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Investigation of torsional teeth stiffness and second 

moment of area calculations for an analytical model of 

spline coupling behaviour 

A. Barrot, M. Sartor, M. Paredes 

INSA de Toulouse, LGMT, 137 Av. de Rangueil, 31077 Toulouse Cedex, France 

Abstract 

Torque distribution from within spline coupling is an important matter for design engineers 

wishing to study the behaviour of spline couplings. This distribution can be estimated thanks 

to an analytical equation, based on material, torsional teeth stiffness, and second moments of 

area of the shaft and sleeve. These parameters have to be determined precisely. The material 

properties can be readily determined but calculation of the other parameters requires finite 

element calculations or complex algorithms. The aim is to propose simplified equations so as 

rapidly to obtain values for both teeth stiffness and second moments of area. Experimental 

designs were implemented to determine the most appropriate equations. Torsional stiffness is 

the first parameter studied in the present paper. This is the result of rotations due to various 

phenomena involving distortions such as bending, shear, compression, rotation of the 

foundation of the teeth and the teeth sliding. Two simplified equations are finally expressed to 

define torsional stiffness. The first takes into account the four first phenomena and the second 

one the teeth sliding. The second topic in the present paper covers the influence on torque 

distribution of various formulae for calculating second moments of area. A solution, which 

takes into account shear of the teeth, is highlighted. 

Keywords: spline coupling, teeth stiffness, second moment of area, experimental design 
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Notations 
α Tilted angle in radians 

β0 Corrective coefficient for the second moment of area of the shaft which 

minimizes the gap between analytical and FE torque distribution 

β Corrective coefficient for the second moment of area of the shaft  

θb Rotation due to bending of the sleeve and shaft in radians 

θc Rotation due to compression of the sleeve and shaft in radians 

θf Rotation due to the foundation rotation of the sleeve and shaft in radians 

θg Sum of all rotations: θws, θsl in radians 

θs Rotation due to shear of the sleeve and shaft in radians 

θsl Rotation due to sliding of the sleeve and shaft in radians 

θws Sum of four rotations: θb, θs, θf, θc in radians 

ϕi, ϕe Twisting angles for the internal spline and external spline in radians 

φ Contact angle at the pitch radius in radians 

φp Contact load angularity at the pitch radius in radians 

cϕ Torsional teeth stiffness per unit width in N/rad 

D Pitch diameter in metres 

Dext, Rext External diameter and radius of the sleeve in metres 

Do, Di Shaft and sleeve major diameter in metres 

Dint, Rint Diameter and radius corresponding to the hole of the shaft in metres 

Dre, Rre Diameter and radius of the teeth foundation of the shaft in metres 

Dri, Rri Diameter and radius of the teeth foundation of the sleeve in metres 

Ee, Ei Young’s modulus of internal spline and external splines in Pa 

E0 Average of responses 

E1, E2 E3 Effects respectively of factors m, N and m N interaction 
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F Force applied on the contact surface per unit width in N/m 

Gi, Ge Shear modulus of the internal and external spline in Pa 

Ie, Ii Shaft and sleeve tooth second moment of area in m4 

Ie
p, I

i
p Second moments of area of the shaft and sleeve calculated with the pitch 

diameter in m4 

Ie
s, I

i
s Second moments of area of the shaft and sleeve calculated with the influence 

of the teeth shear in m4 

Ie
t, I

i
t Second moments of area of the shaft and sleeve calculated with the teeth 

extremities diameters in m4 

kF Corrective coefficient, optimising rotation due to sliding 

L Spline coupling length in metres 

m Modulus in metres 

N Number of teeth 

P Circular pitch in metres 

R Pitch radius in metres 

R0, Ri Shaft and sleeve major radius in metres 

Rb Base radius of the shaft in metres 

Se, Si Teeth shear surface of the shaft and sleeve in m² 

t(z) Running torque in Nm 

Te
β Shaft torque of the analytical equation with optimised Ie in Nm 

Te, Ti Shaft torque at section z in Nm 

Te
EF Shaft torque of the FE model in Nm 

T’ext External torque per unit width in N 

To External torque applied to the spline coupling in Nm 

vsl
e, vsl

i Shaft and sleeve radial displacement due to sliding in metres 
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1. Introduction 

Involute spline couplings are used as an easy dismountable link between two rotating parts 

as shown in Fig. 1. In high power transmission, the sizing of spline coupling can be complex 

and often requests the development of three dimensional finite element models. From the 

economic point of view, in most everyday industrial applications, the need to dimension 

systems quickly remains a priority. Several studies [1-5] show that the axial load distribution 

on the teeth is non-uniform and therefore contradicts standardisation assumptions related to 

spline coupling sizing [6-8]. This can have harmful consequences. For example, errors in 

dimensioning can lead to failure despite correct dimensioning in accordance with standards. It 

is therefore advantageous to be able to develop fast analytical methods allowing for direct 

analysis of the most significant parameters describing the behaviour of spline coupling, 

especially avoiding Finite Elements model development. 

According to Tatur and Vygonnyi [3], axial torque distribution can be calculated thanks to 

the equation (1), where the running torque t(z) is the torque transmitted from the external 

spline to the internal spline along the axial direction z. t(z) is directly linked to the mean 

pressure acting on section z: 

 
= = [ - ]

e
i edT (z)

t(z) c (z) (z)
dz ϕ ϕ ϕ , (1) 

where Te(z) is the shaft torque (for every z, the sum of Te(z) and Ti(z), the sleeve torque, being 

equal to the external torque To), cϕ is the torsional stiffness of the joint, considered as constant 

whatever the value of z, and ϕi(z) and ϕe(z) are the twisting angles for the internal spline and 

external spline: 

( ) ( )i i

i i

d z T z

dz G I

ϕ =  and 
( ) ( )e e

e e

d z T z

dz G I

ϕ = , 
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where Gi and Ge are the shear modulus for the internal spline and external spline, I i and Ie are 

the second moment of area for the internal spline and external spline. 

Equation (1) can be developed to obtain the distribution torque along the shaft or 

sleeve. Using the expression of the twisting angles, (1) gives: 
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A new equation is obtain by replacing  Ti(z) = To − Te(z): 
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After simplification and resolution of this differential equation, the shaft distribution 

torque is obtained. It expression is gives at the equation (2). 
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length.  

Equation (2) is governed by three parameters: torsional stiffness, shaft, and sleeve second 

moment of area. The accuracy of the results is highly dependent on the values given to these 

parameters. It is therefore important to assign the appropriate values to cϕ, Ie and I i. 

A number of studies have been devoted to the evaluation of cϕ. Analytical methods were 

developed by Hayashi I. and Hayashi T. [9] or Marmol et al. [10]. These methods are 

analysed in a recent work by Barrot et al. [11]. However, it appears that they fail to take all 

phenomena that can be present in such a joint into account. In the study by Barrot et al., an 

algorithm was proposed to determine the torsional stiffness of involute spline couplings. This 
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algorithm takes into account the pressure distribution on the teeth flanks, geometric properties 

and teeth distortion. In the preliminary study in the first stage of the design process, this 

method turned out to be difficult to apply.  

Few articles address the determination of Ie and I i for spline coupling. Tjenberg [4] and 

Isakower [12] propose two methods but do not evaluate the consequence of their choice. 

Second moments of area remain difficult to determine, due to the behaviour of the spline 

coupling teeth.  

The present paper firstly presents how the algorithm developed in Barrot et al. [11] is used 

to construct a simplified method to calculate cϕ.. Secondly, a process to calculate the shaft and 

sleeve second moment of area is detailed. 

2. Torsional stiffness estimation, cϕϕϕϕ 

As with teeth gear stiffness determination, studied by example by Cornell [13], the 

spline geometry requires the shaft and sleeve teeth to be divided up into segments. Moreover, 

an analytical method, dedicated to determining torsional stiffness of standard involute spline 

couplings, was developed in a previous work [11]. This method seeks to consider the 

interdependence between teeth distortions and pressure distribution in its calculations.  

In the present paragraph, a simplified and quicker method is proposed. This can be 

used for involute spline couplings. Torsional teeth stiffness estimation commences by 

analysing its expression as follows: 

 '

= ext

g

T
cϕ θ

, (3) 

where, T’ext is the moment applied on the contact surface per unit width and θg is the global 

rotation. Thanks to the algorithm developed [11], T’ext can be used to determine θg. Then, for 

different T’ext values, a unique cϕ.value is obtained. Thus in the present study, to determine 
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torsional stiffness the considered value of T’ext is the unit (1N). θg represents the sum of 

various movements due to the superposition of five phenomena identified by Marmol et al. 

and Barrot et al.: bending of the teeth, shear of the teeth, compression, tooth foundation 

rotation and sliding.  

= + + +g b s c f slθ θ θ θ θ θ+ , 

where θb is the rotation due to bending of the teeth of both sleeve and shaft, θs the 

rotation due to shear of the teeth of both sleeve and shaft, θc the rotation due to compression 

at the contact, θf the rotation due to teeth foundation rotation of the sleeve and the shaft. These 

rotations depend on a number of factors: contact pressure, teeth geometry, and material. θsl is 

the rotation due to sliding between the internal and external spline teeth. This rotation depends 

on the same factors as the others but to be determined also requires knowledge of the internal 

and external diameters of the spline coupling. All these rotations are illustrated in Fig. 2. The 

dependence between rotations and the cited factors precludes describing global rotation using 

a single equation. 

One solution is to consider global rotation as a sum of two entities. The first entity 

takes into account rotations that do not depend on the inside and outside diameters, while the 

second takes into account rotation due to sliding. This method can be used if certain basic 

assumptions are respected, with all sections being straight before and during distortion and 

only long spline couplings being used. 

2.1. Rotations not dependent on inside and outside diameters 

According to Barrot et al. [11], rotation equations due to bending, shear, compression, 

and foundation rotation do not depend on the outside and inside diameter of the spline 

coupling. A simplified analytical equation to determine the sum of these four rotations, known 

as θws, has then to be determined: 
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= + + +ws b s c fθ θ θ θ θ  

To describe a phenomenon, an equation can be used accounting for a set of 

parameters. Not all such parameters have the same weight in the final equation and may lead 

to unnecessary complexity. Identifying the most appropriate parameters is therefore essential 

in formulating the equation that fits. 

- Search for relevant parameters  

An attempt will now be made to reduce the number of parameters.  

The equations describing these rotations depend on the circular pitch, P, the number of 

spline coupling teeth, N and finally the material parameters Gi and Ge. To facilitate 

calculation, a modulus m, equal to P/π is applied.  

The modulus and number of teeth parameters are linked by the pitch diameter, D. One 

way of reducing the number of parameters could be to replace m and N by D alone. This 

would be acceptable if two different involute spline couplings having the same pitch diameter 

also have identical values for θws rotations. A test is conducted for a first spline coupling 

where N=18, m=2.5mm and a further test where N=27, m=1.667mm leading to a common 

value for D = 45mm. The gap between the results is 34 per cent, precluding the D alone being 

considered in the equations. 

The material parameters Gi and Ge can also be studied. A solution to reduce the 

number of parameters could involve introducing the ratio between these two parameters. 

Thus, a test is conducted with the same spline coupling where the material couple is Gi/Ge = 1 

with steel-steel and aluminium-aluminium couples. A Gap of θws is obtained close to 200 per 

cent. This result attests to the impossibility of considering only the Gi/Ge ratio to describe the 

material parameters. According to American standardisation [6, 7] and the most conventional 

uses of involute spline couplings, this study proposes to establish the law of torsional stiffness 
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for two material couples: steel-steel and brass-steel (brass for the sleeve). The work presented 

is available for the commonest modulus and number of teeth. 

 

- Search for influential parameters 

Various parameters to calculate θws were identified. The next step was to highlight the 

most influential ones. To this purpose, an approach using experimental design was developed. 

This method is commonly used and is explained through for example in the work by Goupy 

[14] and by Brisset et al. study [15]. 

This process comprises inputs known as factors and outputs known as responses. The 

factor values can be continuous or discrete. The plan for a two-level design uses +1 and –1 

notation to denote respectively the “high level” and the “low level” for each factor. In 

searching for the θws equation, the proposed factors are m and N. The levels are defined as: 

For the modulus, –1 = 1.25mm and +1 = 2.5mm. 

For the number of teeth, –1 = 12 and 1 = 22. 

Remark: this study is available for a steel-steel spline coupling. 

This process requires four trials to be conducted with each factor set to high or low 

values as described in the matrix of Tab. 1 in the three first columns. The fourth column, m N, 

corresponds to the interaction between factors on the response, obtained by multiplying m 

level with N level for each trial. 

Finally, the model for the experiment is: 

E=Y X , 

where Y is the vector consisting of the four trial responses, E (E0, E1, E2, E3), the 

unknown coefficients called factor effects, and X the vector consisting of the factors and 

interaction. E0 correspond to the average of responses, while E1, E2 and E3 correspond 
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respectively to the effect of the factors m and N and the interaction m N. For the Ei effect of 

the i factor, the equation is: 

4

i j j
j 1

1
.

4
E x y

=

= ∑  

with yj the response of the i factor of j trial, and xj the level of this factor for the trial. 

The experimental design graph is shown in Fig. 3. Each effect of the factors or interaction 

is represented by a straight line, which can be expressed by the generic equation i 0y E x E= + , 

with y the response, and x the level for the factor. 

It appears that all factors and interactions give different response values for low and high 

levels. Thus all parameters can be considered to be influential in the equation for 

determination of rotation without sliding. 

To find the simplified equation for θws, its variations according to m and N must be 

known. Using analytical results from Barrot’s algorithm, the change in θws can be determined. 

Fig. 4 represents this change for a fixed modulus and a fixed number of teeth respectively. 

The form of the analytical result of the rotation evolution suggests a polynomial form 

of the solution. Then θws can be: 

θws = f(N3, N2, N, m2, m, m N). 

Optimisation using the least squares method to reduce the gap between the analytical 

values and the sought equation gives the result shown in Fig. 4. A comparison between the 

analytical and optimised results highlights the difference between them. θws must be known 

with greater accuracy. It is therefore impossible to describe it using the first suggested 

equation. Another proposition is to establish an equation for each material couple and for each 

modulus. θws form is yet: 

θws = f(N3, N2, N). 
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A new comparison between the θws simplified equation and the analytical result is 

shown in Fig. 5. This represents a case for m = 1.25mm and the steel-steel material couple. 

This figure reveals good correlation between the results, and suggests that generalisation to 

the other modulus can be performed. Finally, equations for the most popular modulus and for 

two commonest material couples are summarised in Tab.2. The N interval is between 12 and 

30. The last column represents the correlation between the analytical result and the proposed 

equation. Correlation is measured using the Pearson Product Moment Correlation. A 

correlation of +1 means that there is a perfect positive relationship between results. The good 

correlation results show that θws can be easily calculated by using the equation of Tab. 2. 

2.2. Rotation depending on inside and outside diameters 

The second part of global rotation is rotation due to sliding [11]. Equations describing 

sliding depend on inside and outside diameters. The principal equations are recalled below: 

( )
π

+2 (tan( )- )2
= + tan +

4
e i

sl sl sl
Nv v

P N

φ φπθ φ
 
 
 
 
 

, 

where: 

- φ is the contact angle at the pitch radius in radians. A 
12

π  (30°) value is commonly 

used for involute spline coupling deisgn, 

- ( ) ( ) ( )( )2 2

e 2 2
= 1-υ + 1+υ

E -

e
e r re
sl re int

re int

p R
v R R

R R
, 

- ( ) ( ) ( )( )2 2

i 2 2
= 1-υ + 1+υ

E -

i
i r ri
sl ri ext

ext ri

p R
v R R

R R
, 

- Rext is the external radius of the sleeve, Rint is the hole radius of the shaft 

- Rre, Rri are the foundation radii of the external and internal spline  
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- The radial component of the contact pressure is uniformly distributed over the 

outside diameter for the shaft and inside diameter for the sleeve. For the shaft, the 

resulting equivalent pressure is 
sin( )

=
π

2 sin

pe
r

re

F
p

R
N

φ
 
 
 

, and for the sleeve the resulting 

equivalent pressure is 
sin( )

=
2 sin

pi
r

ri

F
p

R
N

φ
π 

 
 

,  

- φp is the contact load angularity at the pitch radius. The expression of φp is 

2
tan asin tan( )

2
b

p

R

mN N

πφ φ φ = − − + 
 

, Rb is the base radius and F the force applied 

on the contact surface per unit width. 

 

All parameters dependent on geometry or material except the force F, which depends 

on the tilted angle, α, shown in Fig. 6. To evaluate exactly F, a method, applied in Barrot 

[11], takes into account the equilibrium law applied to the external spline on the shaft section 

centre. This equation establishes a link between F, T’ext, Rb, N and the teeth distortion 

represented by the tilted angle α, as shows equation (4). c represents the half contact length of 

tooth and χ is Kolosov’s constant and µ the modulus of rigidity. Calculation of the tilted angle 

requires the pressure distribution on teeth flank to be known, imposing an iterative calculus. 

The difficulty in determining the tilted angle requires a simplified form of F to be established. 

The suggested equation, where kF is a corrective coefficient that optimises the rotation due to 

sliding, is equation (5). 
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b

ext
F RN

T
kF

'

=  (5) 

Estimation of the coefficient kF requires determination of the validity domain. As in 

the previous paragraph, an experimental design is developed to highlight the different 

influential factors. The graphic representation is shown in Fig. 7. 

The factors taken into account are the ratios for the outside diameter, Dext by the pitch 

diameter D, the inside diameter, Dint by the pitch diameter, the modulus and the number of 

teeth. Experimental design is conducted for a steel-steel material couple. The levels are: 

For Dext/D, –1 = 1.25 and +1 = 2. 

For Dint/D, –1 = 0 and +1 = 1.2. 

For N, –1 = 16 and +1 = 28. 

For m, –1 = 1.25mm and +1 = 2.5mm. 

Fig. 7 reveals that all factors and interactions have a negligible influence on the 

corrective coefficient. 

Finally, a value of kF can be found for the various material couples. For the steel-steel 

couple, kF = 0.9879 and for the brass-steel couple, kF = 0.9898. These coefficients are 

available for range of N between 12 to 30 for a modulus from 1.25mm to 5mm. This factor 

increases the accuracy of the value of the θsl of less than 2 per cent. It can be thus considered 

that for the presented cases kF can be removed. 

2.3. Torsional stiffness validation  

For each modulus, the simplified equations to estimate cϕ are checked. A selection of 

comparisons between the torsional stiffness obtained by the analytical method from Barrot et 

al. [11] and the simplified equations is shown in Tab. 3. It appeared to be of interest also to 

compare the simplified equation results with torsional stiffness calculated by the FE model. 
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The gap between the analytical method and simplified equations for the different tests is less 

than 5 per cent, being enough to consider that torsional stiffness is known with a good 

estimation. The developed equations are available for long spline couplings, where the sleeve 

material can be steel or brass and the shaft material is steel. This model is valid for the 

considered domain, where N can vary between 12 and 30 and m between 1.25mm and 5mm. 

3. Shaft and sleeve second moment of area determination Ie
, I

i 

According to the literature, various solutions exist to determine second moments of 

area of internal and external spline. During this study, various calculations of Ie and I i are 

proposed. To determine the most appropriate one, torque distribution along the spline 

coupling was analysed. This distribution is obtained thanks to the Tatur and Vygonnyi 

differential equation (2) solution and Finite Element model results. The value for torsional 

stiffness used was obtained by applying the simplified equations presented in the first section 

of the present article. 

3.1. Different calculation possibilities  

Four determinations were checked as illustrated in Fig. 8. 

� Second moment of area calculated with the part bodies (Fig. 8a) 

The ends of the two parts are the outside limits Dext and Dint and the teeth are ignored. 

The other limits are the teeth foundations, Dre and Dri. Finally, shaft and sleeve second 

moments of area equations are respectively: 

 ( )4 4

int

32

ree
b

D D
I

π −
=  and 

( )4 4

32
ext rii

b

D D
I

π −
= . (6) 

This Tjenberg [4] method is used to apply equation (1). In Isakower [12], the final second 

moments of area are obtained with an increase in 10 per cent in this value. 

� Second moments of area calculated with the teeth end diameters (Fig. 8b) 



 15

As previously, external limits are identical, and the other diameters are the major 

diameters. Shaft and sleeve second moment of area equations are respectively: 

 ( )4 4
0 int

32
e
t

D D
I

π −
=  and 

( )4 4

32
ext ii

t

D D
I

π −
= . (7) 

� Second moments of area are calculated with the pitch diameter (Fig. 8c) 

When influence of the teeth is taken into account with the pitch diameter the equations 

for shaft and sleeve second moments of area are respectively: 

 ( )4 4
int

32
e
p

D D
I

π −
= and 

( )4 4

32
exti

p

D D
I

π −
=  (8) 

� Second moments of area calculated with influence of teeth shearing (Fig. 8d) 

Second moments of area can be divided into two parts: the body and the teeth. The second 

moment of area of the two parts is the sum of the individual second moments of area. 

For the external spline, the second moment of area of the body is calculated at the centre of 

the spline section:
( )4 4

int

32
ree

body

D D
I

π −
= . The shaft tooth second moment of area, at the tooth’s 

centre of gravity is negligible. This moment, at the centre of the shaft section can be 

determined from the Huygens theorem: 
2

4

e
e
tooth

S D
I = , where Se is the shaft shear surface in a 

section plane. Finally, for a spline coupling the equations are: 

 ( )4 4 2
int

32 4

e
ree

s

D D S N D
I

π −
= +  and 

( )4 4 2

32 4

i
ext ii

s

D D S N D
I

π −
= + , (9) 

where Si is the sleeve shear surface in a section plane. 

3.2. Method for determination of spline coupling second moments of area  

In order to select the best method of second moment of area evaluation, a reference 

has to be chosen. The 3D FE method is used for this. Indeed, various research works as with 
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Barrot et al., Leen et al., Limmer et al., Sum et al., [2, 16-19] have shown that FE simulation 

and experimental studies give similar results.  

Three dimensional finite element models using ABAQUS have been developed for 

different spline couplings. The meshing used to model the two parts making up the coupling, 

the shaft and sleeve are shown in Fig. 9 and is composed by 26000 solid linear brick elements 

and 30000 nodes. The boundary conditions are defined as follows. The contact is specified on 

the teeth flanks (with no friction). This condition imposes a non linear resolution. The nodes 

of a sleeve’s extremity are locked but radial expansion is allowed, as the figure illustrates with 

the small arrows. Nodes of the opposite shaft end can’t move in the axial direction and a 

torque is applied to the same shaft surface. The loading is introduced by forces on nodes of 

the shaft surface, in order to introduce a linear shear stress on the section. Cyclic symmetry 

conditions are used on the two lateral surfaces to simulate behaviour of the complete spline 

coupling.  

Comparison is made between the axial torque distribution according to FE models and 

the analytical model with different second moments of area calculation. The test is performed 

for four different involute spline couplings as described in Tab. 4 and the results are shown in 

Fig. 10. The torque transfer between the internal and external spline is located in particular at 

the ends of spline coupling. Indeed, it has been established for the load configuration shown 

in Fig. 9 that the pressure peaks are at the extremities [2, 4, 5]. If the gap between torque 

distribution result of FE and analytic models decreases, accuracy of knowledge on maximum 

pressure will be enhanced. 

In accordance with the results shown in Fig. 10, the best calculation is that which takes 

shear teeth influence into account. 

In calculation of the second moments of area, the error computed can be due to the 

influence of the teeth. This influence is less significant for the sleeve second moment of area 
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than for the shaft. This explains why it is necessary to determine whether an optimisation of 

the shaft second moment of area can increase accuracy of the torque distribution result. In the 

next study, the new second moments of area considered are I i = I i
s and Ie = β Ie

s.  

Moreover, thanks to this optimisation, and if the influence of the external diameter of 

the spline coupling is taken into account, the errors in the basic hypotheses of equation (1) can 

also diminish the end-contact effect, which can be neglected. 

An experimental design is developed to estimate the influence of N, m and Dext/D on a 

population of spline couplings. For every spline couplings, the ratio Dext/D allows the same 

skin thickness above the sleeve teeth to be checked. An experimental design with 3 factors 

and 2 levels, corresponding to 9 tests, is conducted. The different levels are as follows: 

For N –1 = 14 and +1 = 30 

For m –1 = 1.25mm and +1 = 5mm 

For Dext/D –1=1.25 and +1=2 

The responses β0 are obtained with minimisation of the gap between analytical and FE 

torque distribution using the least squares method. 

Fig. 11 stresses the influence of factors and interactions taken into account in the 

experimental design. This graph shows that only the interaction of a high order appears not to 

be influential, i.e. having a value that has little effect on the response. 

To determine the equation for the corrective coefficient β, a linear form is proposed. 

This is a function of the previous factors and interactions. To find the effect values of these 

parameters, the least squares method is used. It is important to note that to increase the 

precision of the β equation, 27 tests are performed. In fact a new level is added: N = 22, 

m = 2.5mm, Dext/D = 1.625. 

The following equation is found: 
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 2 2 1

3 2 3

6.958 10 2.742 10 2.937 10

3.396 10 2.036 10 3.86 10

ext

ext ext

D
m N

D
D D

m N m N
D D

β − − −

− − −

= × + × + ×

− × + × − ×
 (10) 

To estimate the accuracy of (10), a comparison between β and β0 is highlighted in 

Tab. 5, which presents the gap, Gapβ in per cent, corresponding to: 

0

0

100Gapβ
β β

β
−=  

The average result is about 6%.  

To evaluate the influence of the corrective coefficient, a calculation of the σ ratio 

between the model before and after correction is made. σ values are shown in the last column. 

This ratio is the division of the sum of the least squares fit between the analytical equation and 

FE model results and sum of the least squares fit between the analytical equation and FE 

model results.  

 ( )
( )

2

2

e e
FE

e e
FE

T T

T Tβ

σ
−

=
−

∑

∑
 (11) 

Where, Te is the shaft torque value of the analytical equation, e
FET  is the torque value 

of the FE model and eTβ  is the torque value of the analytical equation, with the optimised shaft 

second moment of area. 

The ratio represents the gain due to β.  Tab. 5 reveals that β allows the accuracy of 

almost all torque distributions to be improved by a factor of two on average. 

3.3. Second moment of area calculation validation  

The utility of the corrective coefficient on the shaft second moment of area 

determination was highlighted in the previous paragraph. It is important to validate equation 

(10) on other spline couplings that are not used to determine this equation. Tests are 

conducted for four involute spline couplings, described in Tab. 6. It is possible to calculate the 
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gap between the FE results and the analytical results with and without β. Taking the FE as 

reference, Fig. 12 illustrates these gaps along z-axis. According to Tab. 6 and Fig. 12, 

introducing β to calculate Ie increases torque distribution accuracy on all the studied spline 

couplings. 

4. Conclusion 

Thanks to Tatur, there is an equation to estimate torque distribution along the spline 

coupling. This equation requires knowledge of torsional stiffness and shaft and sleeve second 

moments of area. In a previous study, a complex algorithm to determine the torsional stiffness 

of involute spline couplings was performed. In this paper simplified equations are proposed 

that are easily and rapidly used.  

To determine the most appropriate equations, experimental designs are analysed. 

Torsional stiffness is the result of rotations due to various distortion phenomena such 

as bending, shear, compression, rotation of teeth foundation and sliding of the teeth. These 

rotations are divided into two parts. The first takes into account the four first phenomena and 

the second addresses the issue of sliding. Two simplified equations are finally expressed to 

define stiffness. In this study two couples of materials are considered: steel – steel and brass –

 steel. The influential factors are highlighted through various experimental designs, and the 

equations are developed using the least squares method. A comparison with the simplified 

method and the complex algorithm underlines the good estimation of torsional stiffness. 

This paper analyses several analytical solutions to describe these parameters, and 

reveals that the second moments of area have considerable influence on distribution. One 

particular solution that takes the teeth shear into account, is proposed as being the most 

effective. To increase accuracy, a β coefficient was added and its analytical detailed. The said 

coefficient is capable of enhancing accuracy of torque distribution analysis three-fold. 
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Tables 
Number of the 

experiment 
m N m N θws [rad] 

Trial 1 -1 -1 +1 2.03×10-5 
Trial 2 +1 -1 -1 5.08×10-6 
Trial 3 -1 +1 -1 5.80×10-6 
Trial 4 +1 +1 +1 1.46×10-6 

Tab. 1 Analysis matrix for the rotation without sliding rotation 

Modulus Material 
Sleeve 

Material 
Shaft 

Equations R² 

1.25 Steel Steel -9 3 -7 2 -5 -4
ws  = -5.963 10 N  +4.468 10 N  -1.229 10 N +1.101 10θ × × × ×  0.99 

 Brass  Steel -9 3 -7 2 -5 -4
ws  =-8.424 10 N  + 6.621 10 N  - 1.743 10 N + 1.566 10θ × × × ×  0.99 

1.667 Steel Steel -9 3 -7 2 -6 -5
ws  = -4.095 10 N  + 3.070 10 N  - 7.723 10 N + 6.657 10θ × × × ×  0.99 

 Brass  Steel -9 3 -7 2 -5 -5
ws  = -5.441 10 N  + 4.093 10 N  - 1.039 10 N + 9.085 10θ × × × ×  0.99 

2.5 Steel Steel -9 3 -7 2 -6 -4
ws  = -1.825 10 N  + 1.362 10 N  - 3.417 10 N + 2.944 10θ × × × ×  0.99 

 Brass  Steel -9 3 -7 2 -6 -5
ws  = -2.265 10 N  + 1.738 10 N  - 4.482 10 N + 3.966 10θ × × × ×  0.99 

5 Steel Steel -10 3 -8 2 -7 -6
ws  = -2.314 10 N  + 1.862 10 N  - 5.105 10 N + 4.875 10θ × × × ×  0.99 

 Brass  Steel -10 3 -8 2 -7 -6
ws  = -3.318 10 N  + 2.674 10 N  - 7.343 10 N + 7.025 10θ × × × ×  0.99 

Tab. 2 Equations of rotation without sliding for each couple (modulus, materials) 

Modulus [mm] 1.25 1.667 2.5 5 
Number of teeth 20 25 24 30 
Outside diameter [mm] 37.5 60 90 250 
Materiel Couple Steel-steel Brass-steel Steel-steel Brass-steel 
Torsional stiffness obtained by the 
analytical method from Barrot[9] 
×106 [N/rad] 

90.1 150 561 2590 

Torsional stiffness obtained by the 
FE method ×106 [N/rad] 

87.6 152 552 2555 

Torsional stiffness obtained by the 
simplified equations ×106 [N/rad] 

94.0 153 542 2550 

Gap between FE model and 
simplified equations [%] 

+7.3 +0.65 -1.81 -0.19 

Gap between analytical method 
and simplified equations [%] 

+4.30 1.85 -3.43 -1.49 

Tab. 3 Comparison of torsional stiffness for different spline couplings between the complete 

and simplified methods 
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Designations Modulus 
m 

Number of teeth  
N 

Outside diameter 
Dext 

Inside diameter 
Dint 

A 1.25 22 34.4 10 
B 1.66 27 55 30 
C 2.5 18 70 15 
D 5 30 188 20 

Tab. 4 Spline coupling designation for second moment of area calculus research  

m [mm] N Dext/D β0 β Gapβ [%] σ 
1.25 14 1.25 0.89 0.76 14.33 1.95 
1.25 14 1.625 0.82 0.86 4.60 9.91 
1.25 14 2 0.88 0.96 8.70 2.84 
1.25 22 1.625 0.98 1.00 1.88 1.01 
1.25 22 2 1.11 1.08 2.02 1.99 
1.25 22 1.25 1.03 0.91 11.39 1.36 
1.25 30 2 1.15 1.21 4.78 1.80 
1.25 30 1.25 0.97 1.06 8.82 1.13 
1.25 30 1.625 1.01 1.13 11.59 1.01 
2.5 14 1.25 0.91 0.82 9.31 1.99 
2.5 14 1.625 0.85 0.92 9.11 5.69 
2.5 14 2 0.92 1.03 11.88 1.77 
2.5 22 2 1.09 1.12 2.41 1.10 
2.5 22 1.25 0.96 0.94 1.99 1.40 
2.5 22 1.625 0.97 1.03 6.16 1.42 
2.5 30 1.25 0.99 1.05 6.70 1.05 
2.5 30 1.625 1.10 1.13 3.35 1.38 
2.5 30 2 1.33 1.21 9.16 2.35 
5 14 1.25 0.94 0.94 0.86 4.60 
5 14 1.625 0.99 1.05 5.75 1.00 
5 14 2 1.18 1.16 1.98 2.52 
5 22 1.25 0.96 1.00 3.44 1.26 
5 22 1.625 1.07 1.09 2.49 1.19 
5 22 2 1.27 1.19 6.20 3.27 
5 30 1.25 0.99 1.05 5.88 1.02 
5 30 1.625 1.06 1.13 6.78 1.18 
5 30 2 1.26 1.22 3.42 3.00 

Tab. 5 Gap between the optimised and calculated corrective coefficient and the influence of 
this coefficient on torque distribution 
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Spline 

coupling 
m [mm] N Dext/D Ie

s [mm4] β Ie [mm4] σ 

A 1.25 18 1.56 2.40×104 0.923 2.14×104 3.57 
B 1.667 20 1.49 1.19×105 0.927 1.11×105 3.45 
C 1.667 27 1.22 3.20×105 0.998 3.19×105 2.17 
D 5 18 1.66 63.3×105 1.08 68.3×105 1.12 

Tab. 6 Second moment of area calculation validation for four different spline couplings 
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Figures 

Fig. 1 Spline coupling descriptions 

Fig. 2 Teeth deflections representation 

Fig. 3 Experimental design graph to determine influential parameters in rotation without 

sliding calculus 

Fig. 4 Comparison of rotation without sliding between the analytical and optimised results. a) 

corresponds to m=2.5mm and b) to N=16 with a steel-steel material couple  

Fig. 5 Rotation without sliding for m = 1.25mm and steel-steel material couple  

Fig. 6 Titled angle illustration 

Fig. 7 Experimental design graph to determine the influential parameters in the sliding 

rotation calculation 

Fig. 8 Positions of the different diameters to determine the shaft and sleeve second moments 

of area of spline couplings: a) parts bodies limitations, b) teeth extremity limitations, c) 

average diameter, d) influence of teeth shearing 

Fig. 9 3D FE model of an involute spline coupling. The small arrows represent the direction 

of the fixed displacements. 

Fig. 10. Axial torque distribution for four spline couplings with various second moment of 

area calculations 

Fig. 11 Experimental design graph to determine the influential parameters in the optimised 

corrective coefficient for second moments of area of the shaft 
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Fig. 12 Comparison of gap between FE torque distribution and analytical torque distributions 

for four spline couplings
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