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Abstract  
This paper presents a calculation process to optimize the design of helical extension springs whatever the nature of the 

specifications. This process can be used even in the early design stages as data are set with interval values. It includes a 

large set of constraints, which can express the designer's requirements, but also the standards and the technical capability 

limits of spring manufacturers. The problem is resolved using the Excel solver. The required starting point is 

automatically calculated by a dedicated algorithm, which uses interval arithmetic. Two examples are presented. 
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Nomenclature 

Do : outside diameter in mm  

D : mean diameter in mm 

Di : inside diameter in mm 

d : wire diameter in mm 

R : spring rate in N/mm  

L0 : free length in mm 

n : number of active coils 

z : helix angle in degrees 

P1, P2 : spring load in N 

L1, L2 : spring length in mm  

sh : spring travel in mm, sh = L1 - L2 

Nc : number of cycles 

Rm : Ultimate Tensile Strength of the material in N/mm
2
 

 

Subscripts 

S : from the specification sheet 

M : from the manufacturer constraints 

IST : from the Institute of Spring Technology requirements 

 

Superscripts 

U : Upper limit 

L : Lower limit 

 

Introduction 
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The design of mechanical devices imposes the dimensioning of numbers of common components (gears, cams, shafts). 

Helical extension springs are among these components in use today. 

Literature concerning numerical methods provides several examples of spring optimization processes for custom spring 

design. Deb and Goyal [1], Kannan and Kramer [2], Sandgren [3] use compression springs to illustrate their 

optimization methods in mixed variables. These problems are used as mathematical illustrations and have thus been 

oversimplified. Qian [4] also envisaged an optimization problem where all the operating points are given. The obligation 

to define completely the operating points limits its practical use. None of these methods can thus be applied directly. 

The main industrial software available to a designer during the extension spring definition work use exhaustive 

calculations from standards to make a full check of the proposed spring's compatibility with the given specifications : 

"FED2


" from Hexagon
 

[5], "Spring CAD Software Packages" from IST
 

[6], "Spring Design Software" from SMI 

[7]. "Spring Design Software" can carry out minimum mass optimization to adjust one design parameter but three other 

design parameters have to be known beforehand.  

As far as we are aware, the following capability is not commonly presented i.e. to carry out exhaustive calculations from 

standards and to provide the most suitable spring design from global specifications.  

This paper proposes an approach to present this capability by linking both industrial and mathematical knowledge. A 

method is given to determine the optimal extension spring design from a specification sheet where data is set with 

interval values. Setting data in this way has been tested for stock compression springs by Paredes [8] where it provides a 

powerful and efficient means of expression.  

The associated mixed variables optimization problem has been implemented on Excel for easy use in industry as 

proposed by Anselmetti [9]. The resolution method suggested has the advantage of providing in all circumstances a 

point pertaining to the solution area but requires a starting point close to the solution area [9,10]. So, an algorithm that 

automatically determines the calculation starting point has been developed. It uses interval arithmetic [11] to analyse the 

parameters of the specification sheet. It has been coded in Visual Basic and directly linked to the solver. 

Finally, two examples are presented. 

In this study, only stainless steel helical extension springs with machine loops are considered. 

 

1 Definitions  
 

1.1 Spring design parameters  
 

The parameters which define the extension spring geometry are : Do, d, Di, R, L0, d, n, P0. Figure 1 illustrates these 

parameters which characterize the intrinsic properties of the spring. Four independent design parameters have to be 

known to calculate the others. 

  

Figure 1 Design parameters 

 

The initial tension (P0) is often defined as a percentage of Rm (T0), see Appendix 1.  

 

The number of active coils (n) can take discrete values. It is defined from N (integer variable) depending on the angle 

between end loops as described in Figure 2. 
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Figure 2 Angles between end loops 

 

1.2 Spring operating parameters  
 

A spring works traditionally between two configurations, one corresponding to the least extended state W1, the other 

corresponding to the most extended state W2. The parameters which define the use of a spring are : P1, P2, L1, L2 and 

sh (see Figure 3). 

 

P2

P1

L2

sh

W2

W1

Spring

Load

Spring

Length

L1

 

Figure 3 Operating parameters 

 

When the design parameters are known, two independent operating parameters (to be taken among P1, P2, L1, L2 and 

sh) are necessary to determine the two points W1 and W2.  

 

1.3 Specification sheet  
 

The goal here is to find an easy way to define global specifications. For this reason, data is defined with interval values.  

 

Design and operating parameters can be set by giving their bounds (lower and/or upper limits : L S

L0 , L S

U0 ,... P S

L1 , 

P S

U1 ...).  

 

Moreover, to be as global as possible, many other characteristics to be defined (with interval values) are proposed : 

 Natural Frequency of surge waves  

 Internal energy during operating travel  

 Spring mass 

 Overall space taken up when L=L0 (VolL0) 

 Overall space taken up when L=L2 (VolL2) 

 

The number of cycles Nc can also be provided to calculate the fatigue life factor (and to check that it is higher than 

unity). 

 

The designer can also specify the required angle between end loops. Finally, to be able to calculate the best spring, the 

objective function F (maximum fatigue life, minimum mass...) has to be given.  

 

To help the designer with his specifications, a sheet from Excel has been used, as shown in Figure 4.  
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Figure 4 Specification sheet 

 

Of course, real-life industrial problems often imply the provision of only some of the proposed limits. 

 

For example, in the early design stages, there are always many parameters, which have not been already fixed. Given the 

difficulty of giving fixed values for a spring, it is more convenient to define parameters through their possible lower and 

upper limits.  

 

On the other hand, to fix the value of a parameter, it must be placed in both the lower and upper limits defining that 

parameter in the specification sheet (see Figure 4). For example, although a standardized wire range exists, any wire 

diameter can be manufactured. When using standardized wire, each wire diameter (d) considered implies placing 

d S

L = dS

U = d in the specification sheet. 

 

Finally, each value not defined in the user specification sheet is automatically set to a default value : 0 for a lower limit 

and 10
7
 for an upper limit.  

 

Then the optimization problem is constructed automatically. 

 

2 The optimization problem 
 

2.1 Defining the problem  
 

The discovery of the extension spring design offering the best possible value of the objective function and satisfying the 

required angle between end loops is a mixed variables optimization problem.  

 

Four design parameters (Do , d , T0 , N) and two operating parameters (L1 and L2) are stored in the « vector of design 

variables » X, so X = [Do, d, T0, N, L1, L2]
T
. There are 5 continuous variables (Do, d,T0,L1,L2) and one integer 

variable (N). 

 

The objective function is expressed using the conventional form : 

Minimize or Maximize F(X) 

where F(X) is either the mass, or the fatigue life, or the maximum operating load P2, or the minimum operating length 

L2…  

 

Table 1 enumerates the large set of constraints that have been considered in addition to this objective. They can express 

not only the designer’s specifications but also the standards and the technical capability limits of the spring 

manufacturer. All the necessary formulae for coding these equations are given in Appendix 1. 

 

An optimization problem with 6 variables (5 continuous and one integer variable) and a maximum of 44 constraints is 

thus obtained. It is solved using a Branch and bound process (to find the integer variable N) added to a Generalised 

Reduced Gradient solution process (to find continuous optima), as proposed within the Excel solver.  
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Two methods are offered : the conjugate gradient method or a quasi-Newton approach (BFGS). Taking into account the 

low number of variables, the BFGS method has been used [10].  

 

Constraint about : Upper limit Lower limit 
Do g1(X): Do - Min ( DoS

U , Do M

U )  0 g2(X): Max ( DoS

L , Do M

L ) - Do  0 

d g3(X): d – Min ( dS

U , dM

U  )  0 g4(X): Max ( dS

L , dM

L ) - d  0 

T0 g5(X): T0 - U

ISTT0   0 g6(X): L

ISTT0  - T0  0 

L1 g7(X): L1 - L S

U1   0 g8(X): L S

L1  - L1  0 

L2 g9(X): L2 - L S

U2   0 g10(X): L S

L2  - L2  0 

n g11(X): n - U

ISTn   0 g12(X): L

ISTn  - n  0 

D g13(X): D - DS

U   0 g14(X): DS

L - D  0 

Di g15(X): Di - DiS

U   0 g16(X): DiS

L  - Di  0 

L0 g17(X): L0 - L S

U0   0 g18(X): L S

L0  - L0  0 

R g19(X): R- RS

U   0 g20(X): RS

L - R  0 

Helix angle z at L2 g21(X): z - z
U
  0 ----------- 

C g22(X): C - U

ISTC   0 g23(X): L

ISTC  - C  0 

P1 g24(X): P1 - P S

U1   0 g25(X): P S

L1  - P1  0 

P2 g26(X): P2 - P S

U2   0 g27(X): P S

L2  - P2  0 

sh g28(X): sh - shS

U   0 g29(X): shS

L  - sh  0 

Minimum operating length ----------- g30 (X): L

ISTL1  – L1  0 

Maximum operating length g31(X): U

ISTL2 - L2  0 ----------- 

Fe g32(X): Fe - FeS

U   0 g33(X): FeS

L  - Fe  0 

Energy g34(X): Energy - EnergyS

U   0 g35(X): EnergyS

L  - Energy  0 

Spring mass g36(X): M - MS

U   0 g37(X): MS

L - M  0 

VolL0 g38(X): VolL0- VolL S

U0   0 g39(X): VolL S

L0 -VolL0  0 

VolL2 g40(X): VolL2- VolL S

U2   0 g41(X): VolL S

L2 -VolL2  0 

End loop constraint ----------- g42(X): 1 - E  0 

Fatigue life ----------- g43(X): 1 - F  0 

N g44(X): N is an integer 

Table 1 Constraints 

 

Before running, this kind of process needs the variables to be initialized, defining the calculation starting point. 

 

2.3 Automatic determination of the calculation starting point  
 

The choice of the starting point is very important. Indeed, the closer this is to the final solution, the more likely is the 

algorithm to converge towards the optimal solution [9,10]. This is particularly true here in viewing the high number of 

constraints. To determine the starting point automatically, data is analyzed in order to define an initial extension spring 

design which respects the majority of the problem constraints. 

 

Figure 5 illustrates the different steps of the proposed method. The precise calculations are detailed in appendix 2. Each 

steps includes a calculation of parameter limits based on interval arithmetic [11]. 

In step 1, L1, L2, sh, R, L0 limits are refined considering L1, L2, sh, R, L0, P1 and P2 limits.  Then d limits are 

calculated.  

 

In step 2, d has been chosen and Do limits are refined.  

 

In step 3, d and Do being fixed, P0 limits are calculated from the IST requirements. Then N limits are calculated 

considering the limits of R, L0, mass, Fe, vol0 and the specifications upon the operating points W1 and W2. 
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In step 4, the method proposed by Paredes [8] to find optimal values of L1 and L2 for compression springs, has been 

extended to find P0, L1 and L2 satisfying the specifications and maximizing the fatigue life of the spring. 

 

Then a comparison is made to see if the tested configuration is better than the one previously retained. A configuration 

is considered better if it respects the specifications more closely. If both respect the specifications, the configuration 

with the best-associated objective function value is chosen. 

 

Calculate d limits

Refine L1, L2, sh, R and

L0 limits

NO

Yes

NO

Yes

Yes

NO

NO

Yes

Choose a pitch for d

First N

First d

Choose a pitch for Do

First Do

Last N ?

Last Do ?

Last d ?

Keep it

Next N

Return the best spring

Step 1

Step 4

Step 3

Step 2

Next Do

Next d

Choose P0, L1, L2

Calculate Do limits

Choose a pitch for N

Calculate P0, N limits

A best spring

is obtained ?

Calculate L1, L2 limits

 

Figure 5 : Calculation starting point algorithm 

 

3 Examples 
 

A spring maker has successfully tested this method. All the calculations below have been obtained from the automatic 

determination of the starting point presented in section 2.3.  

 

Maximum calculation time on a personal computer (200Mhz) is about 10 seconds. All results have been confirmed by 

using several starting points and other optimization algorithms. 
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3.1 Fatigue life application 
 

In this example, based on a real industrial problem, the spring must have a minimum life of 10
7
 cycles and the goal is to 

obtain the greatest fatigue life factor. 

 

The required angle between end loops implies n = N (see Figure 2). The study of the system defines the spring load 

limits (40 < P1 < 50 N and 80 < P2 < 90 N). The maximum outside diameter (Do) is 30 mm. Spring travel sh is constant 

(40 mm) and the maximum operating length (L2) has to be less than 200 mm. 

 

In this design stage, there is no other geometrical constraint and the final design of the contiguous parts will be adjusted 

to fit with the optimal spring design. 

 

 

Figure 6 Greatest fatigue life factor 

 

Problem resolution in mixed variables provides the following result (Figure 6):  

Do = 30.00 mm, d = 2.58 mm, T0 = 4.73, N = 25,  

L1 = 157.34 mm, L2 = 197.34 mm.  

The associated fatigue life factor is 1.29.  

 

The algorithm can also search for optimal springs made from standardized wires. It is sufficient to specify d
L
=d

U
=2.5 

mm to get the best design related to this wire diameter. Tests with the closest standardized wire diameters from AMIC 

[12] standards (2.2 / 2.5 / 2.8 / 3.0 mm) provide the following results (Table 2) : 

  

 wire (mm)  Fatigue life factor  

2.2 1.17 

2.5 1.28 

2.8 no solution 

3.0  no solution 

 Table 2 Maximum fatigue life with standardized wires 

 

The solution adopted with a standardized wire is therefore the one with a wire diameter of 2.5 mm :  

Do = 27.84 mm, d = 2.5 mm, T0 = 4.95, N = 28,  

L1 = 157.93 mm, L2 = 197.93 mm.  

 

The optimal spring design with a continuous wire diameter offers only 1% more fatigue life factor than the best spring 

design with a standard wire diameter, so the last solution is retained. 

 

3.2 Mass production application 
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In this example, the spring is intended for mass production. In order to reduce the production costs, the goal is to find 

the spring with the smallest mass that respects the following specifications. 

 

Free length L0 must be less than 200 mm. The minimum operating load P1 is to be 200 N. The operating lengths are 

defined : L1 = 245 mm and L2 = 345 mm. The required angle between end loops is 0°. 

 

 

Figure 7 Smallest mass 

 

Problem resolution in mixed variables provides the following result (Figure 7):  

Do = 41.24 mm, d = 4.13 mm, T0 = 10.74, N = 31,  

L1 = 245.00 mm, L2 = 345.00 mm.  

The associated mass is 407g.  

 

Tests with the closest standardized wire diameters from AMIC [12] standards (3.6 / 4.0 / 4.5 / 5 mm) provide the 

following results (Table 3) :  

 

 wire (mm)  Mass (g)  

3.6 no solution  

4 no solution 

4.5 415 

5  437 

 Table 3 Smallest mass with standardized wires 

 

The solution adopted with a standardized wire is therefore the one with a wire diameter of 4.5 mm :  

Do= 50.25 mm, d = 4.5 mm, T0 = 7.22, N = 21,  

L1 = 245.00 mm, L2 = 345.00 mm.  

 

These two solutions have close mass values inducing similar production costs. But the optimal spring design with a 

continuous wire diameter offers an overall space of 276 cm
3
 (volL0) whereas the other is 382 cm

3
. This would lead to 

significant difference in packaging costs, so the first solution (d = 4.13 mm) is retained. 

 

 

Conclusion 
 

A comprehensive process for extension spring optimization is presented. Its main advantage is to link both industrial and 

mathematical knowledge in order to propose a solution starting directly from global specifications. 

 

Furthermore, the specification sheet can accept data tolerances for use in the early design stages. The short calculation 

time allows the designer to test several configurations in order to determine which is the best (optimal spring design or 

optimal spring design with a standardized wire diameter). This study shows that extension springs can now be designed 

to solve most real-life industrial problems. 
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Spring manufacturers or designers can easily implement this process using any standard optimization code, or a 

spreadsheet endowed with an optimization solver, to find the optimal solution of extension spring design problems. 
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Appendix 1 

 
Details of all the formulae used to define the problem constraints. 

 

Constraints related to variables  

 

 Specifications of the spring manufacturer upon Do and d ( Do M

U , Do M

L , dM

U , dM

L ) have to be taken into account. 

Here are the values used in our study for stainless steel : Do M

U =315mm, Do M

L =1.6mm, dM

U =15mm , dM

L =0.15 mm 

 

 Initial tension P0 is often defined as a percentage of Rm . The equations of the limit curves for the preferred 

range proposed by IST are (see Figure 8) :  

 

U

ISTT0  = 
 

824

53290
2

36121 .

)d/D(Ln.

e.




 

L

ISTT0  = 6.5-D/d/6 
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Figure 8 T0 limits from IST 

 

Constraints related to design parameters  

 

 Number of active coils : n = N + ne  

where ne = 0 or 0.25 or 0.5 or 0.75 depending of the angle required between end loops (see Figure 2). 

Standards explain that all the formulae used are available if the number of coils lies between L

ISTn =3 and U

ISTn =200. 

 

 Mean diameter : D = Do - d  

 

 Inside diameter : Di = Do - 2 d  

 

 Free length : L0 = 2 Di + d ( n + 1) 

 

 Spring rate : R =  nD/dG 34 8  

G : torsion modulus of the material in N/mm
2
 

G = 70000 N/mm
2
 for stainless steel. 

 

 Helix angle at L2 : z =  180 arctan / / /p D   where p =   n/dDiL  22   

The helix angle has to be lower than z
U 

= 7,5° so that the calculations remain valid. 

 

 Spring index : C= D / d. The standard imposes the spring index lies between L

ISTC
 
= 4 and U

ISTC
 
= 20. 

 

Constraints related to operating parameters  

 

 Minimum spring load : P1= R (L1 – L0) + P0 

where P0 = 
D

dRmT

800

0 3
  

 

and Rm = )(86.2551918 dLn  : AISI 302 from AMIC (see Figure 9). 
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Figure 9 AMIC AISI 302 

 

 Maximum spring load : P2 = R (L2 – L0) + P0 

 

 Spring travel : sh = L2 – L1  

 

 The minimum and maximum operating lengths are defined by IST using the maximum allowable travel  

Travel = 
R

P

KtsDR

dRe 0

8

3




  

Where Rm.Re 480  for stainless steel 

and Kts = 1.6 /  D d/
.0 14

: stress correction factor (other formulations of this factor exist, all with equivalent results 

[13,14] ). 

 
U

ISTL2  = L0 + 0.8 Travel 

L

ISTL1 = L0 + 0.2 Travel 

 

 Natural Frequency of surge waves  

Fe = 
22

50
dDn

R
.


 with

3/7900 mkg  

 Internal energy : Energy = 0.5 R sh
2
  

 

 Total mass : M =   4/2 22 dDn   

 

 Free overall space taken up  

VolL0 = 402 2 /Do)Ld(    

 

 Operating overall space taken up  

VolL2= 422 2 /Do)Ld(   

 

 Constraint in machine loops. The spring is automatically designed to ensure operating length L2 achieves a 

maximum 70 % of Rm in the machine loops. 

E = /Rm.70    

with   = 








 1

216
3 C

C

d

PD
: stress for L= L2 . 

 

 Fatigue life factor calculated from the Haigh diagram [14] (see Figure 10). 
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Stress
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Stress

m
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a

d(Nc)

d(Nc) /

Working Point (W)

Fatigue Life Limit (F)

(0)
d(Nc) /

Static Limit (S)

 

Figure 10 Haigh diagram 

 

F = 0.75 * Min (T1, T2)  

 

with : 

 

 The 0.75 factor is required by IST for fatigue life applications of extension springs. 

 
    )()(

)()(

1
1

NcNc

NcNc

dmdRea

dRed

OW

OF
T








  

ma

Re

OW

OS
T


2  

 

Where : 

m : mean shear stress in N/mm
2
  

m=     3/0221024 dKtsLLLRPD   

a : alternate shear stress in N/mm
2
 

a =    3124 d/KtsLLRD   

 

 = 3 (from DIN standards). 

 

d(Nc) is calculated from the Wohler curve : 

 



































)limitstatic(10NcifRe

10Nc10if3/d4Re7
10ln

NclnRed

)limitfatigue(10Ncifd

d

4

74

7

)Nc(

  

 

2

268.0
/

303
mmN

d
d  (from DIN standards). 

 

 

Appendix 2 
 

Step 1 : calculate d limits 

 

The upper and lower limits of L1, L2, sh, R, L0 and d will be calculated using interval arithmetic [11]. Let us calculate 

the limits of L1, L2 and sh.  

 

L1
U
=Min ( L S

U1  ; L S

U2 - L

Ssh )  

L1
L
 = Max ( L S

L1  ; L S

L2 - U

Ssh ) 
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L2
U
 = Min ( L S

U2  ; L S

U1  + U

Ssh ) 

L2
L
 = Max ( L S

L2  ; L S

L1  + L

Ssh ) 

sh
U
 = Min ( shS

U  ; U

SL2  - L

SL1 ) 

sh
L
 = Max ( shS

L  ; L

SL2  - U

SL1 ) 

 

Then the limits of R and L0 due to the operating parameters can be calculated.  

 

R
U
 = Min ( U

SR ; 
L

L

S

U

S

sh

PP 12   ; 
U

S

L

U

S

LL

P

01

1



 when  

 L1
L
> U

SL0 ; 
U

S

L

U

S

LL

P

01

2


when L2

L
> U

SL0 ) 

 

R
L
 = Max ( L

SR ;
U

U

S

L

S

sh

PP 12   ; 
L

S

U

U

S

L

S

LL

PP

02

12



 when L2
U
> L

SL0  

 and L

SP2 > U

SP1 ) 

 
UL0  = Min ( U

SL0  ; L1
U 

; L2
U
 – ( L

SP2  - U

SP1 ) / UR  

  when L

SP2 > U

SP1 ) 

 
LL0  = Max ( L

SL0  ; L1
L
 - U

SP1  / LR  ; L2
L
 - U

SP2  / LR  ) 

 

From the following different relations available to calculate d :  

d = Do - D = D - Di = (Do - Di) / 2 = Do / (C + 1) 

   = D / C = Di / (C-1).  

 

d limits can be deduced : 

 

d
U 

= Min ( DoS

U - DS

L ; DS

U  - DiS

L  ; ( DoS

U  - DiS

L )/2 ;  

  DoS

U /(C
L
 + 1) ; DS

U  / C
L 

; DiS

U  / (C
L
 - 1) ; 

U

Sd )  

 

d
L 

= Max ( DoS

L - DS

U ; DS

L  - DiS

U  ; ( DoS

L  - DiS

U )/2 ; 

  DoS

L /(C
U
 + 1) ; DS

L  / C
U 

; DiS

L  / (C
U
 - 1) ; 

L

Sd ) 

 

Step 2 : Calculate Do limits 

 

In the same way : 

 

Do
U 

= Min ( DS

U  + dS

U  ; DiS

U  + 2 dS

U  ; 2 DS

U  - DiS

L  ;  

 DS

U  (1+1/ C
L
) ; DiS

U  (1+2/(C
L
 - 1)) ; dS

U  (C
U
+1) ; 

 DoS

U ) 

 

Do
L 

= Max ( DS

L  + dS

L
 ; DiS

L  +2 dS

L
 ; 2 DS

L  - DiS

U  ; 

 DS

L (1+1/C
U
) ; DiS

L (1 + 2 / (C
U
 - 1)) ; 

L

Sd  (C
L 

+1) ; 

 DoS

L ) 

 

Step 3 : Calculate P0 limits and N limits 

 

At this step d and Do are known. Thus Di, D are also known. 

 

Step 3-1 Calculation of P0 limits according to IST 
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The equations of the limit curves of Figure 8 are :  

U

ISTT0  = 
 

824

53290
2

36121 .

)d/D(Ln.

e.




 

L

ISTT0  = 6.5-D/d/6 

Thus P0 limits can be calculated. 

P0
U
 =  DTRmd U

IST 800/03  

P0
L
 =  DTRmd L

IST 800/03  

 

Step 3-2 Calculation of N limits  

 

The limits values from the specification sheet are calculated as follow :  

N
U 

=Min ( U

ISTn ; n1
U
; n2

U
 ; n3

U
 ; n4

U
 ; n5

U
 ; n6

U
 ; n7

U
)-ne 

N
L 

= Min ( L

ISTn ; n1
L
; n2

L
 ; n3

L
 ; n4

L
 ; n5

L
 ; n6

L
 ; n7

L
 )-ne 

where : 

 

n1
U
 and n1

L
 are calculated to satisfy R limits : 

n1
U
 = 

3

4

8 DR

dG
L

 

n1
L
 = 

3

4

8 DR

dG
U

 

 

n2
U
 and n2

L
 are calculated to satisfy L0 limits : 

n2
U
 = 1

20




d

DiL U

 

n2
L
 = 1

20




d

DiL L

 

 

n3
U
 and n3

L
 are calculated to satisfy the requirements upon the operating point W1 : 

n3
U
 =  

  53

4

018

21

dGPPD

dDiLdG
UL

U

S 

  when L

SP1 >P0
U 

n3
L
 =  

  53

4

018

21

dGPPD

dDiLdG
LU

L

S 

  when U

SP1 >P0
L 

 

n4
U
 and n4

L
 are calculated to satisfy the requirements upon the operating point W2 : 

n4
U
 =  

  53

4

028

22

dGPPD

dDiLdG
UL

U

S 

  when L

SP2 >P0
U
 

n4
L
 =  

  53

4

028

22

dGPPD

dDiLdG
LU

S

L



  when U

SP2 >P0
L 

 

n5
U
 and n5

L
 are calculated to satisfy the mass limits : 

n5
U
 = 2

4
22


dD

massU

S


 

n5
L
 = 2

4
22


dD

massL

S


 

 

n6
U
 and n6

L
 are calculated to satisfy vol0 limits : 

n6
U
 = 

d

dDi

Dod

vol U

S 3204
2





 

n6
L
 = 

d

dDi

Dod

vol L

S 3204
2





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n7
U
 and n7

L
 are calculated to satisfy Fe limits : 

n7
U
 = 

 2

5.0
2

G

DFe

d
L

S

 

n7
L
 = 

 2

5.0
2

G

DFe

d
U

S

 

 

Step 4 : Calculation of P0, L1 and L2  

 

P0 is initially set to its medium possible value : 

 

P0= (P0
U
+P0

L
)/2 

 

Then P0 is adjusted to fit with the limits according to the operating parameter limits : 

 

P0op
U
 = Min(  011 LLRP LU

S  ;  022 LLRP LU

S  ) 

P0op
L
 = Min(  011 LLRP U

S

L

S  ;  022 LLRP U

S

L

S  ) 

 

IF P0 > P0op
U 

THEN P0 = P0op
U
 

IF P0 < P0op
L 

THEN P0 = P0op
L
 

 

Design parameters being known, the calculation of the operating points is obtained to find the maximum fatigue life, 

which implies finding the maximum value of L2 and then the minimum value of L1 in order to reduce maximum shear 

stress and alternate stress [8].  

 

Here are the new sh, L1 and L2 limits: 

sh
U
 = Min (

U

Ssh  ; 
R.

energyU

S

50
)  

sh
L
 = Max (

L

Ssh  ; 
R.

energy L

S

50
)  

L1
U
 = Min (

U

SL1  ; 
R

PP
L

U

S 01
0


 )  

L1
L
 = Max (

L

SL1  ; 
L

ISTL1 ; 
R

PP
L

L

S 01
0


 )  

 

L2
U
 = Min (

U

SL2  ; 
U

ISTL2  ; LP2 ; Lvol2 ; Lz ; L2ends) 

Where : 

LP2 = 
R

PP
L

U

S 02
0


  

Lvol2 = d
Do

vol U

S 2
24

2



 

Lz = )ztan(DndDi U2  

L2ends = RP
C

C

D

dRm
L /0

1

16

7.0
0

3
















 



 

 

 

L2
L
 = Max (

L

SL2  ; 
R

PP
L

L

S 02
0


 ; d

Do

vol L

S 2
24

2



)  

 

Finally L1 and L2 values can be calculated : 
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L2 = Max (L2
L 

; L1
L 

+ Lsh ) 

IF L2 = L1
L 

+ Lsh  THEN L1 = L1
L
    

ELSE L1=Min (L1
U 

; L2
L 

- Lsh ) 


