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Abstract 
The main industrial software available to a designer during a spring 

definition work use exhaustive calculations from standards to make a full check of 
the proposed spring's compatibility with the given specifications. As far as we are 
aware, they don’t really exploit optimisation process capabilities. This paper 
presents tools that exploit several optimisation techniques for custom spring design 
by linking both industrial and mathematical knowledge.  
 
We have defined tools that manage not only design parameters but also operating 
parameters including designer specifications, calculation from standards (buckling, 
fatigue life, operating limits) and the capability limits of the spring manufacturer.  
 
Each tool uses a specification sheet where data is set with interval values. Setting 
data in this way provides a powerful and efficient means of expression for 
designers during the early stages of the design process. The tools we have 
developed for custom spring design are specific for each type of springs.  
 
The compression spring optimisation implies solving an optimisation problem with 
6 continuous variables (4 design variables and 2 operating variables) while 
satisfying 43 constraints. The resolution process is based on a mathematical 
programming process. An algorithm to automatically intialise the variables has 
been developed. 
 
The extension spring optimisation tool is based on the same process. In that case, 
when a specific angle between end loops is required, the optimisation problem is 
defined by 5 continuous variables, one integer variable (the number of coils) and 43 
constraints. The algorithm uses the previous resolution method for continuous 
variables and adds a branch and bound process in order to find the mixed variables 
optimum.  
 
The torsion spring optimisation has required the use of a hybrid resolution 
algorithm. The optimisation problem is defined by 7 continuous variables (3 design 
variables and 4 operating variables) and 45 constraints. In that case the constraints 
can define a non convex allowable space for the variables. For that kind of 



 

problems, deterministic mathematical programming fails in jumping over the 
several intervals.  For that reason, we have implemented a process that first uses an 
evolutionary strategy. The best solution found is then improved by a mathematical 
programming process. 
 
To deal with multi-objective optimisation, we have chosen to use an interactive 
dialog with the designer : each possible objective function can be set as a constraint 
in the specification sheet. That way, the designer can try several configurations and 
find the best Pareto optimal solution for his application.  
 
All the presented tools have been implemented on visual-basic for Excel. They 
have been successfully tested by a spring manufacturer on industrial problems. All 
this study shows the efficiency and the benefits  that can be obtained on industrial 
applications using design tools that exploit both deterministic and stochastic 
optimisation processes.  

1. Introduction 
The design of machines imposes the dimensioning of numbers of common 

mechanical components (gears, cams, shafts, springs). These components have their 
own dimensioning rules and require specific manufacturing knowledge. The 
problem of designing a mechanical component is often solved by using tables and 
charts for certain pre-selected specifications and certain pre-selected objectives. 
These calculations can be carried out manually, but without computer assistance, 
designers are often obliged to oversimplify the procedures, e.g. by assigning a 
value to certain parameters in order to reduce the number of problem variables to 
only 2 or 3 [1,2]. So, they are unable to exploit all the specification possibilities 
and consequently to optimize design. 

 
Progress in computer assisted design should lead to successful solutions to this kind 
of problem. In theory, it should be possible, for a given component, to define the 
problem globally and find the appropriate resolution method that would provide the 
optimal solution whatever the specifications. This paper focuses on the optimum 
design of helical springs with circular wire [3] which are the most common springs 
in use today.  
 
Spring design has been often used to illustrate optimisation algorithms. Yokota, 
Taguchi and Gen [4] present an optimum spring design using genetic algorithms 
[5]. Deb and Goyal [6], Kannan and Kramer [7] and Sandgren [8] compare the 
efficiency of their optimisation algorithms using  the same example dealing of 
spring design. Unfortunately, all the examples are very simplified and can not be 
directly used by designers in industry. 
 
From another point of view, the main industrial software available to a designer 
during the spring definition work (from IST [9], from Hexagon [10] or from 



 

SMI [11]) use standard calculations only to make a full check of the proposed 
spring's compatibility with the given specifications. "Spring Design Software" from 
SMI can carry out minimum mass optimisation to adjust one design parameter but 
three other design parameters have to be known beforehand. Industrial software 
dedicated for spring design can be considered as robust validation software. They 
are thus mainly used at the very end of the design cycle, when the detailed design is 
considered. 
 
There is a need for tools that could be used at any steps of the design cycle, from 
the very beginning where most of the data are not known or uncertain, to the 
detailed design where data are quite well defined. This paper proposes an approach 
which intends to satisfy this need.  

2. Requirements for the tools 
It is difficult to propose optimisation tools to industry. Most of designers 

did not learn optimisation at school and thus do not like using optimisation 
techniques. For that reson, we have chosen to developp our tools using Excel and 
visual-basic. These well known software are commonly used in industry. This 
approach can be a good way to introduce optimisation knowledge to designers. 
 
Considering the expected wide range of applications for the tools, we have decided 
that each specification sheet should allow the designer to give information upon 
each design parameters and each operating parameters. In a specification sheet, 
each parameter can be defined by a lower limit and/or an upper limt as shown in 
figure 1. The idea is to let the designer fullfiled the knowned cells without taking 
care of the empty ones. 
In order to be able to defined the best design, an objective function as to be 
selected in the specification sheet. 
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Figure 1. Proposed specification sheet 



 

3. Automatically build the optimisation problem 
Once the requirements are defined, the results have to be automatically 

calculated. The first step consists on building the problem associated to the 
specifications. 
 
The problem can be expressed as an optimisation problem : 
 

Minimise or Maximise F(X) 
Subjected to constraints 

 
The objective function F is selected by the designer in the specification sheet. It can 
be any parameter that is considered in the specification sheet. 
The vector of variables X is chosen in order to define the spring (design variables) 
and the associated use of the spring (operating variables). 
The constraints are defined not only by the limits defined on the specification sheet 
but also by the manufacturing constraints and the requirements from standards. 
Depending on the considered type of spring, on the selected objective function, on 
the fullfiled cells and on the associated values, very differents optimisation 
problems can be obtained. In any case, the resolution process has to automatically 
find a solution without any assistance from the designer. Considering this, we have 
defined resolution methods dedicated for each type of spring. 

4. Automatically solve the problem for 
compression springs 

Figure 2 presents the main parameters defining helical compression 
springs. All the parameters that can be used by a designer to define and use a spring 
appear in the specification sheet presented in figure 3. The objective function 
selected in the specification sheet, the requirements defined by the designer, the 
requirements from standards and from the manufacturers define an optimisation 
problem with 6 continuous variables (4 design variables and 2 operating variables) 
while satisfying 43 constraints.  
 
Considering that we have to manage continuous variables and convex spaces, we 
have sought that we could take benefits of mathematical programming [12] 
algorithms. We have selected a direct method (GRG) as it is able to provide an 
acceptable solution, if non optimal, even if the resolution process is stopped before 
end (for example if the resolution process is too long). The GRG method is already 
implemented in the Excel solver. 



 

 

Figure 2. Compression spring parameters 

 

Figure 3. Specification sheet for compression springs 



 

Direct methods need the variables to be well initialised i.e., that the calculation 
starting point is an acceptable solution. For that reason, we have developed another 
algorithm to initialise the variables. It uses interval arithmetic [13] to perform a 
sequential meshing of the space of the design variables in order to build a virtual 
catalogue related to the specifications. The best spring form this virtual catalogue is 
used to initialise the variables for the mathematical programming process.  
 
To build the virtual catalogue, limits from standards, manufacturer constraints and 
the most usual data (Do, D, Di, d, L0, R, F1, F2, L1, L2, Sh) from the specification 
sheet are exploited using interval arithmetic in order to define springs which respect 
the majority of the problem constraints.  
 
Interval arithmetic is thus exploited to reduce the variables limits depending on the 
specifications. To build the virtual catalogue, a basic method could consist on first 
determining all variable limits depending on the specifications and on secondly 
regularly meshing the variable space (each node representing a spring of the virtual 
catalogue). In fact, sequential meshing is a more efficient method. The idea is to 
recalculate variable limits before meshing a one variable space. Once a first regular 
meshing (on one variable is performed), another meshing can be performed on 
another variable for each fixed value of the preceding variable depending on those 
values.  

 

 

Figure 4. Comparison on two meshing methods 

An example of the difference between a basic and a sequential meshing is 
illustrated on figure 4. This example uses a simplified problem which involves two 
variables (d and D) and only 6 constraints representing d, D and w (w=D/d ) limits. 
Using the basic meshing method, the allowable variation space for the two 
variables are first calculated and then the obtained space is regularly meshed. Using 
the sequential meshing, the algorithm starts meshing the available variation space 
for the first variable d. Secondly, for each obtained value of d, the algorithm 
recalculates the available limits for the second variable D and meshes the 
associated spaces. In this example, a virtual catalogue containing 16 springs is 



 

built. Using a basic meshing, only 6 springs fit the specifications whereas using a 
sequential meshing, all the springs respect the specifications. That is the reason 
why we use a sequential meshing of the variables space to build the virtual 
catalogue. 
 
Once the virtual catalogue is built, the algorithm developed by Paredes et al. [14] is 
used to select the best stock spring from the virtual catalogue and determine the 
associated operating lengths. 
 
We have called the proposed resolution process SM + MP (Sequential Meshing and 
Mathematical Programming). 
 
In the example presented in figure 3, the SM process has built a virtual catalogue 
containing 1256 springs. From within this catalogue, 262 springs fit the 
specifications. The best spring has been selected to initialise the variables for the 
MP process. The evolution of the objective function value during the MP process is 
presented on figure 5. The GRG algorithm has quickly converged towards the 
optimal solution. The overall process is no longer than 6 seconds on a 300Mhz 
computer. 

 

 

Figure 5. Evolution of the objective function during the MP process 

These results illustrate the efficiency of the proposed SM + MP process. 

5. Automatically solve the problem for extension 
springs 

The main parameters that can be used to defined extension springs are 
presented on figure 6. The extension spring optimisation implies solving an 
optimisation problem with 6 variables (4 design variables and 2 operating 
variables) while satisfying 43 constraints.  

 
Most of the time, the variables can be considered as continuous variables thus the 
SM + MP process presented before is used.  



 

When a designer needs a fixed angle between end loops, the number of coils n 
becomes a discrete variable. To solve this mixed variable problem, a branch and 
bound process is added to the first resolution process. The branch and bound 
process is already implemented the Excel solver. 
 

 

Figure 6. Extension spring parameters 

6. Automatically solve the problem for torsion 
springs 

Torsion springs differ from both compression and extension springs in 
both load application and mode of operation. Helical torsion springs are often used 
in non highly stressed applications. This is mainly due to the fact that there are few 
fatigue life data available as friction problems appear between the coils and at the 
end of the legs where the load is applied. The shape of legs is usually determined 
by the required mode of operation of the component to which it is attached. 
However, designers should always try to use the simplest legs i.e., torsion springs 
with tangential legs. Design and operating parameters of torsion springs with 
tangential legs are presented in figure 7. 



 

 

 

Figure 7. Torsion springs parameters 

Even considering static applications, custom torsion spring design is more 
complicated that the design of compression or extension springs. The torsion spring 
optimisation has required the use of a hybrid resolution algorithm. 
 
The optimisation problem can be defined by 7 continuous variables (3 design 
variables and 4 operating variables) and 45 constraints. In some cases, constraints 
can define a non convex allowable space for the variables.  
 
An example is presented on figure 8. Specifications on the angle between ends such 
as 90° < γ < 180° implies a number of coils defined by intervals : N + 0.25 < n < N 
+ 0.5 where N is an integer value. For that kind of problems, deterministic 
mathematical programming fails in jumping over the several intervals. For that 
reason, we have implemented a process that first uses an evolutionary strategy 
(ES). The idea is that ES is able to find the area where the optimum solution is 
located. The best solution found by ES is then improved by the MP process 
previously described. 
 



 

 
Constraint : 90 ≤ γ ≤180 

γ = f(n) 
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270° 
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Figure 8. The number of coils can be defined on a non convex space 

7. Multi-objective optimisation 
There are many way to deal with multi-objective optimisation [15]. We 

have chosen to use an interactive dialog with the designer : a constraint can be set 
in the specification sheet on each possible objective function. That way, the 
designer can try several configurations and find the best Pareto optimal solution for 
his application as described in figure 9.  

 

Figure 9. Find the best solution on the Pareto front 

8. Conclusion 
We have shown that defining the best custom spring for an application could be set 
as an optimisation problem. Tools for compression, extension and torsion spring 
design have been defined. Several resolution methods depending on the considered 
type of springs have been implemented. They use interval arithmetic, a direct 
optimisation method, branch and bound process and an evolutionary strategy.  



 

 
The proposed tools dedicated to optimal spring design have been implemented on 
visual-basic and Excel to be easily used  in industry. They have been successfully 
tested by a spring manufacturer on industrial problems.  
 
The short resolution and preparing time of the proposed tools allows designers to 
tests several configurations. They thus can use them as exploration tools by adding 
data, refining data or changing the objective function from a problem to another. 
This type of tool increases design process flexibility as the component design is 
made easier and more efficient. 
 
All this study shows the efficiency and the benefits  that can be obtained on 
industrial applications using design tools that exploit both deterministic and 
stochastic optimisation processes.  
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