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Abstract. This paper presents two methods for selecting the best stock spring from within a database. A 
way of calculating the optimal custom spring design which takes into account the database properties is 
described and two methods that explore the neighbourhood of the optimal continuous solution are 
detailed. Two methods for exploring the neighbourhood of the optimal continuous solution are discussed. 
The first, called the “expanding” method explores the database in successive layers, and stops once a 
solution has been found which cannot be improved upon. The second method also uses the “expanding” 
technique but stops once a spring which matches the specifications has been found. The algorithm then 
performs a “sliding” operator, whereby the immediate neighbourhood of the existing solution is explored. 
When no better spring can be found, this process stops. Two examples are shown. They demonstrate the 
effectiveness for our approach in selecting a stock spring without exploring the whole database. The most 
time-consuming stage is the calculation of the optimum custom-made spring design. Both these methods 
are particularly useful when applied to large database. 

1. INTRODUCTION 

The creation of mechanical objects is often the end result of a long design process 
where standard component selection is perhaps the simplest, but nonetheless 
frequent class of design decision problems. As catalogues become increasingly 
common and voluminous, this process can be time-consuming. Text-only assistance 
is not an  efficient means for designers to find a stock spring which respects not only 
certain geometrical properties stored in a database but also several operating 
characteristics. Thus, optimal operating points have to be calculated for each 
potential stock spring depending on the requirements.  
Finding the best stock spring and calculating its associated operating parameters is a 
Mixed Discrete Optimization problem. The most common mathematical solution is 
first to approximate an optimum by treating all variables as continuous and then to 
use algorithms to find the best feasible discrete point in the region of the continuous 
variable optimum. Optimization procedures dealing with continuous variables are 
numerous and well known. Technical literature provides mathematical methods 
which calculate design parameters corresponding to an optimal custom spring design 
(Sandgren (1990), Kannan and Kramer (1994), Deb and Goyal (1998)). To help 
designers select stock springs, Yuyi et al (1995) and Motz and Haghighi (1990)] 
have implemented methods that propose some stock springs close to the optimal 



custom spring design. But, in every case, the designer has to calculate the operating 
parameters for each proposed spring by hand, in order to select the one that best fit 
his specifications. Moreover, as the best stock spring is not necessarily close to the 
custom-designed optimum, the designer is never sure he has selected the best spring.
 To find the discrete optimum, many algorithms have been developed such as the 
optimal discrete search by Pappas and Allentuch (1974), the sequential linearization 
approach by Han Tong and Papalambros (1991) or the Boolean logic method by 
Peng and Siddall (1993). These methods explore the discrete neighbourhood of the 
continuous optimum but are difficult to implement. When there is a high number of 
discrete variables, they can however help to find the discrete optimum without 
enumerating the total neighbourhood of the continuous point.
Considering that spring catalogues give a maximum of four discrete variables in the 
optimization problem, our objective is to find methods that would extract the most 
suitable solution by just testing a few springs. Thus two methods have been 
developed. They use a particular optimal spring as a starting point to explore the 
database. 

2. STARTING FROM A PARTICULAR OPTIMAL SPRING 

Usually, optimal spring design is calculated by solving a conventional optimisation 
problem: Minimise or Maximise F(x) where x is a vector of continuous variables 
and F(x) is either the mass, or the fatigue life, or the operating load P2, or the 
operating length L2...  
In addition to the objective function, a large set of constraints is considered, so as to 
express design specifications (operating length limits, operating load limits…), the 
standards (fatigue life, buckling length…) and the technical capability limits of the 
spring manufacturer (maximum outside diameter, minimum outside diameter, 
maximum wire diameter…). 
But catalogues often provide a much smaller exploration domain than the hyper 
cube generally considered in the continuous optimisation process. The global 
optimum can therefore be a long way from the discrete approach. To match 
catalogue properties and decrease the gap between the two optima, constraints 
related to the database limits can be added to the initial optimisation problem. The 
augmented formulation will lead to a particular optimal spring which can be retained 
as an appropriate starting point for a catalogue search. The first task is thus to model 
the catalogue data in order to obtain the boundaries of the exploration domain. 

2.1 Modelling the database   

For this study, the catalogue of the «Ressort Vanel» company, comprising 5050 
springs, has been used. For each spring, the characteristics detailed in the catalogue 
are stored in a table as shown in Figure 1. A spring reference can be for instance the 
index of the associated line in the table. 
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Figure 1. Spring table 

Table 1. Link between parameters 

 
 
Within this catalogue, springs are classified using three parameters : Do (outside 
diameter), d (wire diameter) and L0 (free length). Each spring can be represented by 
a point in the [Do, d, L0] space. Our suggestion is to add a matrix M[X, Y, Z] to this 
discrete space. The table 1 show the link between Do and X, d and Y, L0 and Z. 
Matrix dimensions are thus : M[44, 33, 19]. This matrix will contain only the spring 
references.  
Note that M[] is not fulfilled by the database references. Some points of the discrete 
space have associated spring references, but not the others. For example 
M[10,11,11] = 2371 (see Fig 1) but M[1,33,19] = 0, as no spring exists with the 
dimensions Do = 1.6 mm, d = 6 mm, L0 = 200 mm. 

2.2 Analysing the database limits 

Figure 2 shows rectangles that surround the catalogue springs. The objective is to 
find the database limits in the three following planes : d/L0, Do/d and Do/L0. In 
each of these planes, a curve is sought that minimises the distance from the database 
(in number of cells within M[] ) while staying outside the database limits. 
Equations of the curves detailed in Figure 3 are: 
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dmax = 0.246 Do 0.9108, dmin = 0.07066 Do 0.9949 
L0max = 23.1 Do 0.6677, L0min = 1.4177 Do 0.8301 
L0max = 175.56 d 1.098, L0min = 0.07066 d 0.9049 

 
These equations are added to the initial optimisation problem in order to find an 
optimal custom spring design within the catalogue limits. In this study, x is defined 
with Do (outside diameter), d (wire diameter), L0 (free length), R (spring rate), L1 
(maximum operating length), L2 (minimum operating length). From the result 
obtained, the values of Do, d, L0 are retained as starting point coordinates. Then, 
two exploration methods to select the most suitable spring from the database are 
presented. 
 

 

Figure 2. Do, d, L0 space 
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Figure 3. Limit curves

2. EXPLORATION METHODS 

The optimal stock solution is not necessarily close to the custom-designed optimum. 
The following exploration methods test points on the matrix M[]. When a point is 
tested, the associated spring is evaluated in 5 steps (provided that the spring exists : 
M[X,Y,Z]≠0).  

1 - Read the characteristics stored in the spring table 
2 - Calculate the optimum operating points according to the specifications, the 
objective function and the standards (fatigue life, buckling length...) as described 
by Paredes (2000) 
3 - Calculate the whole range of characteristics 
4 - Calculate the objective function value 
5 - Evaluate how the spring satisfies the requirements. 

2.1 First exploration method : «Expanding» 

The proposed method tests points that surround the starting point in successive 
layers, beginning with the points closest to the starting point (first layer), the others 
being gradually tested as described in Figure 4. 
 



FINDING THE OPTIMAL STOCK SPRING 

 
 

: starting point  
(optimal custom design) 

: points of the first layer 

: points of the second layer 

 

Figure 4. Expanding 

In a n dimension space, a continuous point is surrounded by 2n discrete points. In our 
case n=3, the first layer contains 8 points. The Nth layer contains the points located 
on the faces of a cube with sides 2N long. Thus, it contains [6 (2N-2)2 + 24N –16] 
points. 
The progression is stopped when the exploration of a layer does not improve the 
solution obtained on the preceding layer. The stop criterion selected is thus as 
follows : the algorithm stops when, at the end of the exploration of the Nth layer, the 
optimal stock spring still belongs to the (N-1)th layer.  

2.2 Second exploration method : "Expanding, then sliding a window" 

When the dimensions of the database spatial model are large (n>2), the exploration 
of numerous layers results in the testing of a large number of points. An alternative 
approach can then be used  : "Expanding, then sliding a window". The exploration 
starts as defined previously but when at least one spring matching the specifications 
has been found on a layer, the expansion is stopped and the process continues by 
sliding a window. 
 

 
 

: Center of stage S window 
: Center of stage S+1 window 

S 

S + 1 

 

Figure 5. Sliding a window 
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At this stage, the algorithm only tests the points from within a window that 
surrounds the optimal point previously found as shown in Figure 5 (discrete 
neighbourhood). For an n dimension space and a R window radius, a discrete point 
is surrounded by (1+2 R ) n -1 points. In our case, the unit-neighbourhood is tested 
inducing n = 3 and R = 1 : 26 points are thus evaluated. If a better point is found, the 
window is slid onto that new point. The algorithm is stopped when the stage has not 
improved the preceding solution. 

3. EXAMPLES 

Two examples are given below to illustrate and compare the efficiency of the two 
methods. Note that, all the springs in the database have been simultaneously 
evaluated in order to control the results. Both these examples deal with, steel springs 
with closed and ground ends. 

3.1 Minimum mass 

In this example, the spring with the smallest mass value and a spring travel of 10 
mm, a minimum inside diameter (Di) of 4 mm, F1 equal to 15 N and a maximum L1 
of 35 mm is sought. The optimal custom spring design  within the database limits 
induces Do = 6.42 mm, d = 0.75 mm, L0 = 39.69 mm. Thus, according to table 1, 
the first layer cube coordinates are [13, 14, 11], [14, 15, 12] (points of the diagonal). 
Results obtained with both methods are shown in Table 2. 
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Table 2. Minimum mass 

Method Expanding Exp. then sliding 
Nb of layers  5 2 
Nb of windows  - 3 
Nb of springs  656 142 
Result coordinates 17, 15, 13 17, 15, 13 

 
The algorithm proposes in every case [17, 15, 13] as a solution, i.e. 
Do = 8.0 mm, d = 0.8 mm, L0 = 50 mm, R = 0.68 N/mm, working between 
L1 = 27.94 mm and L2 = 17.94 mm. 
Checking procedure: the evaluation of the entire database (5050 springs) leads to the 
same stock spring (298 springs match the specifications). In this example, the best 
method is "Expanding, then sliding a window". In this case, the optimal stock spring 
can be found after evaluating only 142 springs. 

3.2 Minimum operating length  

Prototype design specifications are : Do ≤ 38mm, Di ≥ 27mm, L1 ≤ 50mm, spring 
travel equal to 11mm. 5N ≤ P1 ≤ 15N and 50N ≤ P2 ≤ 100N (spring loads). The 
spring with the smallest operating length is sought. Using the optimal design in 
continuous variables obtained without adding the database constraints induces first 
layer coordinates of : [40, 22, 10], [41, 23, 11]. When these constraints are added to 
the optimization problem, the first layer coordinates become [40, 23, 9], [41, 24, 10]. 
The results obtained are detailed in Table 3. 

Table 3. Minimum operating length 

Starting point without adding constraints when adding constraints 
Method  Expanding Exp. Then sliding Expanding Exp. then sliding 
Nb of layers  3 2 2 1 
Nb of windows  - 1 - 1 
Nb of springs  43 20 15 10 
Result 
coordinates 41, 24, 10 41, 24, 10 41, 24, 10 41, 24, 10 

 
In every case, [41, 24, 10] is proposed as a solution, i.e. Do = 32 mm, d = 2.2 mm, 
L0 = 25 mm, R = 5.78 N/mm, working between L1 = 22.4 mm and L2 = 11.4 mm. 
Checking procedure : the evaluation of the entire database leads to the same stock 
spring from the 12 springs that match the specifications. Once again, it shows the 
efficiency of the "Expanding, then sliding a window" method. It also shows the 
importance of adding the database constraints to the initial optimization problem in 
order to reduce the number of springs evaluated. 
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4. CONCLUSION  

This paper presents two methods for selecting stock springs from within a catalogue. 
These methods are less time consuming than that which tests all the springs, 
especially for large catalogues. The first method consists in testing the springs that 
surround the optimal custom spring design. The algorithm called "Expanding" tests 
springs by successive layers, moving away gradually until the exploration of a layer 
no longer improves the solution selected on the preceding layer. The second method 
starts with a similar expansion process and stops as soon as a spring that satisfies the 
specifications is found. Then the springs from within a window that surrounds that 
spring are tested. If a better spring is found, the window is slid onto this point and a 
new step is carried out until no better solution remains. The results obtained are 
satisfactory and have a high "result" VS "number of tested springs" ratio. This ratio 
can be increased by adding the database limit constraints to the initial optimization 
problem of finding the optimal custom spring design. As it reduces calculation time, 
this method is particularly useful for large data-bases. It can also help in selecting a 
temporary stock spring to replace a broken custom-made spring, as here the starting 
characteristics are already known. In addition, it is particularly important to reduce 
operating time in integrated design procedures. 
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