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THE RESONANCES OF THE CAPELLI OPERATORS FOR SMALL
SPLIT ORTHOSYMPLECTIC DUAL PAIRS

ROBERTO BRAMATI, ANGELA PASQUALE, AND TOMASZ PRZEBINDA

Abstract. Let (G,G′) be a reductive dual pair in Sp(W) with rankG ≤ rankG′ and G′

semisimple. The image of the Casimir element of the universal enveloping algebra of G′

under the Weil representation ω is a Capelli operator. It is a hermitian operator acting
on the smooth vectors of the representation space of ω. We compute the resonances
of a natural multiple of a translation of this operator for small split orthosymplectic
dual pairs. The corresponding resonance representations turn out to be GG′-modules in
Howe’s correspondence. We determine them explicitly.
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1. Introduction

The notion of resonances originated in the ’30s in Quantum Mechanics. As described
in [Har07], the story goes back to 1926, when Schrödinger studied the Stark effect, i.e.
the shifts caused to hydrogen’s emission spectrum by the application of a constant field.
The hydrogen Stark Hamiltonian is the unbounded operator on L2(R3) given by

H = ∆− 1

|x|
+ κx1

where κ ≥ 0 is the electrical field strength and the field acts in the x1-direction. In
Schrödinger’s model, the energies were the eigenvalues of H and the model was based on
eigenfunction expansions. This work was received with great enthusiasm by many physi-
cists of the time. For example, Epstein’s 1926 article in Nature, see [Eps26], considered
it to be “of extraordinary importance”. It had great influence on modern physics. Never-
theless, Schrödinger’s analysis contained a mistake: the hydrogen Stark Hamiltonian has
no eigenvalues if κ > 0. This absence of eigenvalues was first noticed by Oppenheimer
in 1928. Oppenheimer did not prove it, but referred for the proof to a work of Weyl,
where there was no proof either. Finally, in 1951, Titchmarsh proved that the Stark
Hamiltonian has no eigenvalues. The “phantom eigenvalues” in the Stark effect are in fact
resonances and the “eigenfunction expansions” are resonant state expansions. Resonances
are discrete spectral data, which might replace eigenvalues for differential operators with
a continuous spectrum.

Rigorous mathematical approaches to resonances were formulated only in the ’70s
and ’80s. Consider for example a Schrödinger operator H = ∆ + V on L2(Rn). Here
∆ = −

∑n
j=1

∂2

∂x2
j
and V is a potential acting as a multiplication operator. Under suit-

able assumptions, H is an unbounded self-adjoint operator on L2(Rn) with continuous
spectrum [0,+∞). For ζ ∈ C \ [0,+∞[, the resolvent of H, i.e. RH(ζ) = (H − ζ)−1 is a
bounded operator on L2(Rn), depending holomorphically on ζ. As an operator on L2(Rn),
RH(ζ) has no analytic extension across the spectrum of H. But we can replace L2(Rn)
by a smaller dense subspace, like C∞c (Rn) and consider the map

C \ [0,+∞) 3 ζ −→ RH(ζ) = (H − ζ)−1 ∈ Hom(C∞c (Rn), C∞c (Rn)∗) ,

which might have some continuation across [0,+∞), possibly to a Riemann surface. If
the continuation is meromorphic, then the poles are called the resonances of H.

It turns out to be convenient to replace the variable ζ ∈ C \ [0,+∞) with z ∈ C+ =
{w ∈ C : Imw > 0} by substituting ζ = z2. Define

R(z) = RH(z2) = (H − z2)−1 .
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The problem of meromorphic extension of RH as a function of ζ ∈ C\[0,+∞) is equivalent
to that of R as a function of z ∈ C+.

The theory of resonances of H = ∆ + V appears naturally in many branches of math-
ematics, physics and engineering. We refer to [DZ19] for more information.

The study of resonances of differential operators was extended beyond Euclidean set-
tings. The most investigated situations concern the Laplacian on a complete noncompact
Riemannian manifold with bounded geometry, such as hyperbolic and asymptotically
hyperbolic manifolds, symmetric or locally symmetric spaces (mostly of rank 1). This is
motivated by applications to geometric scattering, spectral theory, trace formulas, PDE’s,
and dynamical systems.

Riemannian symmetric spaces of the noncompact type are attractive because they
have a well understood geometry, a well developed Fourier analysis (the Helgason-Fourier
transform) and allow using tools from representation theory. Recall that such a space is
of the form G/K, where G is a connected noncompact real semisimple Lie group with
finite center and K is a maximal compact subgroup of G. The left-regular representation
L of G on L2(G/K) decomposes into isotypic components according to

L2(G/K) =

∫
a∗

L2(G/K)πiλ
dλ

c(iλ)c(−iλ)

where a is Cartan subspace of the Lie algebra g of G, πiλ is the unitary principal series
representation of G of parameter λ ∈ a∗ and c(iλ) is Harish-Chandra’s c-function. This
decomposition is realized via the Helgason-Fourier inversion formula:

f(x) =

∫
a∗

(f × ϕiλ)(x)︸ ︷︷ ︸
fπiλ (x)

dλ

c(iλ)c(−iλ)
(f ∈ C∞c (G/K)) , (1)

where ϕiλ is the spherical function of spectral parameter iλ and × denotes the convolution
of functions on G/K. Let U(g) be the enveloping algebra of g, U(g)G the subalgebra of
G-invariant elements and let C ∈ U(g)G be the Casimir element. Then ∆ = L(−C) is
the (positive) Laplacian on G/K. It is an essentially self-adjoint unbounded operator on
L2(G/K), with continuous spectrum [ρ2

X ,+∞[, where ρ2
X is a positive constant. It acts

by the scalar 〈λ, λ〉+ ρ2
X on L2(G/K)πiλ . Hence ∆− ρ2

X has continuous spectrum [0,+∞)
and acts by the scalar 〈λ, λ〉 on L2(G/K)πiλ . The resolvent R(z) = (∆ − ρ2

X − z2)−1 is
a holomorphic function of z ∈ C+, with values in the space of bounded operators on
L2(G/K). It extends meromorphically from C+ to C (or to a Riemann surface over C) by
considering it as an operator on C∞c (G/K). The explicit decomposition of L in (1) yields
for z ∈ C+ and f ∈ C∞c (G/K):

R(z)f(x) =

∫
a∗

1

〈λ, λ〉 − z2
fπiλ(x)

dλ

c(iλ)c(−iλ)
.

A meromorphic extension of R(z) may exist because the terms in the integrand admit a
meromorphic extension in λ ∈ a∗C. Namely:

(1) {πiλ;λ ∈ a∗} ⊂ {spherical principal series representations πλ, λ ∈ a∗C};
(2) fπλ = f × ϕλ exists and is a Paley-Wiener type function of λ ∈ a∗C;
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(3) the Plancherel density 1
c(iλ)c(−iλ)

extends as a meromorphic function in a∗C;
(4) 1

〈λ,λ〉−z2 is meromorphic in a∗C.
Suppose that the resolvent has a meromorphic extension to C, as it does in the real
rank-one case, see e.g. [MW00, HP09], and let z0 be a resonance. Since the Laplacian is
G-invariant, the group G acts on the residue space{

Res
z=z0

R(z)f ; f ∈ C∞c (G/K)

}
by the left-regular action. This is the resonance representation at z0.

To summarize, for the Laplacian on G/K we have:
(1) a unitary representation L of a reductive Lie group G,
(2) a differential operator L(−C + constant), where C is the Casimir element;
(3) a representation of G at each resonance of L(−C + constant).
It seems natural to replace L by an arbitrary unitary representation ω of G and study

the resonances and the associated representations for ω(−C + constant) .

Consider a reductive dual pair (G,G′) in the sense of Howe (see section 4 for definitions)
in a symplectic group Sp(W). Let U(g) denote the universal enveloping algebra of g, and
similarly for g′. Let ω denote the Weil representation of the metaplectic group S̃p(W)
corresponding to a fixed unitary character of R. Then the G-invariants U(g)G and G′-
invariants U(g′)G′ are mapped by ω onto the same algebra of operators:

ω
(
U(g)G

)
= ω

(
U(g′)G′

)
. (2)

Any operator in this algebra is called a Capelli operator. The equality (2) is a consequence
of [How89, Theorem 7]. See also [Prz96] and [Ito05, (0.1)].

Suppose that G′ is semisimple. Then U(g′)G′ contains a well-defined Casimir element
C ′. From the above equality, we know that there is C ′′ ∈ U(g)G such that ω(C ′′) =
ω(C ′). Moreover, C ′′ is unique because rankG ≤ rankG′ (see [Prz96]). In the example

of (O1,1, Sp2(R)), we have C ′′ = h2 − 1, where h =

(
0 1
−1 0

)
is a basis of o1,1; see (15).

For the dual pairs (Sp2(R),Op,p), we have C ′′ = C − (p− 1)2 + 1, where C is the Casimir
operator of Sp2(R); see (46).

The Capelli operator C+ we study in this paper is a natural multiple of a translation of
ω(C ′) = ω(C ′′). It is chosen so that its continuous spectrum is [0,+∞). Furthermore, we
consider orthosymplectic dual pairs (G,G′) with the rank of G or G′ equal to 1 and the
orthogonal group is of the form Op,p. Our goal is to determine the resonances of the Capelli
operator C+ as an unbounded operator on the Hilbert space of ω. We use the easier of the
two groups in the dual pair, which is G in our notation, to obtain the spectral analysis
of the operator C+, the meromorphic continuation of its resolvent and the resonance
representations as G-modules. We could have tried to do the analysis of resonances of
ω(C ′) working with the more difficult group G′. Nevertheless, since ω(C ′) = ω(C ′′) and
because of Howe’s correspondence, we do not have to do it: the result would be the same.
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This paper is organized as follows. In section 2 we outline the general idea of resonances
for an operator of the form ω(C) where ω is a unitary representation of a Lie group E and
C ∈ U(e)E, where e is the Lie algebra of E. In section 3, we provide a complete analysis of
the resonances and residue representations for the Capelli operator C+ for the dual pair
(O1,1, Sp2(R)). The case (O1,1, Sp2n(R)) with n > 1 could be treated in a similar way,
but the description of the resonance representations would be less explicit. In section
4 we show how to decompose the restriction of the Weil representation to the smaller
member of an orthosymplectic dual pair in the stable range. Finally, in the last section
we apply the results of section 4 to the dual pair (Sp2(R),Op,p) with p ≥ 2 and study the
resonances and the associated resonance representations of C+. In Appendices A and B
we recall some facts about the Weil representation.

2. Abstract resonances

Let E be a real Lie group with Lie algebra e and let (ω,V) be a unitary representation
of E. Let (·, ·)V denote the inner product of V and ‖ · ‖V the associated norm. We denote
by V∞ the space of C∞-vectors for (ω,V). It consists of the elements v ∈ V for which the
map E 3 g 7→ ω(g)v ∈ V is C∞.

Let U(e) denote the universal enveloping algebra of the complexification of e. For short,
the derived representation of U(e) acting on V∞ will be indicated by the same symbol ω
(in place of dω):

ω(X)v =
d

dt
ω(exp(tX))v

∣∣∣∣
t=0

(X ∈ e, v ∈ V∞) . (3)

As shown by Segal in [Seg59], V∞ is the largest subspace of V on which all the ω(u),
u ∈ U(e), are defined (even if a specific ω(u) may be extended to a larger domain in V).
The space V∞ has a topology defined by the family of seminorms {pD;D ∈ U(e)} where
pD(v) = ‖ω(D)v‖V for v ∈ V∞. Then ω is a smooth representation of E on the Fréchet
space V∞.

For every u ∈ U(e), the operator ω(u) with domain V∞ is closable, with closure denoted
by ω(u). Let E0 denote the identity connected component of E and let D be an E0-invariant
dense subspace of V contained in V∞. Poulsen proved (see [Pou72, p. 91 and Corollary
1.2]) that

ω(u) = ω(u)|D .
This is useful because, despite the fact that V∞ is a natural domain for the operators
ω(u), for practical purposes, it might be convenient to work on smaller dense domains.
The above property says that the choice of the (group invariant) dense domain inside V∞
is immaterial.

Let u 7→ u+ denote the conjugate-linear involution of U(e) such that X+ = −X for
all X ∈ e. An element u ∈ U(e) is said to be hermitian if u+ = u. For u ∈ U(e) and
v, v′ ∈ V∞ we have (ω(u)v, v′)V = (v, ω(u+)v′)V. So ω(u)∗ extends ω(u+).

For ζ ∈ C outside the spectrum σ(ω(u)) of ω(u) the operator

Rω(u)(ζ) = (ω(u)− ζ)−1 : V→ V
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exists and is continuous. This is how we understand the resolvent of ω(u) at ζ. It is a
holomorphic function on C\σ(ω(u)) with values in the space of bounded linear operators
on V.

A decomposition of ω into unitary representations leads to an explicit expression for
Rω(u). Indeed, suppose that the unitary representation (ω,V) of E decomposes as a direct
integral

V =

∫ ⊕
Ê

Vπ dµ(π) (4)

of unitary isotypic representations Vπ of type π ∈ Ê, where the parameter set Ê is the
unitary dual of E. (Recall that any unitary representation of a type I group on a separable
Hilbert space has an essentially unique direct integral decomposition of the form (4), see
e.g. [Mac76, §2.4].) Notice that the support of the measure µ need not be the entire Ê.
Thus every element v ∈ V is represented by vectors vπ ∈ Vπ and we will write this as

v =

∫ ⊕
Ê

vπ dµ(π) .

The inner product on V is given in terms of the inner products (·, ·)π on the Vπ’s by

(u, v) =

∫ ⊕
Ê

(uπ, vπ)πdµ(π) ,

and the elements of V are precisely the measurable vector fields v : Ê →
∏

π∈Ê Vπ which
are square integrable, i.e. (v, v) < ∞. We identify two fields that are equal almost
everywhere. For additional information on direct integrals and linear operators on them,
see [Dix69, Chapitre II, §1-3] and [Nus64]. The action of E on V diagonalizes according
to:

(ω(g)v)π = π(g)vπ (g ∈ E , π ∈ Ê) .

The following lemma was proved in [Arn76, Lemma 2].

Lemma 1. Keep the above notation and let {Xj} be a basis of e. Then v =
∫ ⊕

Ê
vπ dµ(π)

belongs to V∞ if and only if the following two conditions are satisfied:
(1) vπ ∈ V∞π for almost all π ∈ Ê;
(2) the fields (π(Xi)

nvπ) are square integrable for every integer n ≥ 0.
In this case, for every u ∈ U(e), we have

ω(u)v =

∫ ⊕
Ê

π(u)vπ dµ(π) .

A short argument based on Lemma 1 and the definitions involved proves the following
corollary.

Corollary 2. Let (ω,V) be a unitary representation as above, with isotypic unitary de-
composition V =

∫ ⊕
Ê
Vπ dµ(π). Let u ∈ U(e) and let v =

∫ ⊕
Ê
vπ dµ(π) be in the domain of
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ω(u). Then the vπ are in the domain of π(u) for almost all π and

ω(u)v =

∫ ⊕
Ê

π(u)vπ dµ(π) .

For ζ ∈ C\σ(ω(u)), the operator ω(u)−ζ is closed and invertible with bounded inverse
Rω(u)(ζ). By [Nus64, Theorem 3(2)] and Corollary 2, π(u)− ζ is invertible for almost all
π ∈ Ê and for all v =

∫ ⊕
Ê
vπ dµ(π) ∈ V,

Rω(u)(ζ)v = (ω(u)− ζ)−1v =

∫ ⊕
Ê

(π(u)− ζ)−1vπ dµ(π) .

Since ‖(π(u)− ζ)−1vπ‖π ≤ ‖(ω(u)− ζ)−1‖‖vπ‖π for almost all π ∈ Ê by [Dix69, Ch. II,§2,
3 (1)], the operator (π(u)− ζ)−1 is bounded on Vπ for almost all π.

Let Z(e) denote the center of U(e). In [Seg59, Theorem and Corollary 3], Segal proved
that if u ∈ Z(e) then the closure ω(u) of ω(u) is equal to the adjoint of ω(u+). In
particular, for every hermitian u ∈ Z(e), the operator ω(u) is essentially self-adjoint. The
spectrum of ω(u) is therefore real. Likewise, the spectrum of π(u) is real for all π ∈ Ê.

The most important elements in Z(e) are the (quadratic) Casimir elements. Let B be
a nondegenerate symmetric bilinear form on e that is invariant under the adjoint action
of e on itself, i.e. B(adX(Y ), Z) + B(Y, adX(Z)) = 0 for all X, Y, Z ∈ e. (Usually, B is
the Killing form if e is semisimple.) Let {Xj} be a basis of e and let (bij) be the inverse of
the matrix (bij) where bij = B(Xi, Xj). Then CB =

∑
ij b

ijXjXk is the Casimir element
associated with B. It is hermitian and belongs to Z(e) by the ad invariance of B. In fact,
it belongs to U(e)E.

Remarks 1. (1) The property of essential self-adjointness of ω(u) extends to other
hermitian non-central elements of U(e). Suppose for instance that E is a noncom-
pact semisimple Lie group with compact center and maximal compact subgroup
K. Let U(e)K denote the subspace of K-invariant elements of U(e). Let D be an E-
invariant dense subspace of V contained in V∞. Then the restriction ω(u)|D of ω(u)
to D is essentially self-adjoint for every hermitian u ∈ U(e)K. See [Seg59, Corollary
3]. Nevertheless, there are hermitian u ∈ U(e) for which ω(u) is not essentially
self-adjoint. We refer to to [Sch90, Section 10.2] for additional information and
references, and to [Arn76] for some counterexamples.

(2) Recall that the Gårding subspace of V is defined as the subspace of V∞ consisting
of the finite linear combinations of the vectors ω(f)v for f ∈ C∞c (E) and v ∈ V.
Here ω(f) =

∫
E
f(g)ω(g) dg and dg is a fixed left-invariant Haar measure on E.

A remarkable theorem, proven by Dixmier and Malliavin [DM78], is that V∞

coincides with the Gårding subspace of V.

By Segal’s infinitesimal version of Schur’s lemma, if (π, Vπ) is unitary and irreducible
and u ∈ Z(e), then π(u) acts on V ∞π as a real scalar multiple of the identity. This yields
the following corollary.
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Corollary 3. Let (ω,V) with V =
∫ ⊕

Ê
Vπ dµ(π) be as above and let u ∈ Z(e) be hermitian.

Then, for every π ∈ Ê there is a constant λω(u),π ∈ R such that for all ζ ∈ C \ R and
v =

∫ ⊕
Ê
vπ dµ(π) ∈ V, we have

Rω(u)(ζ)v = (ω(u)− ζ)−1v =

∫ ⊕
Ê

(λω(u),π − ζ)−1vπ dµ(π) .

Considered as a bounded linear operator on V, the resolvent Rω(u) cannot be extended
across the spectrum of ω(u). However, restricting Rω(u)(ζ) to a dense linear subspace U
might allow it. More precisely, consider a linear topological space U, dense in V, endowed
with a locally convex topology that is finer than the one induced from V, and let U′ the
topological antidual space of U, i.e. the set of continuous conjugate-linear functionals on
U. Endow U′ with the weak topology. We obtain the continuous inclusions

U ⊆ V ⊆ U′ , (5)

where the inclusion V ⊆ U′ is the natural one, namely v ∈ V is identified with the
functional U 3 w 7→ 〈v, w〉 ∈ C in U′. A double inclusion as in (5) is often called a rigged
Hilbert space (RHS), also known as an equipped Hilbert space, or a Gelfand triplet.

We shall also consider the linear dual of U, denoted by U∗, endowed with the weak
topology.

If X is a manifold endowed with a regular Borel measure, and V = L2(X), then we have
the antilinear isomorphism

L2(X) 3 f 7→ f ∈ L2(X). (6)
Suppose that U = C∞c (X) is the space of compactly supported smooth functions on X.
Then (6) composed with the inclusion V = L2(X) ⊆ U′ gives a continuous linear embedding
of L2(X) into C∞c (X)∗. We obtain then the usual construction from distribution theory

C∞c (X) ⊆ L2(X) ⊆ C∞c (X)∗ .

Let us suppose that we are in this case, i.e. ω is a unitary representation of E on L2(X).
We also suppose that ω(u) has spectrum equal to [0,+∞). We are then in a situation
resembling the one of the introduction: considering the resolvent Rω(u) as an operator

C+ ∈ z −→ Hom(C∞c (X), C∞c (X)∗) ,

it might admit a holomorphic or meromorphic extension across R (possibly to a Riemann
surface). If the extension is meromorphic, then the poles of the meromorphically extended
resolvent are the resonances of the operator ω(u).

Notice that this might not be the most general setting one can consider: it is the one
suggested by the examples presented in the introduction, in particular the case of the
Laplacian on Riemannian symmetric cases of the noncompact type. Moreover, even the
choice of C∞c (X) is not canonical, but convenient to apply Paley-Wiener type theorems.

Suppose now that u ∈ U(e)E. Then, for every z ∈ C+, the resolvent Rω(u)(z) intertwines
the action of E via ω on C∞c (X) and the extended action (also called ω) on C∞c (X)∗.
Assume that the resolvent of ω(u) extends meromorphically across R and that z0 is a
resonance. The same happens for every meromorphic continuation of the resolvent.
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The operator
C∞c (X) ∈ v −→ Res

z=z0
Rω(u)v ∈ C∞c (X)∗

is called the residue operator at z0. Since ω is a representation (and hence strongly
continuous)

ω(g) ◦ Res
z=z0

Rω(u) = Res
z=z0

(
ω(g) ◦Rω(u)

)
(g ∈ E) .

The group E therefore acts on the range of the residue operator. So this range is an
E-module, called the residue representation. These are the objects we are studying in this
article.

3. The pair (O1,1, Sp2(R))

3.1. Action of the groups. The group O1,1 is the subgroup of GL2(R) generated by
SO1,1 and the element

s =

(
0 1
1 0

)
, (7)

where SO1,1 is realized as the group of all matrices of the form

ha =

(
a 0
0 a−1

)
(a ∈ R×) .

Then
s2 = 1 , shas

−1 = ha−1 (a ∈ R×) .

The group structure of SO1,1 together with this last relation determines the group struc-
ture of O1,1.

Identify
SO1,1 3 ha ≡ a ∈ R× .

The unitary dual ŜO1,1 of SO1,1 ≡ R× ≡ R>0 × Z/2Z consists of the characters χε,λ with
ε ∈ {0, 1} and λ ∈ R, where

χε,λ(ha) = |a|iλ
(
a

|a|

)ε
(a ∈ R×) .

For λ > 0, set πε,λ = Ind
O1,1

SO1,1
χε,λ. This is the two-dimensional irreducible unitary repre-

sentation of O1,1 = SO1,1 t sSO1,1 determined by

πε,λ(ha) =

(
a

|a|

)ε(|a|iλ 0
0 |a|−iλ

)
(a ∈ R×)

πε,λ(s) = s .

Choosing ε, δ ∈ {0, 1}, one obtains four one-dimensional unitary representations of O1,1

by setting
π0;ε,δ(ηha) = det(η)δχε,0(ha) (a ∈ R×, η ∈ {1, s}).

Notice that π0;0,1(ηha) = det(η) is the determinant representation. These representations
exhaust the unitary dual Ô1,1 of O1,1.
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Let X = M1,2(R) be the space of matrices consisting of one row of length two with real
entries. We define an action ω0 of the group SO1,1 on L2(X) as follows:

ω0(ha)v(x) = |a|−1v(a−1x) (a ∈ R× , v ∈ L2(X) , x ∈ X) .

It is easy to check that this action preserves the L2-norm. Also, let

ω0(s)v(x′) =

∫
X

e−2πix′jxt v(x) dx (v ∈ L2(X) , x′ ∈ X) , (8)

where

j =

(
0 1
−1 0

)
. (9)

Then
ω0(s) = R(j)F = FR(j) , (10)

where
Fv(x′) =

∫
X

e−2πix′xt v(x) dx (v ∈ L2(X) , x′ ∈ X) (11)

is the usual Fourier transform and

R(g)v(x) = v(xg) (g ∈ GL2(R) , v ∈ L2(X) , x ∈ X) .

In particular, ω0(s) is a unitary operator. Since F2 = R(−1) we see that

ω0(s)2 = R(j)FFR(j) = R(j)R(−1)R(j) = I .

Furthermore, a straightforward computation shows that

ω0(s)ω0(ha)ω0(s)−1 = ω0(ha−1) (a ∈ R×) . (12)

Therefore the above formulas define a unitary representation (ω0,L
2(X)) of the group O1,1.

The group Sp2(R) = SL2(R) acts on L2(X) via the right translations R:

ω0(g)v(x) = v(xg) (g ∈ Sp2(R) , v ∈ L2(X) , x ∈ X) . (13)

This action is unitary and the two actions commute. Thus (ω0,L
2(X)) may be viewed as

a unitary representation of the group O1,1 × Sp2(R), where we identify O1,1 = O1,1 × {1}
and {1} × Sp2(R) = Sp2(R).

3.2. The Casimir elements and the Capelli operators. Let

h =

(
1 0
0 −1

)
.

Then the Lie algebra of SO1,1 is so1,1 = Rh. By taking the derivative along one parameter
subgroups at the origin, see (3), we see that

ω0(h) = −x∂x − y∂y − 1 ,

where we denote a typical element of X by (x, y). Moreover, let

e+ =

(
0 1
0 0

)
, e− =

(
0 0
1 0

)
. (14)
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Then sp2(R) = Rh + Re+ + Re− and C ′ = h2 − 2h + 4e+e− ∈ U(sp2(R)) is the Casimir
element. Also, one may think of C = h2 as a Casimir element in U(o1,1). A straightforward
computation shows that

ω0(C) = (x∂x + y∂y + 1)2 = ω0(C ′) + 1 . (15)

This is one of Capelli’s identities. (For a general story, see [HU91].) Set

C+ = −(x∂x + y∂y + 1)2 (16)

Notice that E = x∂x + y∂y is the Euler operator, with formal adjoint E∗ = −E − 2. So
C+ = (E + 1)∗(E + 1) is self-adjoint and positive. We would like to think of C+ as of “the
positive Capelli operator”. The Schwartz space S(X) is an O1,1 × Sp2(R)-invariant dense
subspace of the space of smooth vectors of the representation ω0 of O1,1 × Sp2(R).

3.3. Direct integral decomposition of the restriction of (ω0,L
2(X)) to O1,1.

Lemma 4. For λ ∈ C and v ∈ C∞c (X \ {0}) define

vλ(w) =

∫
R>0

a−1−iλv(a−1w) d×a (w ∈ X \ {0}) , (17)

where d×a = da
a

is the Haar measure on the multiplicative group R>0. Then vλ is a
homogeneous function of degree −1 − iλ, that is vλ(tw) = t−1−iλvλ(w) for all t > 0 and
w ∈ X \ {0}. For fixed w, vλ(w) is an entire function of Paley-Wiener type in λ ∈ C.
Moreover

v(w) =
1

2π

∫
R
vλ(w) dλ (18)

and ∫
X

u(x)v(x) dx =
1

2π

∫
R

∫
S1

uλ(σ)vλ(σ) dσ dλ (u, v ∈ C∞c (X \ {0})) , (19)

where S1 ⊆ X is the unit circle centered at the origin and dσ is the rotation invariant
measure on S1 normalized so that the total length of S1 is 2π.

Proof. The first two claims are immediate by change of variables and because, for a fixed
w ∈ X\{0}, the function R>0 3 a 7→ a−1v(a−1w) ∈ C is smooth and compactly supported.
The right-hand side of (18) is equal to

1

2π

∫
R>0

a−1

∫
R
a−iλ dλ v(a−1w) d×a =

∫
R>0

a−1δ1(a) v(a−1w) d×a = v(w) .
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The right-hand side of (19) is equal to

1

2π

∫
R

∫
S1

uλ(σ)vλ(σ) dσ dλ

=
1

2π

∫
S1

∫
R

∫
R>0

∫
R>0

a−1−iλb−1+iλu(a−1σ)v(b−1σ) d×b d×a dλ dσ

=

∫
S1

∫
R>0

∫
R>0

δ1(ab−1)a−1b−1u(a−1σ)v(b−1σ) d×b d×a dσ

=

∫
S1

∫
R>0

a−2u(a−1σ)v(a−1σ) d×a dσ

=

∫
S1

∫
R>0

a2u(aσ)v(aσ) d×a dσ ,

which coincides with the left-hand side. �

Lemma 5. For λ ∈ C let C∞λ (X \ {0}) ⊆ C∞(X \ {0}) denote the subspace of functions
homogeneous of degree −1− iλ. Then (17) defines a continuous surjective map,

C∞c (X \ {0}) 3 v 7→ vλ ∈ C∞λ (X \ {0}) . (20)

Furthermore,∫
X

v(w)u(w) dw =
1

2π

∫
R

∫
S1

vλ(σ)u−λ(σ) dσ dλ (u, v ∈ C∞c (X \ {0}). (21)

Proof. The continuity and the surjectivity of (20) follow from [Hör83, (3.2.21)-(3.2.23)].
The last equation is a straightforward consequence of (19):∫

X

v(w)u(w) dw =

∫
X

v(w)u(w) dw =
1

2π

∫
R

∫
S1

vλ(σ)uλ(σ) dσ dλ

=
1

2π

∫
R

∫
S1

vλ(σ)u−λ(σ) dσ dλ (u, v ∈ C∞c (X \ {0})) .

�

Corollary 6. For λ ∈ C let L2
λ(X) denote the closure of C∞λ (X \ {0}) with respect to the

L2-norm on S1:

‖vλ‖λ =

(∫
S1

|vλ(σ)|2 dσ
)1/2

(vλ ∈ C∞λ (X \ {0})) . (22)

Then

L2(X) =
1

2π

∫ ⊕
R

L2
λ(X) dλ (23)

is the decomposition of the Hilbert space L2(X) into the direct integral of the Hilbert spaces
L2
λ(X) with the Plancherel measure 1

2π
dλ.
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Notice that every element of L2
λ(X) can be written in the form vλ(w) = r−1−iλf(σ)

where w = rσ with (r, σ) ∈ R>0 × S1 and f ∈ L2(S1).
The transformation (17) maps odd functions to odd functions and even functions to

even functions.
For each λ ∈ R, let L2

0,λ(X) ⊆ L2
λ(X) be the subspace of even functions and let L2

1,λ(X) ⊆
L2
λ(X) be the subspace of odd functions. Then

L2(X) =
1

2π

∫ ⊕
R

(
L2

0,λ(X)⊕ L2
1,λ(X)

)
dλ .

Each vλ ∈ C∞λ (X \ {0}) is a homogeneous function of degree −1 − iλ. Hence it extends
uniquely to a homogeneous, and hence tempered distribution on X, see [Hör83, Theorem
3.2.3 and 7.1.18]. We write vλ = v0,λ + v1,λ for the decomposition of vλ ∈ L2

λ(X) =
L2

0,λ(X) ⊕ L2
1,λ(X). From now on (in this section) we view L2

λ(X) as a subspace of the
tempered distributions S∗(X),

L2
λ(X) ⊆ S∗(X)

and extend the action ω0 of O1,1 to L2
λ(X) ⊆ S∗(X) by dualizing the action on S(X) ⊆

L2(X), that is

(ω0(g)vλ)(u) = vλ(ω0(g−1)u) (g ∈ O1,1 , vλ ∈ L2
λ(X) , u ∈ S(X)) .

The reason is that we want to apply the Fourier transform ω0(s), see (8), to elements of
L2
λ(X).
In particular, the Fourier transform of vλ ∈ L2

λ(X) is homogeneous of degree −1 + iλ,
see [Hör83, Theorem 7.1.24]. Hence, for ε ∈ {0, 1},

ω0(s) : L2
ε,λ(X)→ L2

ε,−λ(X) .

The spaces L2
ε,λ(X) are isotypic for the action of SO1,1 via ω0, as can be seen from the

formulas

ω0(ha)v0,λ = |a|iλv0,λ , ω0(ha)v1,λ = |a|iλ a
|a|
v1,λ (a ∈ R× , vε,λ ∈ L2

ε,λ(X)) . (24)

Hence L2
ε,λ(X)⊕ L2

ε,−λ(X) is preserved under the action of O1,1. If λ > 0, then this repre-
sentation is isotypic, direct integral of a single 2-dimensional irreducible representation,
which we denote by (πε,λ,Vε,λ). Indeed, fix vε,λ ∈ L2(X)ε,λ and set Vε,λ = Cvε,λ ⊕ Cvε,−λ,
where vε,−λ = ω0(s)vε,λ. Let Bε,λ = {vε,λ, vε,−λ}. Then the matrix of ω0(s)|Vε,λ with
respect to Bε,λ is s. For a ∈ R×, by (12) and (24),

ω0(ha)|V0,λ
=

(
|a|iλ 0

0 |a|−iλ
)

with respect to B0,λ

ω0(ha)|V1,λ
=

a

|a|

(
|a|iλ 0

0 |a|−iλ
)

with respect to B1,λ .

Thus ω0|V0,λ
= π0,λ and ω0|V1,λ

= π1,λ. We have therefore proved the following corollary.
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Corollary 7. For ε ∈ {0, 1} and λ > 0,

L2(X)πε,λ = L2(X)ε,λ ⊕ L2(X)ε,−λ

is an isotypic representation of O1,1 of type πε,λ.
The restriction of the representation (ω0,L

2(X)) to O1,1 decomposes into direct integral
of irreducible unitary representations as follows,

L2(X) =

∫
Ô1,1

L2(X)π dµ(π) ,

where dµ(πε,λ) = dλ
2π

for (ε, λ) ∈ {0, 1}×R>0, µ(πε,0,δ) = 0 for (ε, δ) ∈ {0, 1}2 and L2(X)π
denotes the isotypic component of type π.

3.4. The resonance.

Lemma 8. Recall the densely defined differential operator C+ on L2(X), see (16). For
z ∈ C with Im z > 0 the operator C+ − z2 is invertible with inverse

(C+ − z2)−1 : L2(X)→ L2(X) (25)

given, in terms of (23), by

(C+ − z2)−1

(
1

2π

∫
R
vλ dλ

)
=

1

2π

∫
R
(λ2 − z2)−1vλ dλ .

Proof. This follows from the straightforward fact that C+vλ = λ2vλ. �

Proposition 9. If we shrink the domain and expand the range of the map (25)

(C+ − z2)−1 : C∞c (X \ {0})→ C∞c (X \ {0})∗ (26)

by the formula

((C+ − z2)−1v)(u) =

∫
X

((C+ − z2)−1v)(w)u(w) dw (u, v ∈ C∞c (X \ {0})) , (27)

then (26) extends from Im z > 0 to a meromorphic function of z ∈ C with a single simple
pole at z = 0, with residue operator given by

Resz=0((C+ − z2)−1v) =
i

2
v0 .

Here v0 is viewed as a distribution on X\{0} via integration against dw. This distribution
extends uniquely to a homogeneous distribution on X.

Proof. The equality (21) shows that (27) means that

((C+ − z2)−1v)(u) =
1

2π

∫
R

∫
S1

(λ2 − z2)−1vλ(σ)u−λ(σ) dσ dλ . (28)

Notice that

(λ2 − z2)−1 = − 1

2z

(
1

z − λ
+

1

z + λ

)
.
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Hence, the right hand side of (28) is equal to

− 1

4πz

(∫
R

∫
S1

1

z − λ
vλ(σ)u−λ(σ) dσ dλ+

∫
R

∫
S1

1

z + λ
vλ(σ)u−λ(σ) dσ dλ

)
. (29)

The function in the parenthesis extends to an entire function of z. Indeed, since the
function

C 3 λ 7→
∫
S1

vλ(σ)u−λ(σ) dσ ∈ C

is of Paley-Wiener type, we may pick any N > 0 and, using Cauchy’s theorem, show that∫
R

∫
S1

1

z − λ
vλ(σ)u−λ(σ) dσ dλ+

∫
R

∫
S1

1

z + λ
vλ(σ)u−λ(σ) dσ dλ

=

∫
R−iN

∫
S1

1

z − λ
vλ(σ)u−λ(σ) dσ dλ+

∫
R+iN

∫
S1

1

z + λ
vλ(σ)u−λ(σ) dσ dλ . (30)

The right hand side of (30) is a holomorphic function for Im z > −N . Therefore (29) is a
meromorphic function with a unique simple pole at zero. The residue at zero is equal to

− 1

4π

(∫
R−iN

∫
S1

1

−λ
vλ(σ)u−λ(σ) dσ dλ+

∫
R+iN

∫
S1

1

λ
vλ(σ)u−λ(σ) dσ dλ

)
=

1

4π

∫
S1

(∫
R−iN

1

λ
vλ(σ)u−λ(σ) dλ−

∫
R+iN

1

λ
vλ(σ)u−λ(σ) dλ

)
dσ

=
1

4π

∫
S1

∫
|λ|=N

1

λ
vλ(σ)u−λ(σ) dλ dσ =

i

2

∫
S1

v0(σ)u0(σ) dσ ,

where we used again Cauchy’s theorem and the Paley-Wiener property of vλ and u−λ (see
Lemma 4), and finally Cauchy’s integral formula. Thus

Res
z=0

((C+ − z2)−1v)(u) =
i

2

∫
S1

v0(σ)u0(σ) dσ =
i

2

∫
X

v0(w)u(w) dw .

�

3.5. The resonance representation. By Proposition 9, the resonance space at λ = 0
is

{v0 ∈ C∞(X \ {0}) : v ∈ C∞c (X \ {0})} .
Its completion with respect to the inner product (22) is the Hilbert space L2

0(X). In this
subsection we take a look at this space as representation of O1,1.

The elements of L2
0(X) are of the form r−1f(eiθ) where w = reiθ with (r, eiθ) ∈ R>0×S1

and f ∈ L2(S1). By the L2-Fourier expansion f(eiθ) ∼
∑

k∈Z f̂(k)eikθ, it suffices to
consider the action of ω0 on r−1eikθ, k ∈ Z.

Lemma 10. The following formulas hold:

ω0(s) : r−1eikθ 7→ r−1eikθ, if k ∈ Z, k ≥ 0 , (31)

ω0(s) : r−1eikθ 7→ (−1)kr−1eikθ, if k ∈ Z, k < 0 . (32)
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Proof. For t > 0 define gk,t(w) = ft(r)e
ikθ, where w = reiθ and ft(r) = r−1e−2πtr. Then

gk,t ∈ L1(X) and limt→0+ gk,t = gk, where gk(reiθ) = r−1eikθ and the limit is in S∗(X).
As is well known, the two-dimensional Euclidean Fourier transform F , see (11), may

be expressed in terms of Bessel functions by passing to polar coordinates. In particular,
by [SW71, Ch. 4, Theorem 1.6], if g(w) = f(r)eikθ ∈ L1(X), then (Fg)(w) = F (r)eikθ

where w = reiθ and

F (r) = 2πik
∫ ∞

0

f(ρ)J−k(2πrρ)ρ dρ = 2π(−1)kik
∫ ∞

0

f(ρ)Jk(2πrρ)ρ dρ . (33)

In (33), Jk denotes the k-th Bessel function of the first kind, defined for k ∈ Z by

Jk(x) =
1

2π

∫ ∞
0

eix sin θe−ikθdθ

and satisfying J−k(x) = (−1)kJk(x).
Recall from (10) that ω0(s) = FR(J). If w = (r cos θ, r sin θ) ≡ reiθ, then wJ =

(−r sin θ, r cos θ) ≡ rei(θ+
π
2

). Hence

(ω0(s)gk,t)(w) = Fgk,t
(
rei(θ+

π
2

)
)

= Fk,t(r)e
i(θ+π

2
) ,

where

Fk,t(r) = 2πik
∫ ∞

0

e−2πtρJ−k(2πrρ) dρ = 2π(−1)kik
∫ ∞

0

e−2πtρJk(2πrρ) dρ . (34)

As t > 0, for k > −1

2π

∫ ∞
0

e−2πtρJk(2πrρ) dρ =

∫ ∞
0

e−tρJk(rρ) dρ =
(
√
t2 + r2 − t)k

rk
√
t2 + r2

by [Wat95, formula (8) on page 386; this formula is due to Lipschitz (1859) for k = 0 and
to Hankel (1875) for k = ν with Reν > −1]. Hence for k ∈ Z, k ≥ 0,

(ω0(s)gk)(re
iθ) = limt→0+(ω0(s)gk,t)(re

iθ)

= limt→0+ Fk,t(r)e
ik(θ+π

2
)

= (−1)kikik limt→0+

(
√
t2 + r2 − t)k

rk
√
t2 + r2

= r−1eikθ ,

which is (31). If k < 0, then one applies the above to the first formula in (34) and gets

(ω0(s)gk)(re
iθ) = (−1)kr−1eikθ ,

which is (32). �

Lemma 11. The following formulas hold:

ω0(ha) : r−1eikθ 7→ r−1eikθ, if k ∈ Z, k even ,

ω0(ha) : r−1eikθ 7→ a

|a|
r−1eikθ, if k ∈ Z, k odd .
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Proof. If gk is defined by gk(reiθ) = r−1eikθ, then

|a|−1gk(a
−1reiθ) =

{
r−1eikθ if a > 0

(−1)kr−1eikθ if a < 0 .

�

Corollary 12. The restriction of ω0 to L2
0(X) decomposes as the direct sum

L2
0(X) = L2

0;0,0(X)⊕ L2
0;1,0(X)⊕ L2

0;1,1(X)

of isotypic O1,1-representations. Explicitly,

L2(X)0;0,0 =
⊕
k∈Z
k even

Cr−1eikθ ,

L2(X)0;1,0 =
⊕
k≥0
k odd

Cr−1eikθ ,

L2(X)0;1,1 =
⊕
k<0
k odd

Cr−1eikθ .

For (ε, δ) ∈ {(0, 0), (1, 0), (1, 1)}, the representation on L2
0;ε,δ(X) is isotypic, with 1-dimen-

sional type π0;ε,δ. In particular, the determinant representation π0;0,1 of O1,1 does not
occur in the decomposition.

Because of Corollary 12, L2(X)0;ε,δ is the O1,1-isotypic component of type π0;ε,δ. Hence
we write

L2(X)π0;ε,δ
= L2(X)0;ε,δ .

We summarize our result in the following theorem.

Theorem 13. The resonance representation L2(X)0 of O1,1 splits as follows:

L2(X)0 = L2(X)π0;0,0 ⊕ L2(X)π0;1,1 ⊕ L2(X)π0;1,0 , (35)

where L2(X)π0;ε,δ
is isotypic, with one dimensional type π0;ε,δ. In particular:

(1) O1,1 acts trivially on L2(X)π0;0,0,
(2) the group SO1,1 acts by the sign representation on L2(X)π0;1,0 ⊕ L2(X)π0;1,1,
(3) the element s ∈ O1,1 acts trivially on L2(X)π0;1,0,
(4) the element s ∈ O1,1 acts via multiplication by −1 on L2(X)π0;1,1.

The determinant representation of O1,1 does not occur in the decomposition.

Each of the spaces (35) is contained in S∗(X) and is preserved by the action of Sp2(R)
via ω0, see (13).

The three representations on the right-hand side of (35) are unitary representations
of Sp2(R) and we know that the Casimir ω0(C ′) acts by −1 because of (15). We also
know their K-types by Corollary 12. If we knew they are irreducible Sp2(R)-modules,
then we would identify them by classification. Fortunately, this is a simple consequence



18 ROBERTO BRAMATI, ANGELA PASQUALE, AND TOMASZ PRZEBINDA

of Howe’s duality theory. In order to use this theory, we have to move to the metaplectic
group S̃p4(R) and relate its Weil representation ω to ω0. This is explained in Appendix
A in general, and specifically in Appendix B for this pair, see (74). In fact, ω0 agrees
with ω|

Õ1,1S̃p2(R)
twisted by a character, which is a representation of O1,1Sp2(R). The

equality of these two representations is true by (73) for SO1,1Sp2(R). On the other hand,
if s̃ denotes a preimage of s under the metapletic cover, then ω(s̃) is computed in (78)
and the twisting removes the ± ambiguity. Twisting by a character does not change the
irreducibility. So the three representations are irreducible. By the classification of the
irreducible unitary Sp2(R) = SL2(R)-modules, (see e.g. [Lan85, VI, §6]), one obtains the
following corollary.

Corollary 14. The spaces (35) are irreducible unitary ω0(Sp2(R))-modules. Specifically,
(1) L2(X)π0;0,0 = L2(X)π0,1 is the spherical unitary principal series π0,1 on which the

Casimir element C ′ acts by −1
(2) L2(X)π0;1,0 = L2(X)D0

+
is the holomorphic limit of discrete series D0

+ ,
(3) L2(X)π0;1,1 = L2(X)D0

−
is the anti-holomorphic limit of discrete series D0

− .

Hence the entire resonance space (35) is not irreducible under the joint action of O1,1 ×
Sp2(R). It is the direct sum of three irreducible subspaces:

(π0;0,0 ⊗ π0,1)⊕
(
π0;1,0 ⊗ D0

+

)
⊕
(
π0;1,1 ⊗ D0

−
)
.

Remark 2. As observed in the introduction, one of the motivating examples for the
study of resonances is the Casimir element acting by the left-regular representation on a
Riemannian symmetric space of the noncompact type. One could consider other classes of

homogenous spaces. For instance, if G′ = SL2(R) and N′ =

{(
1 x
0 1

)
;x ∈ R

}
, then the

homogeneous space G′/N′ can be realized as X\{0}, where X = M1,2(R). Our computation
in this section can also be interpreted in this sense.

Remark 3. The case (G,G′) = (O1,1, Sp2n(R)) with n > 1 could be treated in a similar
way, but the result on the resonance representations would be less explicit.

4. Decomposing the restriction to G of the (twisted) Weil
representation using Harish-Chandra’s Plancherel formula

In this section we outline the method of decomposing the restriction to G of the Weil rep-
resentation (twisted by a suitable character) using Harish-Chandra’s Plancherel formula.
This method applies to orthosymplectic dual pairs of the form (G,G′) = (Sp2n(R),Op,p)
or (Op,p, Sp2n(R)) in the stable range, with G the smaller member. We first recall some
facts concerning these pairs.

Any such pair (G,G′) is an irreducible real reductive dual pair of type I (see [How89])
and can be constructed as follows. There exist real vector spaces V and V′ with non-
degenerate bilinear forms (·, ·) and (·, ·)′, one symmetric and the other skew-symmetric
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(or vice versa), such that G ⊆ GL(V) and G′ ⊆ GL(V′) are the isometry groups of (·, ·)
and (·, ·)′, respectively. Let W = HomD(V′,V). Define a map

HomD(V′,V) 3 w 7→ w∗ ∈ HomD(V,V′)

by
(wv′, v) = (v′, w∗v)′ (v ∈ V, v′ ∈ V′) .

Then the formula
〈w,w′〉 = trD/R(ww′∗) (w,w′ ∈ W)

defines a non-degenerate symplectic form on W. We denote by Sp(W) the symplectic
group of (W, 〈·, ·〉). The groups G and G′ act on W by

g(w) = gw and g′(w) = wg′
−1

(g ∈ G, g′ ∈ G′, w ∈ W). (36)

These actions embed G and G′ as a subgroups of Sp(W).
Let V′ = X′⊕Y′ be a complete polarization of V′. Assuming that (G,G′) is in the stable

range, with G the smaller set, means that dimD X
′ ≥ dimD V. Hence, (Sp2n(R),Op,p) is

in the stable range, with Sp2n(R) the smaller member, if and only if p ≥ 2n. Similarly,
(Op,p, Sp2n(R)) is in the stable range, with Op,p the smaller member, if and only if n ≥ 2p.
(In particular, neither (O1,1, Sp2(R)) nor (Sp2(R),O1,1) are in the stable range.) Set

X = HomD(X′,V) , Y = HomD(Y′,V) . (37)

Then X, Y are isotropic and W = X⊕ Y.
Let S̃p(W) be the metaplectic group and let S̃p(W) ∈ g̃ 7→ g ∈ Sp(W) be the metaplectic

cover, which is a double cover of Sp(W). For a subgroup H of Sp(W) we denote by H̃ its
preimage in S̃p(W).

Let (ω,L2(X)) be the Schrödinger model of the Weil representation of S̃p(W) attached to
the character χ(r) = e2πir of R. See Appendix A. The space of smooth vectors of ω is S(X).
By (36) and (37), G preserves both X and Y. Hence, by (72) there is a continuous group

homomorphism det
−1/2
X : G̃→ C×, with the property that

(
det
−1/2
X (g̃)

)2

= det(g|X)−1 for

all g̃ ∈ G̃, such that

ω(g̃)v(x) = det
−1/2
X (g̃)v(g−1x) (g̃ ∈ G̃, v ∈ S(X), x ∈ X) .

Let Z2 denote the kernel of the metaplectic cover. A representation Π of G̃ is called
genuine if its restriction to Z2 is a multiple of the unique non-trivial character ε of Z2.
Only genuine representations of G̃ can occur in Howe’s duality.

For an irreducible unitary representation Π of G̃, we denote by ΘΠ its distribution
character. By Harish-Chandra’s regularity theorem [Wal88a, 8.4.1], the distribution ΘΠ

coincides with the Haar measure on G̃ multiplied by a locally integrable functions (which
is real analytic on the set of regular semisimple elements of G̃ and zero elsewhere). We
identify ΘΠ with this function. Furthermore, we denote by Πc the contragredient repre-
sentation of Π. Notice that, if Π is a genuine representation of G̃, then the map

G̃ 3 g̃ 7→ ΘΠc(g̃)ω(g̃) ∈ B(L2(X)),
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where B(L2(X)) is the space of bounded linear operators on L2(X), is constant on the
fibers of the metaplectic cover G̃→ G and hence defines a function on G.

The following theorem was proved in [Prz93, Theorem 3.1] in a more general context.

Theorem 15. Let Π be a genuine irreducible tempered unitary representation of G̃. Then
the formula

(ω(ΘΠc)u, v) =

∫
G

ΘΠc(g̃)(ω(g̃)u, v) dg (u, v ∈ S(X)) (38)

defines a non-trivial, hermitian, positive semidefinite G̃ · G̃′-invariant form on S(X).
Let R denote the radical of this form. Then the G̃ · G̃′-module S(X)/R, equipped with

the form induced by the form (38), completes to an irreducible unitary representation of
G̃ · G̃′ on a Hilbert space Hω,Π⊗Π′, infinitesimally equivalent to Π⊗Π′ for some Π′ in the
unitary dual of G̃′. Moreover Π corresponds to Π′ via Howe’s correspondence.

Proof. We only need to check that conditions (a) and (b) of [Prz93, Theorem 3.1] are sat-
isfied. Condition (b) holds by [Prz93, Lemmas 3.2 and 8.6]. According to [Prz93, Propo-
sition 4.11], condition (a) – which guarantees the absolute convergence of the integral on
the right-hand side of (38)– is satisfied when ΘΠ has rate of growth γ < γmax = λmax − 1
where, for a dual pair of type I,

λmax =
dimD V

′

r − 1
and r =

2 dimR g

dimR V
.

We are supposing that Π is tempered, which is equivalent to γ = 0 [Wal88a, 5.1.1]. The
following table shows that the condition λmax > 1 is always satisfied under the stable
range assumption.

G dimR g dimR V r − 1 stable range condition λmax

Sp2n(R) n(2n+ 1) 2n 2n p ≥ 2n 2p−1
2n

Op,p p(2p− 1) 2p 2p− 1 n ≥ 2p 2n
2p−1

�

For the dual pairs (G,G′) we consider, we do not need to work with double covers. In
fact, there is a unitary character χ+ of G̃G̃′ – see (71) in Appendix A – such that

ω0 = χ−1
+ ω

is constant on the fibers of the metaplectic covering G̃G̃′ → GG′ and hence defines a
representation of GG′, which we denote by the same symbol ω0. Given representations
Π and Π′ of G̃ and G̃′ in Howe’s correspondence, then π = χ−1

+ Π and π′ = χ−1
+ Π′ are

representations of G and G′, respectively. This gives a bijection between representations
that are quotients of ω|G̃G̃′ and representations that are quotients of ω0. We refer to
Appendix A for explanations. An adapted modification yields the following corollary.
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Corollary 16. Let π be an irreducible tempered unitary representation of G. Then the
formula

(ω0(Θπc)u, v) =

∫
G

Θπc(g)(ω0(g)u, v) dg (u, v ∈ S(X)) (39)

defines a non-trivial, hermitian, positive semidefinite GG′-invariant form on S(X).
Let R denote the radical of this form. Then the GG′-module S(X)/R, equipped with the

form induced by the form (39), completes to an irreducible unitary representation of GG′

on a Hilbert space L2(X)π⊗π′, infinitesimally equivalent to π⊗π′ for some π′ in the unitary
dual of G′. Moreover Π = χ+π corresponds to Π′ = χ+π

′ via Howe’s correspondence.

Let Xmax denote the dense and open subset of X = HomD(X′,V) of endomorphisms of
maximal rank. Since dimD X

′ ≥ dimD V, the set Xmax consists of the D-linear surjective
maps x : X′ → V. Each x ∈ Xmax defines an embedding of G into Xmax by g 7→ g−1x.

The following lemma will allow us to decompose the restriction of ω0 to G using Harish-
Chandra’s Plancherel formula on G.

Lemma 17. Let x ∈ Xmax and let v ∈ C∞c (Xmax).
(1) The G-orbit Gx is a closed subset of X contained in Xmax.
(2) Let vx : G→ C be defined by vx(g) = v(g−1x). Then vx ∈ C∞c (G).

Proof. Identify X with the space Md,m(D) of d×m matrices with coefficients in D, where
d = dimD V and m = dimD X

′. Then there are a ∈ GLd(D) and b ∈ GLm(D) such that
x = aeb where e = (Id | 0) and Id is the d × d identity matrix. Hence Gx = aGaeb
where Ga = a−1Ga. Since left multiplication by a and right multiplication by b are
homeomorphisms of Mm,d(D), then Gx is closed in Mm,d(D) if and only if so is Gae. The
right multiplication by e embeds EndD(V) = Md(D) into Md,m(D) = X. Then Gae is
closed because homeomorphic image of Ga, which is closed as G is the isotropy subgroup
of (·, ·) in V. This proves (1). For (2), we only need to comment on the support. Notice
that the map g 7→ g−1x is a homeomorphism of G onto the orbit Gx. It maps the support
supp vx of vx onto supp v ∩Gx, which is compact. �

The formula (40) below was stated and proved in [How79, (1)]. Our argument includes
the explicit formula (42) for the projections on the isotypic components and the inverse
(41).

Our main tool to decompose ω will be Harish-Chandra’s Plancherel formula (see e.g.
[Wal88b, Chapter 13]): for every f ∈ C∞c (G),

f(1) =

∫
Ĝ

Θπ(f) dµ(π) =

∫
Ĝ

Θπc(f) dµ(π) ,

where in the last equality we have used the invariance of the Plancherel measure with
respect to taking contragredients (see e.g. [Füh05, Lemma 4.10(a)]).

Corollary 18. Let µ denote the Harish-Chandra Plancherel measure on G. For π ∈ Ĝ, let
L2(X)π⊗π′ denote the Hilbert space associated with π according to Corollary 16. Then the



22 ROBERTO BRAMATI, ANGELA PASQUALE, AND TOMASZ PRZEBINDA

restriction to G of the representation (ω0,L
2(X)) decomposes as direct integral of Hilbert

spaces

L2(X) =

∫
Ĝ

L2(X)π⊗π′ dµ(π) (40)

i.e. for v ∈ S(X),

v =

∫
Ĝ

vπ dµ(π) (41)

where vπ is defined by

vπ(x) = ω0(Θπc)v(x) =

∫
G

Θπc(g)(ω0(g)v)(x) dg

=

∫
G

Θπc(g)v(g−1x) dg (v ∈ C∞c (Xmax), x ∈ Xmax) . (42)

Also, for any C ∈ U(g)G,

ω0(C)v =

∫
Ĝ

χπ(C)vπ dµ(π) (v ∈ C∞c (Xmax)) , (43)

where χπ : U(g)G → C is the infinitesimal character of π.

Proof. The expression for vπ is a consequence of Lemma 42. Harish-Chandra’s Plancherel
formula applied to the function vx of Lemma 17,(2), implies that for v ∈ C∞c (Xmax) and
x ∈ Xmax,∫

Ĝ

vπ(x) dµ(π) =

∫
Ĝ

[∫
G

Θπc(g)v(g−1x) dg

]
dµ(π) =

∫
Ĝ

Θπc(vx) dµ(π) = vx(1) = v(x) .

By Theorem 16, for every u, v ∈ S(X), the inner product in L2(X)π⊗π′ between uπ =
ω(Θπc)u and vπ = ω(Θπc)v is

(uπ, vπ)L2(X)π⊗π′
= (ω(Θπc)u, v) = (u, ω(Θπc)v) .

Hence, for u, v ∈ C∞c (Xmax),∫
Ĝ

(uπ, vπ)L2(X)π⊗π′
=

∫
Ĝ

(ω(Θπc)u, v) dµ(π)

=

∫
Ĝ

∫
Xmax

uπ(x)v(x) dx dµ(π) =

∫
Xmax

[∫
Ĝ

uπ(x) dµ(π)

]
v(x) dx

=

∫
Xmax

u(x)v(x) dx = (u, v)L2(X)

This verifies (41) and (42). The statement (43) is obvious. �

Remark 4. The algebra U(g)G is a subalgebra of Z(g) = U(g)g. It agrees with Z(g)
when G is a real form of GL, Sp or O2p+1, but it is properly contained in Z(g) when G is
a real form of O2p(C), such as Op,p.
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5. The pair (G,G′) = (Sp2(R),Op,p), p ≥ 2

Here we continue the previous section for the example mentioned in the title.

5.1. Action of G. Let X = M2,p(R) be the space of matrices consisting of two rows of
length p ≥ 2 with real entries. We define an action ω0 of the group G on L2(X) as follows

ω0(g)v(x) = v(g−1x) (g ∈ G , v ∈ L2(X) , x ∈ X) . (44)

It is easy to check that this action preserves the L2-norm. This is the restriction to G of
the Weil representation for that dual pair twisted by the character χ+, as in section 4.

5.2. The Casimir elements and the Capelli operators. The Lie algebra g is spanned
by the elements h, e+ and e− given in (14). We shall denote a matrix x ∈ X as

x =

(
x1,1 x1,2 · · · x1,p

x2,1 x2,2 · · · x2,p

)
Then, by taking derivatives, we see that

ω0(h) =

p∑
j=1

(
x2,j∂x2,j

− x1,j∂x1,j

)
,

ω0(e+) = −
p∑
j=1

x2,j∂x1,j
,

ω0(e−) = −
p∑
j=1

x1,j∂x2,j
.

Then
C = h2 − 2h+ 4e+e− ∈ U(g)G (45)

is the Casimir element. Let g′ be the Lie algebra of Op,p. If C ′ ∈ U(g′)G′ is the Casimir
element, then [HT92, Ch. III, (2.3.4)] implies that

ω0(C ′) = ω0(C)− (p− 1)2 + 1 . (46)

Formula (46) is one of Capelli’s identities. We see from [HT92, Ch. III, (2.3.4)] that no
translation of ±ω0(C) is non-negative. Nevertheless, the study of resonances involve only
the continuous part of the spectrum of an operator and, for ω0(C), this is a half-line. See
Proposition 20.

5.3. Direct integral decomposition of the representation (ω0,L
2(X)) of Sp2(R).

We consider the following representations of G = Sp2(R) = SL2(R) (see e.g. [Lan85, p.
123] or [Kna86, §2.7]):

(1) Discrete series representations Dn and D−n, n ∈ Z>0,
(2) Spherical principal series representations π0,λ, λ ∈ C,
(3) Non-spherical principal series representations π1,λ, λ ∈ C.
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The discrete series D±n and the principal series πε,iλ are unitary and irreducible for all pairs
(ε, λ) with ε ∈ {0, 1} and λ ∈ R except for (ε, λ) = (1, 0). In the latter case, π1,0 = D0

+⊕D0
−

decomposes as the direct sum of two irreducible representations, D0
+ and D0

−, respectively
called the holomorphic and anti-holomorphic limit of discrete series representations. The
representation π0,iλ is equivalent to πc0,iλ = π0,−iλ, and π1,iλ is equivalent to πc1,iλ = π1,−iλ.
For the discrete series, we have (Dn)c = D−n. Moreover, (D0

+)c = D0
−. The D±n with

n ∈ Z>0, the πε,iλ with ε ∈ {0, 1} and λ > 0, π0,0, D0
+, and D0

− are the irreducible
tempered unitary representations of G.

In these terms, Harish-Chandra’s Plancherel formula reads as follows.

Theorem 19. For any f ∈ C∞c (G),

f(1) =
∞∑
n=1

ΘDn(f)
n

2π
+
∞∑
n=1

ΘD−n(f)
n

2π

+

∫
R

Θπ0,iλ
(f)

λ

8π
tanh(

πλ

2
) dλ+

∫
R

Θπ1,iλ
(f)

λ

8π
coth(

πλ

2
) dλ .

Here
Θπ0,iλ

= Θπ0,−iλ and Θπ1,iλ
= Θπ1,−iλ . (47)

The Plancherel measure µ is given by:

dµ(Dn) = dµ(D−n) =
n

2π
(n ∈ Z>0) ,

dµ(π0,iλ) =
λ

8π
tanh(

πλ

2
) dλ (λ ∈ R) ,

dµ(π1,iλ) =
λ

8π
coth(

πλ

2
) dλ (λ ∈ R) .

In this section, the set Xmax ⊆ X of matrices of maximal rank consist of matrices of rank
equal 2.

Besides irreducible unitary representations, our computations will lead us to consider
non-unitary principal series representations πε,λ with ε ∈ {0, 1} and λ ∈ C. They still
have distribution character Θπ which can be represented by a locally integrable function.
For such representations π, we define

ω0(Θπc) : C∞c (Xmax) 3 u 7→ uπ ∈ C∞(Xmax) ⊆ C∞c (Xmax)∗ , (48)

where

uπ(x) =

∫
G

Θπc(g)u(g−1x) dg (x ∈ Xmax) . (49)

Since the function u is compactly supported, uπ ∈ C∞(Xmax). Therefore it defines a
distribution. Moreover, the integral (49) is absolutely convergent. Notice that, because
of the growth of Θπc , this integral might not converge if u, v ∈ S(X) and π is not unitary.

Both spaces C∞c (Xmax) and C∞c (Xmax)∗ are G-modules, via the action by ω0, (44), and
ω0(Θπc) is a G-intertwining map.



THE RESONANCES OF THE CAPELLI OPERATORS 25

5.4. The resonances of the Capelli operator. Let ν denote the restriction of the
Plancherel measure to the unitary principal series,

dν(Dn) = dν(D−n) = 0 (n ∈ Z>0) ,

dν(π0,iλ) =
λ

8π
tanh(

πλ

2
) dλ (λ ∈ R) ,

dν(π1,iλ) =
λ

8π
coth(

πλ

2
) dλ (λ ∈ R) .

In terms of Corollary 18, set

L2(X)cont =

∫
Ĝ

L2(X)π dν(π)

=

∫
R

L2(X)π0,iλ

λ

8π
tanh(

πλ

2
) dλ+

∫
R

L2(X)π1,iλ

λ

8π
coth(

πλ

2
) dλ .

Proposition 20. The Casimir element C, (45), acts on the principal series representation
πε,iλ via multiplication by −λ2 − 1.

Proof. This follows from [Lan85, pages 119 and 195]. �

Set C+ = −ω0(C) − 1. Proposition 20 implies that the spectrum of C+ viewed as a
densely defined operator on the Hilbert space L2(X)cont is equal to [0,∞). Hence the
resolvent

(C+ − z2)−1 ∈ B(L2(X)cont) (z ∈ C , Im z > 0) (50)
is well defined. Therefore, for u, v ∈ C∞c (Xmax) and z as in (50),

(C+ − z2)−1(u)(v) =

∫
R
(λ2 − z2)−1

(∫
X

uπ0,iλ
(x)v(x) dx

)
λ

8π
tanh(

πλ

2
) dλ

+

∫
R
(λ2 − z2)−1

(∫
X

uπ1,iλ
(x)v(x) dx

)
λ

8π
coth(

πλ

2
) dλ . (51)

Lemma 21. For ε ∈ {0, 1} and u, v ∈ C∞c (Xmax),

fε(λ) =

∫
X

uπε,iλ(x)v(x) dx (52)

is an even Paley-Wiener type function of λ ∈ C.

Proof. By Lemma 17, the functions g 7→ u(gx) for x ∈ Xmax and

ψ(g) =

∫
X

u(gx)v(x) dx (g ∈ G)

are smooth and compactly supported. Hence,

fε(λ) =

∫
X

∫
G

Θπε,iλ(g−1)u(g−1x)v(x) dg dx

=

∫
G

Θπε,iλ(g)

∫
X

u(gx)v(x) dx dg =

∫
G

Θπε,iλ(g)ψ(g) dg .
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Let

A =

{
ha =

(
a 0
0 a−1

)
, a > 0

}
and set

ρ (ha) = a , D (ha) = a− a−1 .

By [Lan85, VII, Theorem 4 and Corollary],∫
G

Θπε,iλ(g)ψ(g) dg =
(−1)ε

2

∫
A

(ρ(ha)
iλ + ρ(ha)

−iλ)|D(ha)|
∫

G/A

ψ(ghag
−1) dġ dha

= (−1)ε
∫

A

ρ(ha)
iλ|D(ha)|

∫
G/A

ψ(ghag
−1) dġ dha , (53)

where dġ is the invariant measure on G/A such that dg = dġ dha and where in the last
equality we used the invariance of expression (53) under the transformation ha 7→ ha−1 =
h−1
a . Since the Harish-Chandra orbital integral

|D(ha)|
∫

G/A

ψ(ghag
−1) dġ

is a smooth compactly supported function on A, the claim follows.
The evenness is an immediate consequence of (47). �

Now we look for resonances.

Lemma 22. Keep the notation of Lemma 21 and let L > 0 be a non-integer.
(1) For every z ∈ C such that Im z > 0:∫

R

1

λ2 − z2
f0(λ)λ tanh(

πλ

2
) dλ

=

∫
R+iL

1

λ+ z
f0(λ) tanh(

πλ

2
) dλ+ 4i

∑
k∈Z

0<2k+1<L

1

(2k + 1)i+ z
f0((2k + 1)i) . (54)

(2) For every z ∈ C such that 0 < Im z < 1:∫
R

1

λ2 − z2
f1(λ)λ coth(

πλ

2
) dλ

=

∫
R+i

1

λ− z
f1(λ) coth(

πλ

2
) dλ+

∫
R+iL

1

λ+ z
f1(λ) coth(

πλ

2
) dλ+ FL(z)

+
2i

z
f1(0) + 4i

∑
k∈Z

0<2k<L

1

2ki+ z
f1(2ki) , (55)

where FL is holomorphic for −L < Im z < 1.
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Proof. Observe that
2λ

λ2 − z2
=

1

λ− z
+

1

λ+ z
. (56)

Then∫
R
(λ2 − z2)−1f0(λ)λ tanh(

πλ

2
) dλ =

1

2

∫
R

(
1

λ− z
+

1

λ+ z

)
f0(λ) tanh(

πλ

2
) dλ .

Also, since the hyperbolic tangent is an odd function and f0(λ) = f0(−λ) by Lemma 21,∫
R

1

λ− z
f0(λ) tanh(

πλ

2
) dλ =

∫
R

1

λ+ z
f0(λ) tanh(

πλ

2
) dλ .

Therefore ∫
R
(λ2 − z2)−1f0(λ)λ tanh(

πλ

2
) dλ =

∫
R

1

λ+ z
f0(λ) tanh(

πλ

2
) dλ .

Since f0 is of Paley-Wiener type, shifting the domain of integration to R + iL and the
residue theorem yield (54) because

Res
λ=(2k+1)i

tanh(
πλ

2
) =

2

π
.

The shifting argument above must be modified for the integral involving the hyperbolic
cotangent because it has a pole at λ = 0. So, we first shift the contour of integration from
R to R+ i. We do not cross any singularity of λ coth

(
πλ
2

)
but the integrand has a simple

pole at λ = z, which satisfies 0 < Im z < 1. The residue theorem gives∫
R

1

λ2 − z2
f1(λ)λ coth(

πλ

2
) dλ =

∫
R+i

1

λ2 − z2
f1(λ)λ coth(

πλ

2
) dλ+ πif1(z) coth(z) .

(57)
We now apply (56) to the first term in (57) and obtain∫

R+i

1

λ2 − z2
f1(λ)λ coth(

πλ

2
) dλ

=
1

2

∫
R+i

1

λ− z
f1(λ) coth(

πλ

2
) dλ+

1

2

∫
R+i

1

λ+ z
f1(λ) coth(

πλ

2
) dλ . (58)

Notice that, on the right-hand side of (58), the first integral defines a holomorphic function
for λ /∈ R+i, whereas the second defines a holomorphic function for λ /∈ R−i. We therefore
shift the domain of integration of the second integral and apply the residue theorem again.
Since

Res
λ=2ki

coth(
πλ

2
) =

2

π
,
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this yields (forgetting for a moment the constant 1
2
):∫

R+i

1

λ+ z
f1(λ) coth(

πλ

2
) dλ =∫

R+iL

1

λ+ z
f1(λ) coth(

πλ

2
) dλ+ 4i

∑
k∈Z

0<2k<L

1

2ki+ z
f1(2ki) .

On the other hand, since f1 is even,

iπf1(z) coth z = iπ
∑
k∈Z

0≤2k<L

Res
z=−2ki

[f1(z) coth z]
1

2ki+ z
+ FL

= 2i
∑
k∈Z

0≤2k<L

1

2ki+ z
f1(2ki) + FL ,

where FL is holomorphic for −L < Im z < 1. By substituting all these expressions in (57)
we then obtain (55). �

Theorem 23. Considered as a C∞c (Xmax)∗-valued linear operator on C∞c (Xmax), the re-
solvent (C+ − z2)−1 extends from the upper half-plane C+ to a meromorphic function on
C, with simples poles (the resonances of C+) at z = −in with n ∈ Z≥0.

The residue operator at the resonance z = −2ki is

ω0(Θπc1,2k
) : C∞c (Xmax) 3 u −→ uπ1,2k

∈ C∞(Xmax) ⊆ C∞c (Xmax)∗,

where
uπ1,2k

(x) =

∫
G

Θπc1,2k
(g)u(g−1x) dg (x ∈ Xmax) .

The residue operator at the resonance z = −(2k + 1)i is

ω(Θπc0,2k+1
) : C∞c (Xmax) 3 u −→ uπ0,2k+1

∈ C∞(Xmax) ⊆ C∞c (Xmax)∗,

where
uπ0,2k+1

(x) =

∫
G

Θπc0,2k+1
(g)u(g−1x) dg (x ∈ Xmax) .

Proof. This is an immediate consequence of (51), since

(C+−z2)−1(u)(v)

=
1

8π

∫
R
(λ2 − z2)−1f0(λ)λ tanh(

πλ

2
) dλ+

1

8π

∫
R
(λ2 − z2)−1f1(λ)λ coth(

πλ

2
) dλ ,

where fε(λ) are defined from the fixed u, v ∈ C∞c (Xmax) according to (52). Observe that
integrals over R+ iL in (54) and (55) are holomorphic on Im z > −L, whereas the integral
over R+ i in (55) is holomorphic on Im z < 1. Since L > 0 is an arbitrary non-integer, the
required meromorphic extension follows. Up to the constant i

2π
(or i

4π
when n = 0), which

does not play any special role and we will ignore, the residue operator Rn at z = −in
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maps u into the distribution Rnu such that (Rnu)(v) is the residue of (C+ − z2)−1(u)(v)
at −in, i.e. f0(2ki) if n = 2k and f1((2k + 1)i) if n = 2k + 1. �

5.5. The residue representations. In this section we study the images of the residue
operators, namely ω0(Θπ1,2k

)(C∞c (Xmax)) and ω0(Θπ0,2k+1
)(C∞c (Xmax)), where k ∈ Z≥0, as

G-spaces.
We have observed in subsection 5.4 that the images of the residue operators are spaces of

distributions on Xmax and their elements are in fact in C∞(Xmax). We first show that they
are not only subspaces of C∞c (Xmax)∗, but of S(X)∗, the space of tempered distributions
on X.

Lemma 24. Let us view Rp as a real Hilbert space with norm defined by the dot product.
We identify the space of m× n matrices Mm,n(R) with Hom(Rn,Rm), where the matrix x
sends a column vector v ∈ Rn to the column vector xv ∈ Rm. Denote by |x| the operator
norm of x. Assume m ≤ n and let Mmax

m,n (R) ⊆ Mm,n(R) be the subset of matrices of
maximal rank (= m). Then for any compact subset E ⊆ Mm,n(R) there is a constant
0 < C <∞ such that

|g| ≤ C|gx| (g ∈ Mm,m(R) , x ∈ E) .

Proof. For each x ∈ Mmax
m,n (R) there is kx ∈ On such that

xkx = (yx, 0) ,

where yx ∈ GLm(R). Moreover the map x 7→ yx is continuous. Hence

0 < C = max
x∈E
|y−1
x | <∞ .

Thus, for every x ∈ E,

|g| = |gyxy−1
x | ≤ |gyx||y−1

x | ≤ |gyx|C = C|gxkx| = C|gx| .

�

The following proposition holds for every principal series representation.

Proposition 25. For every ε ∈ {0, 1} and λ ∈ C,

ω(Θπcε,iλ
)(C∞c (Xmax)) ⊂ S(X)∗. (59)

Proof. Lemma 24 implies that for every fixed u ∈ C∞c (Xmax) and N > 0 there is a
seminorm qN,u on the space S(X) such that∫

X

|u(x)v(gx)| dx ≤ qN,u(v)(1 + |g|)−N (g ∈ G , v ∈ S(X)) .

Recall the notation (53) and let

N =

{
nr =

(
1 r
0 1

)
, r ∈ R

}
.
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Let | · |HS denote the Hilbert–Schmidt norm. Then

|hanr|2HS =

∣∣∣∣( a ar
0 a−1

)∣∣∣∣2
HS

= a2 + a−2 + (ar)2 (ha ∈ A , nr ∈ N) .

Hence there is a constant CN such that

ρ(ha)

∫
N

(1 + |hanr|)−N dnr ≤ CNρ(ha)

∫
N

(1 + |hanr|2HS)−N/2 dnr

≤ CNρ(ha)

∫
R
(1 + a2 + a−2)−N/4(1 + (ar)2)−N/4 dr

=

(
CN

∫
R
(1 + r2)−N/4 dr

)
(1 + a2 + a−2)−N/4 .

For any fixed λ ∈ C,∫
G

|Θπcε,iλ
(g)|(1 + |g|)−N dg

=

∫
A

|Θπcε,iλ
(ha)||D(ha)|2

∫
G/A

(1 + |g−1hag|)−N d
.
g dha

≤
∫

A

(|ρ(ha)
iλ|+ |ρ(ha)

−iλ|)|D(ha)|
∫

G/A

(1 + |g−1hag|)−N d
.
g dha

=

∫
A

(|ρ(ha)
iλ|+ |ρ(ha)

−iλ|)ρ(ha)

∫
N

(1 + |hanr|)−N dnr dha

≤
(
CN

∫
R
(1 + r2)−N/4 dr

)∫ ∞
0

2(1 + e2t + e−2t)−N/4 sinh 2t dt ,

where et = a and we used integration formula [Lan85, VII, INT2]. The expression above
is finite for N > 0 large enough. Hence there is a seminorm qu, which depends on Θπcε,iλ

,
on the space S(X) such that∫

G

∫
X

|Θc
πε,iλ

(g)u(g−1x)v(x)| dx dg ≤ qu(v) (u ∈ C∞c (Xmax), v ∈ S(X)) .

This verifies (59). �

For m ∈ Z, and for fixed λ ∈ C, let ϕm be the function on G defined in terms of the
Iwasawa decomposition G = KAN by

ϕm (kθhanr) = ρ(ha)
−(λ+1)eimθ ,

where kθ =

(
cos θ sin θ
− sin θ cos θ

)
∈ K = SO2(R). Then the (g,K)-module of πε,λ is

Vε,λ,K =
⊕
m∈Z
m≡ε

Cϕm ,

where m ≡ ε means m− ε ∈ 2Z.
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We now focus on the case πε,n, where ε ∈ {0, 1}, n ∈ Z≥0 and n 6≡ ε, as in Theorem 23.
These representations are all reducible:

(1) π1,0 = D0
+ ⊕ D0

− decomposes into the holomorphic and anti-holomorphic limits of
discrete series representations. The (g,K)-modules of D0

− and D0
+ are respectively⊕

m<0
m≡1

Cϕm and
⊕
m>0
m≡1

Cϕm .

(2) For all (ε, n) where ε ∈ {0, 1}, n ∈ Z>0 and n 6≡ ε, the (g,K)-module Vε,n,K
contains two irreducible submodules:

V−nK =
⊕
m<−n
m≡ε

Cϕm and VnK =
⊕
m>n
m≡ε

Cϕm .

V−nK and VnK are isomorphic to the (g,K)-modules of the discrete series represen-
tations D−n and Dn, respectively. The quotient module

Vn = Vε,n,K/(V
−n
K + VnK) =

⊕
−n≤m≤n
m≡ε

Cϕm

is finite dimensional, of dimension n, and isomorphic to its contragredient.
The above composition series show that

Θπ1,0 = ΘD0
−

+ ΘD0
+

Θπε,n = ΘD−n + ΘVn + ΘDn (ε ∈ {0, 1}, n ∈ Z>0 and n 6≡ ε) .
Hence, in the notation of Theorem 23,

ω0(Θπc0,1
) = ω0(Θ(D0

−)c) + ω0(Θ(D0
+)c) (60)

ω0(Θπcε,n) = ω0(Θ(D−n)c) + ω0(ΘVcn) + ω0(Θ(Dn)c)

(ε ∈ {0, 1}, n ∈ Z>0 and n 6≡ ε) . (61)
Proposition 25 extends to each of the above subquotients of πε,n.

Proposition 26. Let π ∈ {D0
−,D

0
+,D

−n,Vn,D
n} be a subquotient of πε,n, where (ε, n) ∈

{0, 1} × Z≥0 and n 6≡ ε. Then

ω0(Θπc)(C
∞
c (Xmax)) ⊂ S(X)∗.

Proof. Since D0
−,D

0
+,D

−n and Dn are tempered unitary representations, the property holds
for them (even with S(X) instead of C∞c (Xmax)) by Corollary 16. We only have to consider
the case where π is the finite dimensional subquotient acting on Vn. Because of the formula
for the restriction to A of ΘVcn , see e.g. [Lan85, VII, Lemma 2], exactly the same proof
as Proposition 25 applies in this case as well. �

Let Pm denote the projection of (ω0|G, C∞c (Xmax)) onto its isotypic component of type
χm, where χm(kθ) = eimθ, i.e.

Pmf(x) =

∫
K

χm(k)f(k−1x) dk (f ∈ C∞c (Xmax), x ∈ Xmax) .
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In other words, Pm = ω0(χm dk). Denote by PG
m the projection of principal series repre-

sentation πε,n onto its its isotypic component of type χm, i.e.

PG
mϕ(g) =

∫
K

χm(k)ϕ(k−1g) dk (ϕ ∈ Vε,n,K, g ∈ G) ,

i.e. PG
m = πε,n(χm dk).

Moreover, for every n ∈ Z≥0, let ε ∈ {0, 1} such that ε 6≡ n. Set

Pn,< =
⊕
m<−n
m≡ε

Pm , Pn,fin =
⊕

−n≤m≤n
m≡ε

Pm , Pn,> =
⊕
m>n
m≡ε

Pm . (62)

By replacing Pm with PG
m, we similarly define the projections PG

n,<, PG
n,fin, and PG

n,>.
Let u ∈ C∞c (Xmax). Recall from Lemma 17 that ux : G → C, defined for g ∈ G by

ux(g) = u(g−1x), is in C∞c (G). For f : G → C, we set f∨(g) = f(g−1) for all g ∈ G. To
simplify notation, we will write u∨x instead of (ux)

∨. The following lemma links Pn and
PG
n for such functions. Similar relations extend to their sums in (62).

Lemma 27. Let u ∈ C∞c (Xmax). Then

PG
m (u∨x ) = (Pmu)∨x (x ∈ Xmax) .

Proof. Since u∨x (k−1g) = ux(g
−1k) = u(k−1gx), we have for every g ∈ G

PG
m (u∨x ) (g) =

∫
K

χm(k)u∨x (k−1g) dk =

∫
K

χm(k)u(k−1gx) dk = (Pmu)(gx) = (Pmu)∨x (g) .

�

The following fact is well-known.

Lemma 28. For any subquotient π of the principal series representation πε,n of G, we
have ∫

G

(π(g)ϕm, ϕm)L2(K)f(g) dg =

∫
G

(π(g)ϕm, ϕm)L2(K)(P
G
mf)(g) dg . (63)

Proof. Replacing g by gk and integrating over K, the left-hand side of the equality becomes∫
K

∫
G

(π(gk)ϕm, ϕm)L2(K)f(gk) dg dk =

∫
K

∫
G

(π(g)π(k)ϕm, ϕm)L2(K)f(gk) dg dk

=

∫
G

(π(g)ϕm, ϕm)L2(K)

(∫
K

χm(k−1)f(gk)dk

)
dg ,

which is the right-hand side of (63). �

Lemma 29. Let π ∈ {D0
−,D

0
+,D

−n,Vn,D
n} be a subquotient of πε,n, where (ε, n) ∈

{0, 1} × Z≥0, and let P denote the projection of the (g,K)-module Vε,n,K of πε,n onto
the (g,K)-module of π. Then

(u, v) −→ (ω0(Θπc)u, v) =

∫
X

uπ(x)v(x) dx =

∫
Xmax

uπ(x)v(x) dx ,
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where uπ is as in (49), is a hermitian bilinear form on C∞c (Xmax). Moreover,

(ω0(Θπc)u, v) = (ω0(Θπc)Pu,Pv) (u, v ∈ C∞c (Xmax)) .

Proof. The fact that (ω0(Θπc)u, v) is a bilinear hermitian form on C∞c (Xmax) – and even on
S(X) – when π is D0

−,D
0
+,D

−n, or Dn, is part of Corollary 16. For Vn, this is a consequence
of [Lan85, VII, §4, Lemmas 2 and 3], which shows that ΘVcn is real valued.

To prove the last statement, let us suppose for definiteness that π = Dn, so that
P = Pn,>. Notice that, for u ∈ C∞c (Xmax), we have u(gx) = ux(g

−1) = u∨x (g). Hence for
every v ∈ C∞c (Xmax), by (48) and (49) and Lemmas 28 and 27, we obtain:

(ω0(Θ(Dn)c)u, v) =

∫
Xmax

∫
G

Θ(Dn)c(g)u(g−1x)v(x) dg dx

=

∫
Xmax

∫
G

ΘDn(g−1)u(g−1x)v(x) dg dx

=

∫
Xmax

∫
G

ΘDn(g)u∨x (g)v(x) dg dx

=
∑
m>n
m≡ε

∫
Xmax

∫
G

(Dn(g)ϕm, ϕm)L2(K)u
∨
x (g)v(x) dg dx

=
∑
m>n
m≡ε

∫
Xmax

∫
G

(Dn(g)ϕm, ϕm)L2(K)P
G
mu
∨
x (g)v(x) dg dx

=

∫
Xmax

∫
G

(Dn(g)ϕm, ϕm)L2(K)P
G
n,>u

∨
x (g)v(x) dg dx

=

∫
Xmax

∫
G

(Dn(g)ϕm, ϕm)L2(K)(Pn,>u)∨x (g)v(x) dg dx ,

which gives (ω0(Θ(Dn)c)u, v) = (ω0(Θ(Dn)c)Pn,>u, v) via the same computations in reverse
order. The result now follows since the form is hermitian. �

Let us define hermitians forms on C∞c (Xmax) by

(u, v)1,0 = (ω0(Θπc1,0
)u, v) ,

(u, v)1,0,< = (ω0(Θ(D0
−)c)u, v) ,

(u, v)1,0,> = (ω0(Θ(D0
+)c)u, v) ,

and, for (ε, n) ∈ {0, 1} × Z>0 with n 6≡ ε,

(u, v)ε,n = (ω0(Θπcε,n)u, v) ,

(u, v)ε,n,< = (ω0(Θ(D−n)c)u, v) ,

(u, v)ε,n,fin = (ω0(ΘVcn)u, v) ,

(u, v)ε,n,> = (ω0(Θ(Dn)c)u, v) .
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Hence, by (60) and (61), for all u, v ∈ C∞c (Xmax),

(u, v)1,0 = (u, v)1,0,< + (u, v)1,0,> , (64)
(u, v)ε,n = (u, v)ε,n,< + (u, v)ε,n,fin + (u, v)ε,n,> . (65)

By Lemma 29, these forms agree with their restrictions to the corresponding projections
PC∞c (Xmax). For every (ε, n) ∈ {0, 1} × Z≥0 with n 6≡ ε, set

C∞n,< = Pn,< (C∞c (Xmax)) , C∞n,fin = Pn,fin (C∞c (Xmax)) , C∞n,> = Pn,> (C∞c (Xmax)) .

Let
R1,0 , R1,0,< , R1,0,> , Rε,n , Rε,n,< , Rε,n,fin , Rε,n,> .

respectively denote the radicals of the forms in (64) and (65) as forms on C∞c (Xmax).
We will treat in the following the cases corresponding to n ∈ Z>0, the case for n = 0

being similar (and easier).

Lemma 30. Let (ε, n) ∈ {0, 1} × Z>0 with n 6≡ ε. Then, corresponding to the direct sum
decomposition with respect to the action of K

C∞c (Xmax) = C∞n,< ⊕ C∞n,fin ⊕ C∞n,> , (66)

we have

C∞c (Xmax)/Rε,n = C∞n,</
(
Rε,n,<|C∞n,<

)
⊕C∞n,fin/

(
Rε,n,fin|C∞n,fin

)
⊕C∞n,>/

(
Rε,n,>|C∞n,>

)
, (67)

where on the right-hand side we take the restriction of the considered forms to the ranges
of the corresponding projections and

C∞n,</
(
Rε,n,<|C∞n,<

)
= C∞c (Xmax)/Rε,n,<

C∞n,fin/
(
Rε,n,fin|C∞n,fin

)
= C∞c (Xmax)/Rε,n,fin

C∞n,>/
(
Rε,n,>|C∞n,>

)
= C∞c (Xmax)/Rε,n,>

Proof. The K-type decomposition of C∞c (Xmax) in (66) implies that

Rε,n = Rε,n,< ∩ Rε,n,fin ∩ Rε,n,> .

Since
Rε,n,< =

(
Rε,n,<|C∞n,<

)
⊕ C∞n,fin ⊕ C∞n,>

and similarly for the other two, we obtain that

Rε,n =
(
Rε,n,<|C∞n,<

)
⊕
(
Rε,n,fin|C∞n,fin

)
⊕
(
Rε,n,>|C∞n,>

)
,

from which (67) follows. �

To the first and the last quotient, which correspond to D−n and Dn, we can apply
Theorem 15. Hence the range of ω0(Θ(D±n)c) is a G ·G′-module of the form

D±n ⊗ (D±n)′

where (D±n)′ is a irreducible unitary (usually not tempered) G′-module.
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Theorem 15 does not apply to ω0(ΘVcn) because the growth of the character of Vn does
not allow to extend it to S(X). Nevertheless, Proposition 26 ensures that ω0(ΘVcn) is a
G′-module under ω0. Hence

ω0(ΘVcn) = Vn ⊗ (Vn)′

where (Vn)′ is an admissible, quasi-simple representation of G′. For n ≥ 1, understanding
its structure would require work parallel to [HT93] and we defer it to a future article. If
n = 1, then V1 is the trivial representation and (V1)′ is irreducible and unitary.

We summarize these results as follows. The Capelli operator C+ is an unbounded self-
adjoint operator on L2(X). Its spectrum is the union of a continuous and a discrete part.
We consider subspace L2(X)cont ⊆ L2(X) on which the Capelli operator has a continuous
spectrum. The operator C+ commutes with the action of Sp2(R) on L2(X) via ω0. We
consider the direct integral decomposition of L2(X)cont as Sp2(R)-module under ω0. Each
isotypic component is a multiple of a unitary principal spherical representation πε,iλ of
Sp2(R), where λ ∈ R. The Capelli operator acts on each of them as scalar multiplication.
As a bounded operator on L2(X)cont, the resolvent (C+−z2)−1 is defined for z in the upper
half-plane C+. Its restriction (C+ − z2)−1|C∞c (Xmax) extends as a meromorphic operator
valued function of z ∈ C with simple poles at z = −in, where n ∈ Z≥0. The residue space
at each pole z = −in is {

Res
z=−in

(C+ − z2)−1f ; f ∈ C∞c (Xmax)

}
. (68)

This space is contained in S(X)∗ and therefore a GG′-module via ω0. As a G-module,
the residue space (68) equals ω0(Θπcε,n)(C∞c (Xmax)), where ε ∈ {0, 1} and ε 6≡ n. The
structure of the residue representations as GG′-module via ω0 is then collected in the
following theorem.

Theorem 31. As GG′-module, ω0(Θπcε,n)(C∞c (Xmax)) decomposes as follows:

• If n = 0, then

ω0(Θπc1,0
)(C∞c (Xmax)) =

(
D0
− ⊗ (D0

−)′
)
⊕
(
D0

+ ⊗ (D0
+)′
)
,

where (D0
±)′ is the irreducible unitary representation of G′ corresponding to D0

± in
Howe’s correspondence.
• If n ∈ Z>0, then

ω0(Θπcε,n)(C∞c (Xmax)) =
(
D−n ⊗ (D−n)′

)
⊕ (Vn ⊗ (Vn)′)⊕ (Dn ⊗ (Dn)′) ,

where (D±n)′ is the irreducible unitary representation of G′ corresponding to D±n

in Howe’s correspondence, and (Vn)′ is an admissible quasi-simple representation
of G′. If n = 1, then V1 is the trivial representation and (V1)′ is an irreducible
unitary representation of G′.
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Appendix A. The Weil representation

In this appendix we recall the definition of the Weil representation. We follow the
approach initiated in [AP14].

LetW be a finite dimensional real vector space equipped with a non-degenerate symplec-
tic form 〈·, ·〉 and let Sp(W) denote the corresponding symplectic group, with symplectic
Lie algebra sp(W). The metaplectic group is the double cover of Sp(W) given by

S̃p(W) =
{
g̃ = (g, ξ) ∈ Sp(W)× C; ξ2 = Θ2(g)

}
with group multiplication

(g1, ξ1)(g2, ξ2) = (g1g2, ξ1ξ2C(g1, g2)) , (69)

The 2-cocyle C(g1, g2) appearing in (69) is explicit and can be found in [AP14, Proposition
4.13], whereas Θ2 is defined by

Θ2(g) = γ(1)2 dim (g−1)W−2 (det(g − 1 : W/Ker(g − 1)→ (g − 1)W))−1 (g ∈ Sp(W)) ,

where for every A ∈ GLn(R) (with n ≥ 1)

γ(detA) =
e
πi
4

sign(detA)√
| det(A)|

;

see [AP14, Definition 4.16 and Remark 4.5]. In particular, γ(1) = e
πi
4 .

A positive definite compatible complex structure on (W, 〈·, ·〉) is an element J ∈ Sp(W)
such that J2 = −1 and the symmetric bilinear form defined on W by B(w,w′) = 〈Jw,w′〉
is positive definite. Fix such a J . For any subspace U of W we normalize the Haar measure
µU on U so that the volume of the unit cube with respect to B is equal to 1.

Let us fix the unitary character χ of R defined by χ(r) = e2πir and a polarization
W = X⊕Y. The Weil representation of S̃p(W) attached to χ is defined as the composition
of three operators, Op, K and T , which we now recall. Op is the isomorphism of linear
topological vector spaces Op : S∗(X× X)→ Hom(S(X),S∗(X)) defined by

Op(K)v(x) =

∫
X

K(x, x′)v(x′) dµX(x′) (K ∈ S∗(X× X) , v ∈ S(X)) .

The operator K : S∗(W) → S∗(X × X) is the Weyl transform: it is the topological
isomorphism of linear vector spaces defined for f ∈ S(W) by

K(f)(x, x′) =

∫
Y

f(x− x′ + y)χ

(
1

2
〈y, x+ x′〉

)
dµY(y).

The operator T embeds S̃p(W) into S∗(W) as suitably normalized Gaussian measures.
An imaginary Gaussian on (g − 1)W is defined by

χc(g)(u) = χ

(
1

4
〈(g + 1)(g − 1)−1u, u〉

)
(u = (g − 1)w, w ∈ W).
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(Notice that if g− 1 is invertible, then c(g) = (g + 1)(g− 1)−1 is the Cayley transform of
g.) For g̃ = (g, ξ) ∈ S̃p(W) we set Θ(g̃) = ξ and define

T (g̃) = Θ(g̃)χc(g)µ(g−1)W .

Then the Weil representation (ω,L2(X)) attached to the character χ is

ω = Op ◦ K ◦ T . (70)

See [AP14, Theorem 4.27]. It is a unitary representation of S̃p(W) with space of smooth
vectors equal to S(X).

Despite (70) defines ω(g̃) for all g̃ ∈ S̃p(W), it is not easy to make its right-hand side
explicit for arbitrary g̃ ∈ S̃p(W). As we are going to see, such explicit formulas can be
given on certain subgroups of S̃p(W).

The function

χ+(g̃) =
Θ(g̃)

|Θ(g̃)|
(71)

is well defined on the whole metaplectic group S̃p(W) and has values in U1. But it is not
a character, because S̃p(W) does not have any non-trivial unitary character. However,
when restricted to specific subgroups, it becomes a character. Let W = X ⊕ Y be any
polarization, and let M be the subgroup of Sp(W) preserving X and Y. Then χ+ is a
character of the preimage M̃ of M in S̃p(W).

For g ∈M , let det(g|X) denote the determinant of g acting on X. Then the formula

det
−1/2
X (g̃) = χ+(g̃)| detX(g)|−1/2

defines a continuous group homomorphism det
−1/2
X : M̃→ C× such that

(
det
−1/2
X (g̃)

)2

=

det(g|X)−1 for all g̃ ∈ M̃. Moreover,

ω(g̃)v(x) = det
−1/2
X (g̃)v(g−1x) (g̃ ∈ M̃, v ∈ S(X), x ∈ X) . (72)

See [AP14, Proposition 4.28]. In particular, if g̃ ∈ M̃ and det(g|X) = 1, then

ω(g̃)v(x) = v(g−1x) (v ∈ S(X), x ∈ X) . (73)

Suppose now that (G,G′) = (Sp2n(R),Op,p) or (Op,p(R), Sp2n(R)). Then both G and G′

preserve two (different) polarizations of W. Then the restriction of χ+ to each of G̃ and
G̃′ of is a character. Moreover these restrictions agree on the intersection G̃∩ G̃′ (because
given by same function). Therefore χ+ is a character of G̃G̃′. Therefore

ω0(g̃) = χ+(g̃)−1ω(g̃) (74)

is a representation of G̃G̃′, which is constant on the fibers of the covering. Hence it
defines a representation of GG′ which we denote by the same symbol. Thus, for these
pairs (G,G′), we work not with ω but with ω0.
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Remark 5. If (G,G′) = (Sp2n(R),Op,q) or (G,G′) = (Op,q, Sp2n(R)) with p+ q odd then
there is no character twisting of ω allowing to reduce it to a representation on GG′. This
case includes for instance that of (O1, Sp2n(R)), where GG′ = Sp2n(R).

Suppose that (G,G′) = (Op,q, Sp2n(R)) with p ≤ q. Let ωn denote the Weil representa-
tion of S̃p2n(R). Then

ω|S̃p2n(R) = ωn ⊗ · · · ⊗ ωn︸ ︷︷ ︸
p times

⊗ωcn ⊗ · · · ⊗ ωcn︸ ︷︷ ︸
q times

= (ωn ⊗ ωcn)⊗ · · · (⊗ωn ⊗ ωcn)︸ ︷︷ ︸
p times

⊗ωcn ⊗ · · · ⊗ ωcn︸ ︷︷ ︸
q − p times

.

Each tensor product ωn ⊗ ωcn is a representation of S̃p2n(R) constant on the fibers of the
metaplectic cover. Hence it gives a representation of Sp2n(R). For the tensor product of
ωcn, it splits if and only if q − p (i.e. p+ q) is even.

As a result, if p+ q is even then ω|S̃p2n(R) splits and the same character can be used to
twist ω|G̃G̃′ .

Notice that if G and G′ do not preserve the same polarization, then we get from (72)
two different formulas for ω0|G and ω0|G′ . So, if G ⊂ M but G′ is not contained in M,
then (72) applies to G but not to G′.

For instance, in the case of (G,G′) = (SL2(R),Op,p), the formula for ω0 given in section
5 corresponds to (72) (and more precisely (73) since det(g|X) = 1 for g ∈ SL2(R)) for a
polarization of W = X⊕Y which is preserved by SL2(R) but not by Op,p. Here W = M2,2p

is equipped of the symplectic form

〈w1, w2〉 = tr(w1w
∗
2) (w1, w2 ∈ W)

where w∗ = swT j for w ∈ W,

j =

(
0 1
−1 0

)
and s =

(
0 1p
1p 0

)
,

and X and Y consist respectively of the first two rows and the last two rows of the elements
of W. The case (G,G′) = (O1,1, Sp2(R)) is detailed in Appendix B.

Appendix B. The dual pair (O1,1, Sp2(R)) in Sp4(R)

Let W = M2,2(R). For w ∈ W set w∗ = jwT s, where

j =

(
0 1
−1 0

)
and s =

(
0 1
1 0

)
are as in (9) and (7), respectively, and wT denotes the transpose of w. We endow W with
the non-degenerate symplectic form

〈w1, w2〉 = tr(w1w
∗
2) (w1, w2 ∈ W) (75)
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and denote by Sp4(R) the symplectic group of (W, 〈·, ·〉). The actions of O1,1 and Sp2(R)
on W respectively defined by

h(w) = hw (h ∈ O1,1, w ∈ W) (76)

g(w) = wg−1 (g ∈ Sp2(R), w ∈ W) (77)

embed O1,1 and Sp2(R) in Sp4(R) as mutually centralizing subgroups.
Set

X =

{(
x1 x2

0 0

)
;x1, x2 ∈ R

}
and Y =

{(
0 0
y1 y2

)
; y1, y2 ∈ R

}
.

Then W = X ⊕ Y is a complete polarization. Each element ha =

(
a 0
0 a−1

)
∈ SO1,1

preserves X and Y, and det(ha|X) = a2. Likewise, each element g ∈ Sp2(R) preserves X
and Y, and det(g|X) = 1.

Let S̃p4(R) 3 g̃ 7→ g ∈ Sp4(R) be the metaplectic covering map and let S̃O1,1 and
S̃p2(R) respectively denote the inverse image of SO1,1 and Sp2(R) in S̃p4(R). Further, let
M be the subgroup of Sp4(R) consisting of all elements preserving X and Y, and let M̃

be its inverse image in S̃p4(R). Hence S̃O1,1 · S̃p2(R) ⊆ M̃. Let (ω,L2(X)) be the Weil
representation of S̃p4(R) (attached to the character χ(r) = e2πir of R).

By (72),

ω(g̃)v(x) = det
−1/2
X (g̃)v(g−1x) (g̃ ∈ M̃, v ∈ S(X), x ∈ X) .

Since det(g|X) 6= 0 for g ∈ SO1,1 · Sp2(R), then ω|S̃O1,1·S̃p2(R) splits and we may choose a
section g 7→ g̃ such that, by setting ω(g) = ω(g̃), we have

ω(ha)v(x) = |a|−1v(h−1
a x) = |a|−1v(a−1x) (a ∈ R×, v ∈ S(X), x ∈ X),

ω(g)v(x) = v(g−1x) = v(xg) (g ∈ Sp2(R), v ∈ S(X), x ∈ X).

(Observe that the right-hand sides agree on {±1} = SO1,1∩Sp2(R).) The argument above
applies to SO1,1 but not to O1,1 as O1,1 = SO1,1 t sSO1,1 and s does not preserve X and
Y. (Notice that O1,1 preserve the polarization of W given by first and second columns.)
Nevertheless, it enough to understand ω(s̃). For this, we use the explicit definition of the
Weil representation as given in [AP14, Theorem 4.27].

Since by (76) (s− 1)(w) = (s− 1)w we see that detW(s− 1) = 0. Hence W % (s− 1)W.
This is going to force us to make some work.

Lemma 32. Let s̃ ∈ Õ1,1 ⊆ S̃p(W) be an inverse image of s. Then, in the notation of
Appendix A,

Θ(s̃) = ±1

2
, T (s̃) = ±1

2
µ(s−1)W , K(T (s̃))(x, x′) = ±χ(x′jxT ).

Thus
ω(s̃)v(x) = ±

∫
X

χ(x′jxT )v(x′) dx′ (v ∈ S(X)) , (78)
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where dx = dx1 dx2 is the Lebsegue measure on X = R2.

Proof. Define J(w) = −swj. Then J2 = −1 and

〈Jw1, w2〉 = tr(−sw1jjw
T
2 s) = tr(w1w

T
2 ) (w1, w2 ∈ W) . (79)

is a positive definite symmetric bilinear form on W. Hence J ∈ Sp4(R) is a positive
definite compatible complex structure on W.

Let L = J−1(s− 1). Using the convention (76), explicitly we have

L(w) = −J(s− 1)(w) = −s(s− 1)wj = (s− 1)wj .

Hence

LW = (s− 1)W =

{(
x
−x

)
;x ∈M1,2(R)

}
.

Furthermore, for u ∈ LW , we have L(u) = 2uj. Hence,

4 = det (L|LW ) = det (s− 1 : W/Ker(s− 1)→ Im(s− 1)) .

Since γ(1) = e
πi
4 , we obtain

Θ2(s) =
(
e
πi
4

)2 dimLW

4−1 = 4−1 .

Hence Θ(s̃) = ±1
2
.

For T (s̃), we need to compute χc(s). Since (s − 1)

(
0
x

)
=

(
x
−x

)
, it follows that

(s− 1)−1

(
x
−x

)
=

(
0
x

)
. Hence

(s+ 1)(s− 1)−1

(
x
−x

)
= (s+ 1)

(
0
x

)
=

(
x
x

)
.

Thus, for
(
x
−x

)
∈ (s− 1)W,

〈(s+ 1)(s− 1)−1

(
x
−x

)
,

(
x
−x

)
〉 = 〈

(
x
−x

)
,

(
x
−x

)
〉 = tr

((
x
−x

)
j

(
x
−x

)T
s

)

= tr

((
xjxT −xjxT
xjxT −xjxT

)(
0 1
1 0

))
= tr

((
−xjxT xjxT

−xjxT xjxT

))
= 0 .

Therefore, χc(s) = 1 and

T (s̃) = Θ(s̃)χc(s)µ(s−1)W = ±1

2
µ(s−1)W.

We now determine the Haar measures on X, Y and (s−1)W with the normalizations fixed
in Appendix A. Notice that, by (79), the restriction of B to X is

B

((
x
0

)
,

(
x′

0

))
= tr

((
x
0

)(
x′T 0

))
= xx′

T
.
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The unit cube in X = R2 is [0, 1]2. Thus, in the fixed normalizations, dµX = dx = dx1 dx2.
Likewise, dµY = dy1 dy2.

A Haar measure µ(s−1)W on (s − 1)W is a constant multiple of the pullback of the

Lebesgue measure λ on X = R2 via the isomorphism α : (s − 1)W 3
(
x
−x

)
7→ x ∈ R2.

Hence, as a measure on W = X⊕Y, we have µ(s−1)W(x, y) = Cδ(x+y) dx dy. The constant
C ≥ 0 is fixed by the condition that the measure of the unit cube with respect to the
restriction to (s− 1)W of the inner product B(w1, w2) = 〈Jw1, w2〉 is one. By (79),

B

((
x
−x

)
,

(
x′

−x′
))

= tr

((
x
−x

)(
x′T −x′T

))
= 2xx′

T
.

The unit cube in (s− 1)W with respect to B is mapped by α into [0, 1√
2
]2, with Lebsegue

measure 1
2
. Hence C = 2 and

µ(s−1)W(x, y) = 2δ(x+ y) dx dy (x ∈ X, y ∈ Y).

It follows that

K(T (s̃))(x, x′) = ±1

2

∫
Y

µ(s−1)W

(
x− x′
y

)
χ

(
1

2
〈
(

0
y

)
,

(
x+ x′

0

)
〉
)
dy

= ±1

2

∫
Y

δ(x− x′ + y)χ

(
1

2
〈
(

0
y

)
,

(
x+ x′

0

)
〉
)
dy

= ±χ
(

1

2
〈
(

0
x− x′

)
,

(
x+ x′

0

)
〉
)
.

By (75),

〈
(

0
x− x′

)
,

(
x+ x′

0

)
〉 = tr

((
0

x− x′
)
j
(
xT + x′T 0

)
s

)
= tr

((
0

x− x′
)
j
(
0 xT + x′T

))
= tr

((
0

xj − x′j

)(
0 xT + x′T

))
= tr

((
0 0

0 (xj − x′j)(xT + x′T )

))
= (xj − x′j)(xT + x′

T
) = 2x′jxT

since xjxT = x′jx′T = 0. The formulas for K(T (s̃)) and ω(s̃) therefore follow. �
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