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Abstract

Torque distribution from within spline coupling & important matter for design engineers
wishing to study the behaviour of spline couplingkis distribution can be estimated thanks
to an analytical equation, based on material, doediteeth stiffness, and second moments of
area of the shaft and sleeve. These parametersthdedetermined precisely. The material
properties can be readily determined but calculatib the other parameters requires finite
element calculations or complex algorithms. The &0 propose simplified equations so as
rapidly to obtain values for both teeth stiffnes&l aecond moments of area. Experimental
designs were implemented to determine the mosbappte equations. Torsional stiffness is
the first parameter studied in the present papeis iE the result of rotations due to various
phenomena involving distortions such as bendingashcompression, rotation of the
foundation of the teeth and the teeth sliding. Bivoplified equations are finally expressed to
define torsional stiffness. The first takes intea@mt the four first phenomena and the second
one the teeth sliding. The second topic in the gmepaper covers the influence on torque
distribution of various formulae for calculatingcead moments of area. A solution, which
takes into account shear of the teeth, is hightidht
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Tilted angle in radians

Corrective coefficient for the second moment obaskthe shaft which
minimizes the gap between analytical and FE todjsigibution
Corrective coefficient for the second moment obaséthe shaft
Rotation due to bending of the sleeve and shatidmans

Rotation due to compression of the sleeve and shadidians
Rotation due to the foundation rotation of the wéeand shaft in radians
Sum of all rotationsé,s, & in radians

Rotation due to shear of the sleeve and shaftdiana

Rotation due to sliding of the sleeve and shafagians

Sum of four rotationsé,, &, &, & in radians

Twisting angles for the internal spline and exteéamdine in radians
Contact angle at the pitch radius in radians

Contact load angularity at the pitch radius in aadi

Torsional teeth stiffness per unit width in N/rad

Pitch diameter in metres

External diameter and radius of the sleeve in raetre

Shaft and sleeve major diameter in metres

Diameter and radius corresponding to the hole ®ftraft in metres
Diameter and radius of the teeth foundation ofsift in metres
Diameter and radius of the teeth foundation ofsleeve in metres
Young’s modulus of internal spline and externdirgs in Pa
Average of responses

Effects respectively of factors, N andm Ninteraction
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Force applied on the contact surface per unit widfkd/m

Shear modulus of the internal and external spiirfea

Shaft and sleeve tooth second moment of ared in m

Second moments of area of the shaft and sleevelatdd with the pitch
diameter in

Second moments of area of the shaft and sleevelatdd with the influence
of the teeth shear in‘m

Second moments of area of the shaft and sleevelatdd with the teeth
extremities diameters in‘m

Corrective coefficient, optimising rotation duesialing

Spline coupling length in metres

Modulus in metres

Number of teeth

Circular pitch in metres

Pitch radius in metres

Shaft and sleeve major radius in metres

Base radius of the shaft in metres

Teeth shear surface of the shaft and sleeve in m2

Running torque in Nm

Shaft torque of the analytical equation with opsied!®in Nm

Shaft torque at sectiann Nm

Shaft torque of the FE model in Nm

External torque per unit width in N

External torque applied to the spline coupling im N

Shaft and sleeve radial displacement due to sligingetres



1. Introduction

Involute spline couplings are used as an easy diatable link between two rotating parts
as shown in Fig. 1. In high power transmission,dizeng of spline coupling can be complex
and often requests the development of three diraeakifinite element models. From the
economic point of view, in most everyday industragplications, the need to dimension
systems quickly remains a priority. Several studlieS] show that the axial load distribution
on the teeth is non-uniform and therefore conttadstandardisation assumptions related to
spline coupling sizing [6-8]. This can have harméoinsequences. For example, errors in
dimensioning can lead to failure despite corregtatisioning in accordance with standards. It
is therefore advantageous to be able to develdpafesytical methods allowing for direct
analysis of the most significant parameters desgilthe behaviour of spline coupling,

especially avoiding Finite Elements model developine

According to Tatur and Vygonnyi [3], axial torquisttibution can be calculated thanks to
the equation(1), where the running torquiz) is the torque transmitted from the external
spline to the internal spline along the axial di@t z. t(z) is directly linked to the mean

pressure acting on sectian

dTe(2)

()= dz

=G [¢' (2} ¢° @, (D)

whereT®(z) is the shaft torque (for everythe sum off%(z) andT'(z), the sleeve torque, being
equal to the external torqde), cy4 is the torsional stiffness of the joint, considkes constant
whatever the value af andd (z) and ¢°(z) are the twisting angles for the internal splind an

external spline:

d¢'(2 _T(3 and d¢°(2 _ T°(2
dz Gl dz G’



whereG' and G? are the shear modulus for the internal spline anereal spline)' andI® are
the second moment of area for the internal spintkexternal spline.
Equation(1) can be developed to obtain the distribution torgleng the shaft or

sleeve. Using the expression of the twisting andlggives:

d’T(2) e T(2) T'(2)
dXZ (4 Gel¢ Gili !

A new equation is obtain by replacifi(z) = To — T(2):

d’Te(2) _ c T(2) T,-T°(2)
dx? v Gel°® Gili

After simplification and resolution of this diffengal equation, the shaft distribution

torque is obtained. It expression is gives at tieadon(2).

ep e Al &z B k2
To(9=—(¢é*-1)-—=( e**-1), (2)
k k
where:
C
K+ % (k1)
k=./c (i+ij A=T KG I B=A+ A L the spline coupling
( Gili Gele ! o ekL_e—kL ! kGiIi’
length.

Equation(2) is governed by three parameters: torsional ssfnshaft, and sleeve second
moment of area. The accuracy of the results islyidépendent on the values given to these
parameters. It is therefore important to assigrafhgropriate values &y, 1° andl'.

A number of studies have been devoted to the etvafuaf cy. Analytical methods were
developed by Hayashi I. and Hayashi T. [9] or Mdrrab al. [10]. These methods are
analysed in a recent work by Baretdtal. [11]. However, it appears that they fail to takle a
phenomena that can be present in such a jointactount. In the study by Barret al, an

algorithm was proposed to determine the torsiotifihess of involute spline couplings. This



algorithm takes into account the pressure distidibubn the teeth flanks, geometric properties
and teeth distortion. In the preliminary study ire tfirst stage of the design process, this
method turned out to be difficult to apply.

Few articles address the determinatior®cdnd|' for spline coupling. Tjenberg [4] and
Isakower [12] propose two methods but do not evalibe consequence of their choice.
Second moments of area remain difficult to deteenuiue to the behaviour of the spline
coupling teeth.

The present paper firstly presents how the algorideveloped in Barrcgt al.[11] is used
to construct a simplified method to calculage Secondly, a process to calculate the shaft and

sleeve second moment of area is detailed.
2. Torsional stiffness estimation, cg4

As with teeth gear stiffness determination, studigdexample by Cornell [13], the
spline geometry requires the shaft and sleeve tedtle divided up into segments. Moreover,
an analytical method, dedicated to determiningidoed stiffness of standard involute spline
couplings, was developed in a previous work [11hisTmethod seeks to consider the
interdependence between teeth distortions andymeedsstribution in its calculations.

In the present paragraph, a simplified and quickethod is proposed. This can be
used for involute spline couplings. Torsional teeaiffness estimation commences by

analysing its expression as follows:

C _Te‘xt (3)
() -
Hg

where, T'ex iS the moment applied on the contact surface p#rwidth andé is the global

rotation. Thanks to the algorithm developed [1T},: can be used to determiég Then, for

different T'ex Values, a uniqueg.value is obtained. Thus in the present study, terdene



torsional stiffness the considered valueTody is the unit (1N).8, represents the sum of
various movements due to the superposition of fikenomena identified by Marmet al
and Barrotet al: bending of the teeth, shear of the teeth, conspyes tooth foundation
rotation and sliding.

6,=6,+0,+6.+0,+0 ,

where 4, is the rotation due to bending of the teeth ohbsleeve and shaff the
rotation due to shear of the teeth of both sleexkshaft,g. the rotation due to compression
at the contacté the rotation due to teeth foundation rotationhef sleeve and the shaft. These
rotations depend on a number of factors: contaztqure, teeth geometry, and mateéglis
the rotation due to sliding between the internal external spline teeth. This rotation depends
on the same factors as the others but to be detednailso requires knowledge of the internal
and external diameters of the spline coupling.tAdise rotations are illustrated in Fig. 2. The
dependence between rotations and the cited fagtectudes describing global rotation using
a single equation.

One solution is to consider global rotation as & sf two entities. The first entity
takes into account rotations that do not depenthennside and outside diameters, while the
second takes into account rotation due to slidifgs method can be used if certain basic
assumptions are respected, with all sections bs&liragght before and during distortion and

only long spline couplings being used.

2.1. Rotations not dependent on inside and outside deme

According to Barrotet al.[11], rotation equations due to bending, sheampmession,
and foundation rotation do not depend on the oetsidd inside diameter of the spline
coupling. A simplified analytical equation to detene the sum of these four rotations, known

as 8,5, has then to be determined:



Ous=0,+0,+0 +0 ;

To describe a phenomenon, an equation can be ussxlrding for a set of
parameters. Not all such parameters have the sanghtwn the final equation and may lead
to unnecessary complexity. Identifying the mostrappate parameters is therefore essential
in formulating the equation that fits.

- Search for relevant parameters

An attempt will now be made to reduce the numbgrasbmeters.

The equations describing these rotations depenteoaittcular pitchP, the number of
spline coupling teethN and finally the material paramete@i and G°. To facilitate
calculation, a modulus, equal toP/ttis applied.

The modulus and number of teeth parameters aredibiehe pitch diameteD. One
way of reducing the number of parameters coulddbesplacem andN by D alone. This
would be acceptable if two different involute splicouplings having the same pitch diameter
also have identical values fd,s rotations. A test is conducted for a first splicaupling
whereN=18, m=2.5mm and a further test whelk&=27, m=1.667mm leading to a common
value forD = 45mm. The gap between the results is 34 per pastluding théd alone being
considered in the equations.

The material paramete®' and G® can also be studied. A solution to reduce the
number of parameters could involve introducing taBo between these two parameters.
Thus, a test is conducted with the same spline cmypthere the material couple®/G® = 1
with steel-steel and aluminium-aluminium couplesGAp of 8, is obtained close to 200 per
cent. This result attests to the impossibility ofsioering only theS'/GE ratio to describe the
material parameters. According to American standatin [6, 7] and the most conventional

uses of involute spline couplings, this study ps®mto establish the law of torsional stiffness



for two material couples: steel-steel and brasstg¢brass for the sleeve). The work presented

is available for the commonest modulus and numbtyaih.

- Search for influentiabarameters

Various parameters to calculafigs were identified. The next step was to highlight the
most influential ones. To this purpose, an appragihg experimental design was developed.
This method is commonly used and is explained tHrdog example in the work by Goupy
[14] and by Brisseet al. study [15].

This process comprises inputs known as factors atjlits known as responses. The
factor values can be continuous or discrete. The fuaa two-level design uses +1 and -1
notation to denote respectively the “high level’dathe “low level” for each factor. In
searching for thél,s equation, the proposed factors arandN. The levels are defined as:

For the modulus, -1 = 1.25mm and +1 = 2.5mm.
For the number of teeth, -1 =12 and 1 = 22.
Remark: this study is available for a steel-stpéhe coupling.

This process requires four trials to be conductetth wach factor set to high or low
values as described in the matrix of Tab. 1 in kinee first columns. The fourth colunm,N
corresponds to the interaction between factorshenrésponse, obtained by multiplying
level withN level for each trial.

Finally, the model for the experiment is:

Y=EX,

whereY is the vector consisting of the four trial respem€ (Eo, E1, E2, Es), the

unknown coefficients called factor effects, aXdthe vector consisting of the factors and

interaction. Ep correspond to the average of responses, whileE, and E; correspond



respectively to the effect of the factarsandN and the interactiom N For theE; effect of

the i factor, the equation is:

4

-1
E=72%Y

=
with y; the response of the i factor of j trial, aqdhe level of this factor for the trial.

The experimental design graph is shown in Fig. 3hkdfect of the factors or interaction
is represented by a straight line, which can beesged by the generic equatigrs E x+ E,
with y the response, ancthe level for the factor.

It appears that all factors and interactions gikeiebnt response values for low and high
levels. Thus all parameters can be considered toinbeential in the equation for
determination of rotation without sliding.

To find the simplified equation fof, its variations according tom and N must be
known. Using analytical results from Barrot’'s algom, the change i#l,s can be determined.
Fig. 4 represents this change for a fixed moduhgsaafixed number of teeth respectively.

The form of the analytical result of the rotatiorokaion suggests a polynomial form
of the solution. Thed,scan be:

Bus= f(N>, N* N, n?, m, m N).

Optimisation using the least squares method tocedue gap between the analytical
values and the sought equation gives the resuilvisho Fig. 4. A comparison between the
analytical and optimised results highlights thdfedtdnce between then#l,s must be known
with greater accuracy. It is therefore impossildedescribe it using the first suggested
equation. Another proposition is to establish amatign for each material couple and for each
modulus.g,sform is yet:

Bus= F(N®, N?, N).

10



A new comparison between th&s simplified equation and the analytical result is
shown in Fig. 5. This represents a casenfier 1.25mm and the steel-steel material couple.
This figure reveals good correlation between theltesand suggests that generalisation to
the other modulus can be performed. Finally, equatfor the most popular modulus and for
two commonest material couples are summarised ir2TadlmeN interval is between 12 and
30. The last column represents the correlation Etviee analytical result and the proposed
equation. Correlation is measured using the PeaRmduct Moment Correlation. A
correlation of +1 means that there is a perfecitipesrelationship between results. The good

correlation results show th&s can be easily calculated by using the equatiorabt 2.

2.2. Rotation depending on inside and outside diameters

The second part of global rotation is rotation dusliding [11]. Equations describing

sliding depend on inside and outside diameters.pfimeipal equations are recalled below:

o, N +2 tan@)p)
9S|:P_N(VS|+VS|) tan ¢+ 4 )

where:

@is the contact angle at the pitch radius in raadi@nl—’; (30°) value is commonly

used for involute spline coupling deisgn,

- GZL - 2 2
g B )R ).

P pi R 2 2

- VyE— (1-v) R?+(1+v) R ),
| E(&J-Rf)( ‘)

- Roxis the external radius of the sleeRg; is the hole radius of the shaft

- Re, Ry are the foundation radii of the external and maéspline

11



- The radial component of the contact pressure isotmify distributed over the

outside diameter for the shaft and inside diamfetethe sleeve. For the shaft, the

. . .. Fsin(g,) :
resulting equivalent pressure s=————~——, and for the sleeve the resulting
. T
2sin| —
HE
. . Fsin(g)
equivalent pressure i, =———,
(T
2 sm(Nj R,

- @ is the contact load angularity at the pitch radiliee expression ofg is

_ 2R\ . . .
@, =tan asift—S =N tang ¥ ¢, R, is the base radius arflthe force applied

on the contact surface per unit width.

All parameters dependent on geometry or materie¢@xthe forcd=, which depends
on the tilted angleq, shown in Fig. 6. To evaluate exacty a method, applied in Barrot
[11], takes into account the equilibrium law apg@lie the external spline on the shaft section
centre. This equation establishes a link betwBem ¢, Ry, N and the teeth distortion
represented by the tilted angleas shows equatidd). c represents the half contact length of
tooth andy is Kolosov’'s constant angthe modulus of rigidity. Calculation of the tiltedigle
requires the pressure distribution on teeth flamke known, imposing an iterative calculus.
The difficulty in determining the tilted angle reqgs a simplified form oF to be established.
The suggested equation, whéges a corrective coefficient that optimises theatioin due to

sliding, is equatioi5).

' 2
F:(£+ﬂj WhereAK :X_+1 (4)

12
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Estimation of the coefficierit requires determination of the validity domain. iAs
the previous paragraph, an experimental designeigeldped to highlight the different
influential factors. The graphic representatiorhisvgn in Fig. 7.

The factors taken into account are the ratios ferahtside diameteDey; by the pitch
diameterD, the inside diameteD;n; by the pitch diameter, the modulus and the nunober
teeth. Experimental design is conducted for a sl material couple. The levels are:

ForDex/D, -1 =1.25 and +1 = 2.

ForDin/D, -1 =0and +1 = 1.2.

ForN,—-1 =16 and +1 = 28.

Form, -1 = 1.25mm and +1 = 2.5mm.

Fig. 7 reveals that all factors and interactionseha negligible influence on the
corrective coefficient.

Finally, a value okr can be found for the various material couples.tRersteel-steel
couple, ke =0.9879 and for the brass-steel cougte=0.9898. These coefficients are
available for range o between 12 to 30 for a modulus from 1.25mm to 5fms factor
increases the accuracy of the value of &hef less than 2 per cent. It can be thus considered

that for the presented cadescan be removed.

2.3. Torsional stiffness validation

For each modulus, the simplified equations to estitn, are checked. A selection of
comparisons between the torsional stiffness obdainyethe analytical method from Barett
al. [11] and the simplified equations is shown in Tablt appeared to be of interest also to

compare the simplified equation results with tamsicstiffness calculated by the FE model.

13



The gap between the analytical method and simplégahations for the different tests is less
than 5 per cent, being enough to consider thaiotwa$ stiffness is known with a good
estimation. The developed equations are availablefg spline couplings, where the sleeve
material can be steel or brass and the shaft rahteristeel. This model is valid for the

considered domain, whehecan vary between 12 and 30 andetween 1.25mm and 5mm.

e i
1© |

3. Shaft and sleeve second moment of area deter mination

According to the literature, various solutions éxws determine second moments of
area of internal and external spline. During thisdg, various calculations df and!' are
proposed. To determine the most appropriate onguéordistribution along the spline
coupling was analysed. This distribution is obtairthdnks to the Tatur and Vygonnyi
differential equation(2) solution and Finite Element model results. The vdbretorsional
stiffness used was obtained by applying the simepliequations presented in the first section

of the present article.

3.1. Different calculation possibilities

Four determinations were checked as illustrateeign8.
= Second moment of area calculated with the partdso(ig. 8a)

The ends of the two parts are the outside liligg andD;; and the teeth are ignored.
The other limits are the teeth foundatiol}, and D,;. Finally, shaft and sleeve second

moments of area equations are respectively:

7D, -D,) n(0s,-D})

lo=———L andl,=———*~. (6)
32 32

This Tjenberg [4] method is used to apply equafignin Isakower [12], the final second

moments of area are obtained with an increase pet@ent in this value.

= Second moments of area calculated with the teaettdemeters (Fig. 8b)

14



As previously, external limits are identical, arfte tother diameters are the major

diameters. Shaft and sleeve second moment of gresdiens are respectively:

Ite — ﬂ( Dg3_2Dint4) and |t| _ 7T( D:;tz_ DI4) . (7)

= Second moments of area are calculated with tha ditmmeter (Fig. 8c)

When influence of the teeth is taken into accouith the pitch diameter the equations

for shaft and sleeve second moments of area greatxeely:

(D4, - D*)

andl, =———* (8)
32

int

- n(D*-Dy)

= Second moments of area calculated with influendeeth shearing (Fig. 8d)

Second moments of area can be divided into tweptre body and the teeth. The second

moment of area of the two parts is the sum of tldévidual second moments of area.

For the external spline, the second moment of @irél@e body is calculated at the centre of

H(Dri _Di;lt)

the spline sectiony,, = . The shaft tooth second moment of area, at th&'®ot

centre of gravity is negligible. This moment, at teatre of the shaft section can be

e

determined from the Huygens theorelfi;,, :¥, whereS’ is the shaft shear surface in a

section plane. Finally, for a spline coupling tlygiations are:

Ie:n(Dri_Diit)_i_Se N D

H(D:xt_Df)+Si N D
S 32 1

32 4

(9)

andl =
whereS is the sleeve shear surface in a section plane.

3.2. Method for determination of spline coupling secomaiments of area

In order to select the best method of second momkatea evaluation, a reference

has to be chosen. The 3D FE method is used forlduieed, various research works as with

15



Barrotet al, Leenet al, Limmeret al, Sumet al, [2, 16-19] have shown that FE simulation
and experimental studies give similar results.

Three dimensional finite element models using ABAQktYe been developed for
different spline couplings. The meshing used to rhdaetwo parts making up the coupling,
the shaft and sleeve are shown in Fig. 9 and igposed by 26000 solid linear brick elements
and 30000 nodes. The boundary conditions are deéiaddllows. The contact is specified on
the teeth flanks (with no friction). This conditiamposes a non linear resolution. The nodes
of a sleeve’s extremity are locked but radial exgp@mis allowed, as the figure illustrates with
the small arrows. Nodes of the opposite shaft eardt anove in the axial direction and a
torque is applied to the same shaft surface. Thairigas introduced by forces on nodes of
the shaft surface, in order to introduce a lindeaas stress on the section. Cyclic symmetry
conditions are used on the two lateral surfacesnwmlate behaviour of the complete spline
coupling.

Comparison is made between the axial torque digtab according to FE models and
the analytical model with different second momeaftarea calculation. The test is performed
for four different involute spline couplings as delsed in Tab. 4 and the results are shown in
Fig. 10. The torque transfer between the interndleadernal spline is located in particular at
the ends of spline coupling. Indeed, it has be¢abéshed for the load configuration shown
in Fig. 9 that the pressure peaks are at the eitesnj2, 4, 5]. If the gap between torque
distribution result of FE and analytic models desesa accuracy of knowledge on maximum
pressure will be enhanced.

In accordance with the results shown in Fig. 18,liést calculation is that which takes
shear teeth influence into account.

In calculation of the second moments of area, ther @omputed can be due to the

influence of the teeth. This influence is less Bigant for the sleeve second moment of area

16



than for the shaft. This explains why it is necegsardetermine whether an optimisation of
the shaft second moment of area can increase agcofghe torque distribution result. In the
next study, the new second moments of area corsider’ = I's and|® = B1°,

Moreover, thanks to this optimisation, and if thBuence of the external diameter of
the spline coupling is taken into account, thersrino the basic hypotheses of equatibncan
also diminish the end-contact effect, which caméglected.

An experimental design is developed to estimatertthgence ofN, m andDey/D on a
population of spline couplings. For every splineigiings, the ratidex/D allows the same
skin thickness above the sleeve teeth to be chedkedadxperimental design with 3 factors
and 2 levels, corresponding to 9 tests, is condudike different levels are as follows:

ForN—-1 =14 and +1 = 30

Form-1=1.25mm and +1 = 5mm

ForDex/D —1=1.25 and +1=2

The response& are obtained with minimisation of the gap betwaealytical and FE
torque distribution using the least squares method.

Fig. 11 stresses the influence of factors and acteyns taken into account in the
experimental design. This graph shows that onlyritexaction of a high order appears not to
be influential, i.e. having a value that has ligtféect on the response.

To determine the equation for the corrective corffit5, a linear form is proposed.
This is a function of the previous factors and iatgions. To find the effect values of these
parameters, the least squares method is used.iftpertant to note that to increase the
precision of thefequation, 27 tests are performed. In fact a newlles addedN = 22,
m= 2.5mm,Dey/D = 1.625.

The followingequation is found:

17



D
[ =6.958¢ 10°m+ 2.742 18N+ 2.937 leDLXt

(10)
-3.396x 10°mN+ 2.036 10 m%— 3.86 I?JN%

To estimate the accuracy (0), a comparison betweefi and % is highlighted in

Tab. 5, which presents the g&mapg in per cent, corresponding to:
Gap, :100%
0

The average result is about 6%.

To evaluate the influence of the corrective coedfic a calculation of ther ratio
between the model before and after correction idanavalues are shown in the last column.
This ratio is the division of the sum of the lesgtiares fit between the analytical equation and
FE model results and sum of the least squaresefivden the analytical equation and FE

model results.

(1)
(1 -Te)

g =

(11)

Where,T® is the shaft torque value of the analytical equmtll. is the torque value

of the FE model and;; is the torque value of the analytical equatiorthwiie optimised shaft

second moment of area.
The ratio represents the gain duetoTab. 5 reveals thaf allows the accuracy of

almost all torque distributions to be improved biaetor of two on average.

3.3. Second moment of area calculation validation

The utility of the corrective coefficient on the ash second moment of area
determination was highlighted in the previous peapQy. It is important to validate equation
(10) on other spline couplings that are not used teerdehe this equation. Tests are

conducted for four involute spline couplings, dédsea in Tab. 6. It is possible to calculate the

18



gap between the FE results and the analytical teesuith and withoutB. Taking the FE as
reference, Fig. 12 illustrates these gaps alaaxis. According to Tab. 6 and Fig. 12,
introducing S to calculatel® increases torque distribution accuracy on allghelied spline

couplings.

4. Conclusion

Thanks to Tatur, there is an equation to estimatgue distribution along the spline
coupling. This equation requires knowledge of tmmai stiffness and shaft and sleeve second
moments of area. In a previous study, a complearihgn to determine the torsional stiffness
of involute spline couplings was performed. In theper simplified equations are proposed
that are easily and rapidly used.

To determine the most appropriate equations, exyerial designs are analysed.

Torsional stiffness is the result of rotations doievarious distortion phenomena such
as bending, shear, compression, rotation of temthdation and sliding of the teeth. These
rotations are divided into two parts. The firstaaknto account the four first phenomena and
the second addresses the issue of sliding. Twolifieapequations are finally expressed to
define stiffness. In this study two couples of miate are considered: steel — steel and brass —
steel. The influential factors are highlightedotigh various experimental designs, and the
equations are developed using the least squardsochef comparison with the simplified
method and the complex algorithm underlines thedgestimation of torsional stiffness.

This paper analyses several analytical solutionsld@scribe these parameters, and
reveals that the second moments of area have @vabid influence on distribution. One
particular solution that takes the teeth shear sdoount, is proposed as being the most
effective. To increase accuracypaoefficient was added and its analytical detaildte said

coefficient is capable of enhancing accuracy ajderdistribution analysis three-fold.
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Tables

Number of the

experiment N mN bus [rad]
Trial 1 -1 -1 +1 2.03x10°
Trial 2 +1 -1 -1 5.08x10°
Trial 3 -1 +1 -1 5.80x10°
Trial 4 +1 +1 1 1.46¢10°

Tab. 1 Analysis matrix for the rotation without slidingtation

Modulus Material Material Equations R
Sleeve Shaft q

125  Steel  Steel g =-5963 10 N +4.468 10 N -1.239 £0 N +1.20D* 0.99

Brass  Steel g _=-8424<10 N +6.62¢ 10 N -1.743 20 N+ 16560* 0.99

1667  Steel  Steel g _=-4.09% 10 N +3.07® 10 N -7.723 10 N +%m&10° 0.99

Brass  Steel g =-544% 10 N +4.098 10 N -1.089 10 N +810° 0.99

25 Steel ~ Steel g =-1825¢10 N +1.362 10 N -3.4%7 10 N +24%10* 0.99

Brass  Steel g =-2.265¢10 N +1.738 10 N -4.482 0 N+@ex10° 0.99

5 Steel ~ Steel g =-231410°N +1.862 1 N -5.185 10 N+a5%10° 0.99

Brass  Steel g _=-3.318 10° N +2674 10 N -7.343 10 N +25%10° 0.99

Tab. 2 Equations of rotation without sliding for each ptai(modulus, materials)

Modulus [mm] 1.25 1.667 2.5 5
Number of teeth 20 25 24 30
Outside diameter [mm] 37.5 60 90 250
Materiel Couple Steel-steel Brass-steel Steel-steel Brass-steel
Torsional stiffness obtained by the

analytical method from Barrot[9] 90.1 150 561 2590
x10P [N/rad]

Torsional stiffness obtained by the

FE methodk10® [N/rad] 817.6 152 552 2555

Torsional stiffness obtained by the

simplified equations10® [N/rad] 94.0 153 542 2550

Gap between FE model and

simplified equations [%] 73 +0.65 181 019

Gap between analytical method

and simplified equations [%] +4.30 1.85 -3.43 -1.49

Tab. 3 Comparison of torsional stiffness for differentise couplings between the complete

and simplified methods

22



Designations Modulus  Number of teeth Outside diameter Inside diameter

m N Dexi Dint
A 1.25 22 34.4 10
B 1.66 27 55 30
C 2.5 18 70 15
D 5 30 188 20

Tab. 4 Spline coupling designation for second momenteaaalculus research

m [mm] N Dex{D ,80 ,8 Gapﬂ [%] ag
1.25 14 1.25 0.89 0.76 14.33 1.95
1.25 14 1.625 0.82 0.86 4.60 9.91
1.25 14 2 0.88 0.96 8.70 2.84
1.25 22 1.625 0.98 1.00 1.88 1.01
1.25 22 2 1.11 1.08 2.02 1.99
1.25 22 1.25 1.03 0.91 11.39 1.36
1.25 30 2 1.15 1.21 4.78 1.80
1.25 30 1.25 0.97 1.06 8.82 1.13
1.25 30 1.625 1.01 1.13 11.59 1.01
2.5 14 1.25 0.91 0.82 9.31 1.99
2.5 14 1.625 0.85 0.92 9.11 5.69
2.5 14 2 0.92 1.03 11.88 1.77
2.5 22 2 1.09 1.12 2.41 1.10
2.5 22 1.25 0.96 0.94 1.99 1.40
2.5 22 1.625 0.97 1.03 6.16 1.42
2.5 30 1.25 0.99 1.05 6.70 1.05
2.5 30 1.625 1.10 1.13 3.35 1.38
2.5 30 2 1.33 1.21 9.16 2.35

5 14 1.25 0.94 0.94 0.86 4.60
5 14 1.625 0.99 1.05 5.75 1.00
5 14 2 1.18 1.16 1.98 252
5 22 1.25 0.96 1.00 3.44 1.26
5 22 1.625 1.07 1.09 2.49 1.19
5 22 2 1.27 1.19 6.20 3.27
5 30 1.25 0.99 1.05 5.88 1.02
5 30 1.625 1.06 1.13 6.78 1.18
5 30 2 1.26 1.22 3.42 3.00

Tab. 5 Gap between the optimised and calculated corectrefficient and the influence of
this coefficient on torque distribution
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Spline

coupling M [mm] N Dex/D 1% [mm?] B 1°[mm?] o
A 1.25 18 1.56 2.40x10" 0.923  2.14x10° | 3.57
B 1.667 20 1.49 1.1%10° 0.927 1.11x10° | 3.45
C 1.667 27 1.22 3.20x10° 0.998  3.1%10° | 2.17
D 5 18 1.66 63.3<10° 1.08  68.3x10° | 1.12

Tab. 6 Second moment of area calculation validation éarr fdifferent spline couplings
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Figures
Fig. 1 Spline coupling descriptions

Fig. 2 Teeth deflections representation

Fig. 3 Experimental design graph to determine influergadameters in rotation without

sliding calculus

Fig. 4 Comparison of rotation without sliding between #malytical and optimised results. a)

corresponds to=2.5mm and b) ttN=16 with a steel-steel material couple

Fig. 5 Rotation without sliding fom = 1.25mm and steel-steel material couple

Fig. 6 Titled angle illustration

Fig. 7 Experimental design graph to determine the infliaéparameters in the sliding

rotation calculation

Fig. 8 Positions of the different diameters to deterntireeshaft and sleeve second moments
of area of spline couplings: a) parts bodies litrotss, b) teeth extremity limitations, c)

average diameter, d) influence of teeth shearing

Fig. 9 3D FE model of an involute spline coupling. Theadimrrows represent the direction

of the fixed displacements.

Fig. 10. Axial torque distribution for four spline couptja with various second moment of

area calculations

Fig. 11 Experimental design graph to determine the infilaparameters in the optimised

corrective coefficient for second moments of arethe shaft
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Fig. 12 Comparison of gap between FE torque distributichamalytical torque distributions

for four spline couplings
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Figure number 9
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Figure number 10
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Figure number 12
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