
HAL Id: hal-03744452
https://hal.science/hal-03744452

Submitted on 2 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Finding the Optimal Stock Spring from Optimal Spring
Design Characteristics

Manuel Paredes, Marc Sartor, Cédric Masclet

To cite this version:
Manuel Paredes, Marc Sartor, Cédric Masclet. Finding the Optimal Stock Spring from Optimal Spring
Design Characteristics. Integrated Design and Manufacturing in Mechanical Engineering, Springer
Netherlands, pp.465-472, 2002, �10.1007/978-94-015-9966-5_55�. �hal-03744452�

https://hal.science/hal-03744452
https://hal.archives-ouvertes.fr

PAREDES M., SARTOR M., MASCLET C.

FINDING THE OPTIMAL STOCK SPRING FROM
OPTIMAL SPRING DESIGN CHARACTERISTICS

https://doi.org/10.1007/978-94-015-9966-5_55

Abstract. This paper presents two methods for selecting the best stock spring from within a database. A
way of calculating the optimal custom spring design which takes into account the database properties is
described and two methods that explore the neighbourhood of the optimal continuous solution are
detailed. Two methods for exploring the neighbourhood of the optimal continuous solution are discussed.
The first, called the “expanding” method explores the database in successive layers, and stops once a
solution has been found which cannot be improved upon. The second method also uses the “expanding”
technique but stops once a spring which matches the specifications has been found. The algorithm then
performs a “sliding” operator, whereby the immediate neighbourhood of the existing solution is explored.
When no better spring can be found, this process stops. Two examples are shown. They demonstrate the
effectiveness for our approach in selecting a stock spring without exploring the whole database. The most
time-consuming stage is the calculation of the optimum custom-made spring design. Both these methods
are particularly useful when applied to large database.

1. INTRODUCTION

The creation of mechanical objects is often the end result of a long design process
where standard component selection is perhaps the simplest, but nonetheless
frequent class of design decision problems. As catalogues become increasingly
common and voluminous, this process can be time-consuming. Text-only assistance
is not an efficient means for designers to find a stock spring which respects not only
certain geometrical properties stored in a database but also several operating
characteristics. Thus, optimal operating points have to be calculated for each
potential stock spring depending on the requirements.
Finding the best stock spring and calculating its associated operating parameters is a
Mixed Discrete Optimization problem. The most common mathematical solution is
first to approximate an optimum by treating all variables as continuous and then to
use algorithms to find the best feasible discrete point in the region of the continuous
variable optimum. Optimization procedures dealing with continuous variables are
numerous and well known. Technical literature provides mathematical methods
which calculate design parameters corresponding to an optimal custom spring design
(Sandgren (1990), Kannan and Kramer (1994), Deb and Goyal (1998)). To help
designers select stock springs, Yuyi et al (1995) and Motz and Haghighi (1990)]
have implemented methods that propose some stock springs close to the optimal

custom spring design. But, in every case, the designer has to calculate the operating
parameters for each proposed spring by hand, in order to select the one that best fit
his specifications. Moreover, as the best stock spring is not necessarily close to the
custom-designed optimum, the designer is never sure he has selected the best spring.
 To find the discrete optimum, many algorithms have been developed such as the
optimal discrete search by Pappas and Allentuch (1974), the sequential linearization
approach by Han Tong and Papalambros (1991) or the Boolean logic method by
Peng and Siddall (1993). These methods explore the discrete neighbourhood of the
continuous optimum but are difficult to implement. When there is a high number of
discrete variables, they can however help to find the discrete optimum without
enumerating the total neighbourhood of the continuous point.
Considering that spring catalogues give a maximum of four discrete variables in the
optimization problem, our objective is to find methods that would extract the most
suitable solution by just testing a few springs. Thus two methods have been
developed. They use a particular optimal spring as a starting point to explore the
database.

2. STARTING FROM A PARTICULAR OPTIMAL SPRING

Usually, optimal spring design is calculated by solving a conventional optimisation
problem: Minimise or Maximise F(x) where x is a vector of continuous variables
and F(x) is either the mass, or the fatigue life, or the operating load P2, or the
operating length L2...
In addition to the objective function, a large set of constraints is considered, so as to
express design specifications (operating length limits, operating load limits…), the
standards (fatigue life, buckling length…) and the technical capability limits of the
spring manufacturer (maximum outside diameter, minimum outside diameter,
maximum wire diameter…).
But catalogues often provide a much smaller exploration domain than the hyper
cube generally considered in the continuous optimisation process. The global
optimum can therefore be a long way from the discrete approach. To match
catalogue properties and decrease the gap between the two optima, constraints
related to the database limits can be added to the initial optimisation problem. The
augmented formulation will lead to a particular optimal spring which can be retained
as an appropriate starting point for a catalogue search. The first task is thus to model
the catalogue data in order to obtain the boundaries of the exploration domain.

2.1 Modelling the database

For this study, the catalogue of the «Ressort Vanel» company, comprising 5050
springs, has been used. For each spring, the characteristics detailed in the catalogue
are stored in a table as shown in Figure 1. A spring reference can be for instance the
index of the associated line in the table.

FINDING THE OPTIMAL STOCK SPRING

Figure 1. Spring table

Table 1. Link between parameters

Within this catalogue, springs are classified using three parameters : Do (outside
diameter), d (wire diameter) and L0 (free length). Each spring can be represented by
a point in the [Do, d, L0] space. Our suggestion is to add a matrix M[X, Y, Z] to this
discrete space. The table 1 show the link between Do and X, d and Y, L0 and Z.
Matrix dimensions are thus : M[44, 33, 19]. This matrix will contain only the spring
references.
Note that M[] is not fulfilled by the database references. Some points of the discrete
space have associated spring references, but not the others. For example
M[10,11,11] = 2371 (see Fig 1) but M[1,33,19] = 0, as no spring exists with the
dimensions Do = 1.6 mm, d = 6 mm, L0 = 200 mm.

2.2 Analysing the database limits

Figure 2 shows rectangles that surround the catalogue springs. The objective is to
find the database limits in the three following planes : d/L0, Do/d and Do/L0. In
each of these planes, a curve is sought that minimises the distance from the database
(in number of cells within M[]) while staying outside the database limits.
Equations of the curves detailed in Figure 3 are:

FINDING THE OPTIMAL STOCK SPRING

dmax = 0.246 Do 0.9108, dmin = 0.07066 Do 0.9949
L0max = 23.1 Do 0.6677, L0min = 1.4177 Do 0.8301
L0max = 175.56 d 1.098, L0min = 0.07066 d 0.9049

These equations are added to the initial optimisation problem in order to find an
optimal custom spring design within the catalogue limits. In this study, x is defined
with Do (outside diameter), d (wire diameter), L0 (free length), R (spring rate), L1
(maximum operating length), L2 (minimum operating length). From the result
obtained, the values of Do, d, L0 are retained as starting point coordinates. Then,
two exploration methods to select the most suitable spring from the database are
presented.

Figure 2. Do, d, L0 space

PAREDES M., SARTOR M., MASCLET C.

Figure 3. Limit curves

2. EXPLORATION METHODS

The optimal stock solution is not necessarily close to the custom-designed optimum.
The following exploration methods test points on the matrix M[]. When a point is
tested, the associated spring is evaluated in 5 steps (provided that the spring exists :
M[X,Y,Z]≠0).

1 - Read the characteristics stored in the spring table
2 - Calculate the optimum operating points according to the specifications, the
objective function and the standards (fatigue life, buckling length...) as described
by Paredes (2000)
3 - Calculate the whole range of characteristics
4 - Calculate the objective function value
5 - Evaluate how the spring satisfies the requirements.

2.1 First exploration method : «Expanding»

The proposed method tests points that surround the starting point in successive
layers, beginning with the points closest to the starting point (first layer), the others
being gradually tested as described in Figure 4.

FINDING THE OPTIMAL STOCK SPRING

: starting point
(optimal custom design)

: points of the first layer

: points of the second layer

Figure 4. Expanding

In a n dimension space, a continuous point is surrounded by 2n discrete points. In our
case n=3, the first layer contains 8 points. The Nth layer contains the points located
on the faces of a cube with sides 2N long. Thus, it contains [6 (2N-2)2 + 24N –16]
points.
The progression is stopped when the exploration of a layer does not improve the
solution obtained on the preceding layer. The stop criterion selected is thus as
follows : the algorithm stops when, at the end of the exploration of the Nth layer, the
optimal stock spring still belongs to the (N-1)th layer.

2.2 Second exploration method : "Expanding, then sliding a window"

When the dimensions of the database spatial model are large (n>2), the exploration
of numerous layers results in the testing of a large number of points. An alternative
approach can then be used : "Expanding, then sliding a window". The exploration
starts as defined previously but when at least one spring matching the specifications
has been found on a layer, the expansion is stopped and the process continues by
sliding a window.

: Center of stage S window
: Center of stage S+1 window

S

S + 1

Figure 5. Sliding a window

PAREDES M., SARTOR M., MASCLET C.

At this stage, the algorithm only tests the points from within a window that
surrounds the optimal point previously found as shown in Figure 5 (discrete
neighbourhood). For an n dimension space and a R window radius, a discrete point
is surrounded by (1+2 R) n -1 points. In our case, the unit-neighbourhood is tested
inducing n = 3 and R = 1 : 26 points are thus evaluated. If a better point is found, the
window is slid onto that new point. The algorithm is stopped when the stage has not
improved the preceding solution.

3. EXAMPLES

Two examples are given below to illustrate and compare the efficiency of the two
methods. Note that, all the springs in the database have been simultaneously
evaluated in order to control the results. Both these examples deal with, steel springs
with closed and ground ends.

3.1 Minimum mass

In this example, the spring with the smallest mass value and a spring travel of 10
mm, a minimum inside diameter (Di) of 4 mm, F1 equal to 15 N and a maximum L1
of 35 mm is sought. The optimal custom spring design within the database limits
induces Do = 6.42 mm, d = 0.75 mm, L0 = 39.69 mm. Thus, according to table 1,
the first layer cube coordinates are [13, 14, 11], [14, 15, 12] (points of the diagonal).
Results obtained with both methods are shown in Table 2.

FINDING THE OPTIMAL STOCK SPRING

Table 2. Minimum mass

Method Expanding Exp. then sliding
Nb of layers 5 2
Nb of windows - 3
Nb of springs 656 142
Result coordinates 17, 15, 13 17, 15, 13

The algorithm proposes in every case [17, 15, 13] as a solution, i.e.
Do = 8.0 mm, d = 0.8 mm, L0 = 50 mm, R = 0.68 N/mm, working between
L1 = 27.94 mm and L2 = 17.94 mm.
Checking procedure: the evaluation of the entire database (5050 springs) leads to the
same stock spring (298 springs match the specifications). In this example, the best
method is "Expanding, then sliding a window". In this case, the optimal stock spring
can be found after evaluating only 142 springs.

3.2 Minimum operating length

Prototype design specifications are : Do ≤ 38mm, Di ≥ 27mm, L1 ≤ 50mm, spring
travel equal to 11mm. 5N ≤ P1 ≤ 15N and 50N ≤ P2 ≤ 100N (spring loads). The
spring with the smallest operating length is sought. Using the optimal design in
continuous variables obtained without adding the database constraints induces first
layer coordinates of : [40, 22, 10], [41, 23, 11]. When these constraints are added to
the optimization problem, the first layer coordinates become [40, 23, 9], [41, 24, 10].
The results obtained are detailed in Table 3.

Table 3. Minimum operating length

Starting point without adding constraints when adding constraints
Method Expanding Exp. Then sliding Expanding Exp. then sliding
Nb of layers 3 2 2 1
Nb of windows - 1 - 1
Nb of springs 43 20 15 10
Result
coordinates 41, 24, 10 41, 24, 10 41, 24, 10 41, 24, 10

In every case, [41, 24, 10] is proposed as a solution, i.e. Do = 32 mm, d = 2.2 mm,
L0 = 25 mm, R = 5.78 N/mm, working between L1 = 22.4 mm and L2 = 11.4 mm.
Checking procedure : the evaluation of the entire database leads to the same stock
spring from the 12 springs that match the specifications. Once again, it shows the
efficiency of the "Expanding, then sliding a window" method. It also shows the
importance of adding the database constraints to the initial optimization problem in
order to reduce the number of springs evaluated.

PAREDES M., SARTOR M., MASCLET C.

4. CONCLUSION

This paper presents two methods for selecting stock springs from within a catalogue.
These methods are less time consuming than that which tests all the springs,
especially for large catalogues. The first method consists in testing the springs that
surround the optimal custom spring design. The algorithm called "Expanding" tests
springs by successive layers, moving away gradually until the exploration of a layer
no longer improves the solution selected on the preceding layer. The second method
starts with a similar expansion process and stops as soon as a spring that satisfies the
specifications is found. Then the springs from within a window that surrounds that
spring are tested. If a better spring is found, the window is slid onto this point and a
new step is carried out until no better solution remains. The results obtained are
satisfactory and have a high "result" VS "number of tested springs" ratio. This ratio
can be increased by adding the database limit constraints to the initial optimization
problem of finding the optimal custom spring design. As it reduces calculation time,
this method is particularly useful for large data-bases. It can also help in selecting a
temporary stock spring to replace a broken custom-made spring, as here the starting
characteristics are already known. In addition, it is particularly important to reduce
operating time in integrated design procedures.

5. AFFILIATION

PAREDES Manuel, SARTOR Marc, MASCLET Cédric
LGMT - INSA, 135 avenue de Rangueil 31077 Toulouse (France)
Tel : 33 5 61 55 97 18 Fax : 33 5 61 55 97 00
email: manuel.paredes@insa-tlse.fr
web: http://www.meca.insa-tlse.fr/lgmt

6. REFERENCES

Deb, K. & Goyal, M. (1998). A Flexible Optimisation Procedure for Mechanical Component Design
Based on Genetic Adaptive Search. Journal of Mechanical Design, 120, 162-164.

Han Tong, L. & Papalambros, P.Y. (1991). Computational Implementation and Test of a Sequential
Linearization Algorithm for Mixed-discrete Nonlinear Design Optimization. Journal of Mechanical
Design, 113, 335-345.

Kannan, B. K. & Kramer, S. N. (1994). An Augmented Lagrange Multiplier Based Method for Mixed
Integer Discrete Continuous Optimisation and its Applications to Mechanical Design. Journal of
Mechanical Design, 116, 405-411.

Motz, D. S. & Haghighi, K. (1990). An Integrated Approach to Knowledge-Aided Design and
Optimisation of Mechanical Springs. Transactions of the ASAE, 33(5), 1729-1735.

Pappas, M. & Allentuch, A. (1974). Mathematical Programming Procedures for Mixed-Continuous
Design Problems. Journal of engineering for Industry, 201-209.

Paredes, M., Sartor, M. & Fauroux J.C. (2000). Stock Spring Selection Tool. SPRINGS, winter, 53-67.
Peng, L. & Siddall, J.N.(1993). A Boolean Local Improvement Method for General Discrete

Optimization Problems. Journal of Mechanical Design, 115, 776-783.
Sandgren, E.(1990). Nonlinear Integer and Discrete Programming in Mechanical Design Optimisation.

Journal of Mechanical Design, 112, 223-229.
Yuyi, L., Kok-Keong, T. & Liangxi, W. (1995). Application of Expert System for Spring Design and

Procurement. SPRINGS, march, 66-80.

	1. Introduction
	2. Starting from a particular optimal spring
	2.1 Modelling the database
	2.2 Analysing the database limits

	2. Exploration methods
	2.1 First exploration method : «Expanding»
	2.2 Second exploration method : "Expanding, then sliding a window"

	3. Examples
	3.1 Minimum mass
	3.2 Minimum operating length

	4. Conclusion
	5. AFFILIATION
	PAREDES Manuel, SARTOR Marc, MASCLET Cédric

	6. References

