε,n = R ε,n,< | C ∞ n,< ⊕ R ε,n,fin | C ∞ n,fin ⊕ R ε,n,> | C ∞ n,>
, from which (67) follows.

To the first and the last quotient, which correspond to D -n and D n , we can apply Theorem 15. Hence the range of ω 0 (Θ

(D ±n ) c ) is a G • G -module of the form D ±n ⊗ (D ±n )
where (D ±n ) is a irreducible unitary (usually not tempered) G -module.

Theorem 15 does not apply to ω 0 (Θ V c n ) because the growth of the character of V n does not allow to extend it to S(X). Nevertheless, Proposition 26 ensures that ω

0 (Θ V c n ) is a G -module under ω 0 . Hence ω 0 (Θ V c n ) = V n ⊗ (V n ) where (V n
) is an admissible, quasi-simple representation of G . For n ≥ 1, understanding its structure would require work parallel to [START_REF] Howe | Homogeneous functions on light cones: the infinitesimal structure of some degenerate principal series representations[END_REF] and we defer it to a future article. If n = 1, then V 1 is the trivial representation and (V 1 ) is irreducible and unitary.

We summarize these results as follows. The Capelli operator C + is an unbounded selfadjoint operator on L 2 (X). Its spectrum is the union of a continuous and a discrete part. We consider subspace L 2 (X) cont ⊆ L 2 (X) on which the Capelli operator has a continuous spectrum. The operator C + commutes with the action of Sp 2 (R) on L 2 (X) via ω 0 . We consider the direct integral decomposition of L 2 (X) cont as Sp 2 (R)-module under ω 0 . Each isotypic component is a multiple of a unitary principal spherical representation π ε,iλ of Sp 2 (R), where λ ∈ R. The Capelli operator acts on each of them as scalar multiplication. As a bounded operator on L 2 (X) cont , the resolvent (C + -z 2 ) -1 is defined for z in the upper half-plane C + . Its restriction 

(C + -z 2 ) -1 | C ∞ c (X max
(C + -z 2 ) -1 f ; f ∈ C ∞ c (X max ) . ( 68 
)
This space is contained in S(X) * and therefore a GG -module via ω 0 . As a G-module, the residue space (68) equals ω

0 (Θ π c ε,n )(C ∞ c (X max ))
, where ε ∈ {0, 1} and ε ≡ n. The structure of the residue representations as GG -module via ω 0 is then collected in the following theorem.

Theorem 31. As GG -module, ω 0 (Θ π c ε,n )(C ∞ c (X max )) decomposes as follows: • If n = 0, then ω 0 (Θ π c 1,0 )(C ∞ c (X max )) = D 0 -⊗ (D 0 -) ⊕ D 0 + ⊗ (D 0 + ) , where (D 0 ± ) is the irreducible unitary representation of G corresponding to D 0 ± in Howe's correspondence. • If n ∈ Z >0 , then ω 0 (Θ π c ε,n )(C ∞ c (X max )) = D -n ⊗ (D -n ) ⊕ (V n ⊗ (V n ) ) ⊕ (D n ⊗ (D n ) ) ,
where (D ±n ) is the irreducible unitary representation of G corresponding to D ±n in Howe's correspondence, and (V n ) is an admissible quasi-simple representation of G . If n = 1, then V 1 is the trivial representation and (V 1 ) is an irreducible unitary representation of G .

(Notice that if g -1 is invertible, then c(g) = (g + 1)(g -1) -1 is the Cayley transform of g.) For g = (g, ξ) ∈ Sp(W) we set Θ( g) = ξ and define

T ( g) = Θ( g)χ c(g) µ (g-1)W .
Then the Weil representation (ω, L 2 (X)) attached to the character χ is Despite (70) defines ω( g) for all g ∈ Sp(W), it is not easy to make its right-hand side explicit for arbitrary g ∈ Sp(W). As we are going to see, such explicit formulas can be given on certain subgroups of Sp(W).

ω = Op • K • T . (70 
The function

χ + ( g) = Θ( g) |Θ( g)| (71) 
is well defined on the whole metaplectic group Sp(W) and has values in U 1 . But it is not a character, because Sp(W) does not have any non-trivial unitary character. However, when restricted to specific subgroups, it becomes a character. Let W = X ⊕ Y be any polarization, and let M be the subgroup of Sp(W) preserving X and Y. Then χ + is a character of the preimage M of M in Sp(W).

For g ∈ M , let det(g| X ) denote the determinant of g acting on X. Then the formula det -1/2 X ( g) = χ + ( g)| det X (g)| -1/2 defines a continuous group homomorphism det

-1/2 X : M → C × such that det -1/2 X ( g) 2 =
det(g| X ) -1 for all g ∈ M. Moreover,

ω( g)v(x) = det -1/2 X ( g)v(g -1 x) ( g ∈ M, v ∈ S(X), x ∈ X) . (72) 
See [AP14, Proposition 4.28]. In particular, if g ∈ M and det(g| X ) = 1, then

ω( g)v(x) = v(g -1 x) (v ∈ S(X), x ∈ X) . (73) 
Suppose now that (G, G ) = (Sp 2n (R), O p,p ) or (O p,p (R), Sp 2n (R)). Then both G and G preserve two (different) polarizations of W. Then the restriction of χ + to each of G and G of is a character. Moreover these restrictions agree on the intersection G ∩ G (because given by same function). Therefore χ + is a character of G G . Therefore

ω 0 ( g) = χ + ( g) -1 ω( g) (74) 
is a representation of G G , which is constant on the fibers of the covering. Hence it defines a representation of GG which we denote by the same symbol. Thus, for these pairs (G, G ), we work not with ω but with ω 0 .

Remark 5. If (G, G ) = (Sp 2n (R), O p,q ) or (G, G ) = (O p,q , Sp 2n (R)) with p + q odd then there is no character twisting of ω allowing to reduce it to a representation on GG . This case includes for instance that of (O 1 , Sp 2n (R)), where GG = Sp 2n (R).

Suppose that (G, G ) = (O p,q , Sp 2n (R)) with p ≤ q. Let ω n denote the Weil representation of Sp 2n (R). Then

ω| Sp 2n (R) = ω n ⊗ • • • ⊗ ω n p times ⊗ ω c n ⊗ • • • ⊗ ω c n q times = (ω n ⊗ ω c n ) ⊗ • • • (⊗ω n ⊗ ω c n ) p times ⊗ ω c n ⊗ • • • ⊗ ω c n q -p times .
Each tensor product ω n ⊗ ω c n is a representation of Sp 2n (R) constant on the fibers of the metaplectic cover. Hence it gives a representation of Sp 2n (R). For the tensor product of ω c n , it splits if and only if q -p (i.e. p + q) is even. As a result, if p + q is even then ω| Sp 2n (R) splits and the same character can be used to twist ω| G G .

Notice that if G and G do not preserve the same polarization, then we get from (72) two different formulas for ω 0 | G and ω 0 | G . So, if G ⊂ M but G is not contained in M, then (72) applies to G but not to G .

For instance, in the case of (G, G ) = (SL 2 (R), O p,p ), the formula for ω 0 given in section 5 corresponds to (72) (and more precisely (73) since det(g| X ) = 1 for g ∈ SL 2 (R)) for a polarization of W = X ⊕ Y which is preserved by SL 2 (R) but not by O p,p . Here W = M 2,2p is equipped of the symplectic form where dx = dx 1 dx 2 is the Lebsegue measure on X = R 2 .

Proof. Define J(w) = -swj. Then J 2 = -1 and Jw 1 , w 2 = tr(-sw 1 jjw T 2 s) = tr(w 1 w T 2 ) (w 1 , w 2 ∈ W) .

is a positive definite symmetric bilinear form on W. Hence J ∈ Sp 4 (R) is a positive definite compatible complex structure on W.

Let L = J -1 (s -1). Using the convention (76), explicitly we have L(w) = -J(s -1)(w) = -s(s -1)wj = (s -1)wj .

Hence LW = (s -1)W = x -x ; x ∈ M 1,2 (R) . Hence Θ( s) = ± 1 2 . For T ( s), we need to compute χ c(s) . Since (s -1) 0 x = x -x , it follows that (s -1) -1 x -x = 0 x . Hence (s + 1)(s -1) -1 x -x = (s + 1) 0 x = x x .

Thus, for x -x ∈ (s -1)W,

(s + 1)(s -1) -1 x -x , x -x = x -x , x -x = tr x -x j x -x T s = tr xjx T -xjx T xjx T -xjx T 0 1 1 0 = tr -xjx T xjx T -xjx T xjx T = 0 .
Therefore, χ c(s) = 1 and T ( s) = Θ( s)χ c(s) µ (s-1)W = ± 1 2 µ (s-1)W .

We now determine the Haar measures on X, Y and (s -1)W with the normalizations fixed in Appendix A. Notice that, by (79), the restriction of B to X is

B x 0 , x 0 = tr x 0 x T 0 = xx T .
The unit cube in X = R 2 is [0, 1] 2 . Thus, in the fixed normalizations, dµ X = dx = dx 1 dx 2 . Likewise, dµ Y = dy 1 dy 2 . A Haar measure µ (s-1)W on (s -1)W is a constant multiple of the pullback of the Lebesgue measure λ on X = R 2 via the isomorphism α : (s -1)W

x -x → x ∈ R 2 .
Hence, as a measure on W = X⊕Y, we have µ (s-1)W (x, y) = Cδ(x+y) dx dy. The constant C ≥ 0 is fixed by the condition that the measure of the unit cube with respect to the restriction to (s -1)W of the inner product B(w 1 , w 2 ) = Jw 1 , w 2 is one. By (79),

B x -x , x -x = tr x -x x T -x T = 2xx T .
The unit cube in (s -1)W with respect to B is mapped by α into [0, 1 √ 2 ] 2 , with Lebsegue measure 1 2 . Hence C = 2 and µ (s-1)W (x, y) = 2δ(x + y) dx dy (x ∈ X, y ∈ Y). 

For

  ζ ∈ C \ σ(ω(u)), the operator ω(u) -ζ is closed and invertible with bounded inverse R ω(u) (ζ). By [Nus64, Theorem 3(2)] and Corollary 2, π(u) -ζ is invertible for almost all π ∈ E and for all

  Proof. We only need to check that conditions (a) and (b) of [Prz93, Theorem 3.1] are satisfied. Condition (b) holds by [Prz93, Lemmas 3.2 and 8.6]. According to [Prz93, Proposition 4.11], condition (a) -which guarantees the absolute convergence of the integral on the right-hand side of (38)-is satisfied when Θ Π has rate of growth γ < γ max = λ max -1 where, for a dual pair of type I,

  Proof. Identify X with the space M d,m (D) of d × m matrices with coefficients in D, where d = dim D V and m = dim D X . Then there are a ∈ GL d (D) and b ∈ GL m (D) such that x = aeb where e = (I d | 0) and I d is the d × d identity matrix. Hence Gx = aG a eb where G a = a -1 Ga. Since left multiplication by a and right multiplication by b are homeomorphisms of M m,d (D), then Gx is closed in M m,d (D) if and only if so is G a e. The right multiplication by e embeds End D (V) = M d (D) into M d,m (D) = X.

  g.[Lan85, p. 123] or [Kna86, §2.7]):(1) Discrete series representations D n and D -n , n ∈ Z >0 , (2) Spherical principal series representations π 0,λ , λ ∈ C, (3) Non-spherical principal series representations π 1,λ , λ ∈ C.

  ) extends as a meromorphic operator valued function of z ∈ C with simple poles at z = -in, where n ∈ Z ≥0 . The residue space at each pole z = -in is Res z=-in

  )See[START_REF] Aubert | A reverse engineering approach to the Weil Representation[END_REF] Theorem 4.27]. It is a unitary representation of Sp(W) with space of smooth vectors equal to S(X).

w 1

 1 , w 2 = tr(w 1 w * 2 ) (w 1 , w 2 ∈ W)where w * = sw T j for w ∈ W, and X and Y consist respectively of the first two rows and the last two rows of the elements of W. The case(G, G ) = (O 1,1 , Sp 2 (R)) is detailed in Appendix B.

Furthermore, for

  u ∈ LW , we have L(u) = 2uj. Hence, 4 = det (L| LW ) = det (s -1 : W/Ker(s -1) → Im(s -1)) .

  j x T + x T 0 s = tr 0 x -x j 0 x T + x T = tr 0 xj -x j 0 x T + x T = tr 0 0 0 (xj -x j)(x T + x T ) = (xj -x j)(x T + x T ) = 2x jx T since xjx T = x jx T = 0.The formulas for K(T ( s)) and ω( s) therefore follow.
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We now focus on the case π ε,n , where ε ∈ {0, 1}, n ∈ Z ≥0 and n ≡ ε, as in Theorem 23. These representations are all reducible:

(1) π 1,0 = D 0 + ⊕ D 0 -decomposes into the holomorphic and anti-holomorphic limits of discrete series representations. The (g, K)-modules of D 0 -and D 0 + are respectively m<0 m≡1

Cϕ m and m>0 m≡1

Cϕ m .

(2) For all (ε, n) where ε ∈ {0, 1}, n ∈ Z >0 and n ≡ ε, the (g, K)-module V ε,n,K contains two irreducible submodules:

Cϕ m .

V -n K and V n K are isomorphic to the (g, K)-modules of the discrete series representations D -n and D n , respectively. The quotient module

is finite dimensional, of dimension n, and isomorphic to its contragredient. The above composition series show that

Hence, in the notation of Theorem 23,

Proposition 25 extends to each of the above subquotients of π ε,n .

-, D 0 + , D -n and D n are tempered unitary representations, the property holds for them (even with S(X) instead of C ∞ c (X max )) by Corollary 16. We only have to consider the case where π is the finite dimensional subquotient acting on V n . Because of the formula for the restriction to A of Θ V c n , see e.g. [Lan85, VII, Lemma 2], exactly the same proof as Proposition 25 applies in this case as well.

Let P m denote the projection of

Appendix A. The Weil representation

In this appendix we recall the definition of the Weil representation. We follow the approach initiated in [START_REF] Aubert | A reverse engineering approach to the Weil Representation[END_REF].

Let W be a finite dimensional real vector space equipped with a non-degenerate symplectic form •, • and let Sp(W) denote the corresponding symplectic group, with symplectic Lie algebra sp(W). The metaplectic group is the double cover of Sp(W) given by

with group multiplication

The 2-cocyle C(g 1 , g 2 ) appearing in ( 69) is explicit and can be found in [AP14, Proposition 4.13], whereas Θ 2 is defined by

where for every . A positive definite compatible complex structure on (W, •, • ) is an element J ∈ Sp(W) such that J 2 = -1 and the symmetric bilinear form defined on W by B(w, w ) = Jw, w is positive definite. Fix such a J. For any subspace U of W we normalize the Haar measure µ U on U so that the volume of the unit cube with respect to B is equal to 1.

Let us fix the unitary character χ of R defined by χ(r) = e 2πir and a polarization W = X ⊕ Y. The Weil representation of Sp(W) attached to χ is defined as the composition of three operators, Op, K and T , which we now recall. Op is the isomorphism of linear topological vector spaces Op : S * (X × X) → Hom(S(X), S * (X)) defined by

The operator K : S * (W) → S * (X × X) is the Weyl transform: it is the topological isomorphism of linear vector spaces defined for f ∈ S(W) by

The operator T embeds Sp(W) into S * (W) as suitably normalized Gaussian measures. An imaginary Gaussian on (g -1)W is defined by

Let W = M 2,2 (R). For w ∈ W set w * = jw T s, where j = 0 1 -1 0 and s = 0 1 1 0 are as in ( 9) and ( 7), respectively, and w T denotes the transpose of w. We endow W with the non-degenerate symplectic form

and denote by Sp 4 (R) the symplectic group of (W, •, • ). The actions of O 1,1 and Sp 2 (R) on W respectively defined by

embed O 1,1 and Sp 2 (R) in Sp 4 (R) as mutually centralizing subgroups. Set

Then W = X ⊕ Y is a complete polarization. Each element h a = a 0 0 a -1 ∈ SO 1,1 preserves X and Y, and det(h a | X ) = a 2 . Likewise, each element g ∈ Sp 2 (R) preserves X and Y, and det(g| X ) = 1.

Let Sp 4 (R) g → g ∈ Sp 4 (R) be the metaplectic covering map and let SO 1,1 and Sp 2 (R) respectively denote the inverse image of SO 1,1 and Sp 2 (R) in Sp 4 (R). Further, let M be the subgroup of Sp 4 (R) consisting of all elements preserving X and Y, and let M be its inverse image in Sp 4 (R). Hence SO 1,1 • Sp 2 (R) ⊆ M. Let (ω, L 2 (X)) be the Weil representation of Sp 4 (R) (attached to the character χ(r) = e 2πir of R).

By (72),

Since det(g| X ) = 0 for g ∈ SO 1,1 • Sp 2 (R), then ω| SO 1,1 • Sp 2 (R) splits and we may choose a section g → g such that, by setting ω(g) = ω( g), we have

(Observe that the right-hand sides agree on {±1} = SO 1,1 ∩Sp 2 (R).) The argument above applies to SO 1,1 but not to O 1,1 as O 1,1 = SO 1,1 sSO 1,1 and s does not preserve X and Y. (Notice that O 1,1 preserve the polarization of W given by first and second columns.) Nevertheless, it enough to understand ω( s). For this, we use the explicit definition of the Weil representation as given in [AP14, Theorem 4.27].

Since by (76) (s -1)(w) = (s -1)w we see that det W (s -1) = 0. Hence W (s -1)W. This is going to force us to make some work.