A Barrot 
  
M Sartor 
  
M Paredes 
  
Investigation of torsional teeth stiffness and second moment of area calculations for an analytical model of spline coupling behaviour

Keywords: spline coupling, teeth stiffness, second moment of area, experimental design

Torque distribution from within spline coupling is an important matter for design engineers wishing to study the behaviour of spline couplings. This distribution can be estimated thanks to an analytical equation, based on material, torsional teeth stiffness, and second moments of area of the shaft and sleeve. These parameters have to be determined precisely. The material properties can be readily determined but calculation of the other parameters requires finite element calculations or complex algorithms. The aim is to propose simplified equations so as rapidly to obtain values for both teeth stiffness and second moments of area. Experimental designs were implemented to determine the most appropriate equations. Torsional stiffness is the first parameter studied in the present paper. This is the result of rotations due to various phenomena involving distortions such as bending, shear, compression, rotation of the foundation of the teeth and the teeth sliding. Two simplified equations are finally expressed to define torsional stiffness. The first takes into account the four first phenomena and the second one the teeth sliding. The second topic in the present paper covers the influence on torque distribution of various formulae for calculating second moments of area. A solution, which takes into account shear of the teeth, is highlighted.

Involute spline couplings are used as an easy dismountable link between two rotating parts as shown in Fig. 1. In high power transmission, the sizing of spline coupling can be complex and often requests the development of three dimensional finite element models. From the economic point of view, in most everyday industrial applications, the need to dimension systems quickly remains a priority. Several studies [START_REF] Adey | Development of analysis tools for spline couplings[END_REF][START_REF] Barrot | An assistance tool for spline coupling design[END_REF][START_REF] Tatur | Stress Sources and Critical Stress Combinations for Splined Shaft[END_REF][START_REF] Tjernberg | Load distribution in the axial direction in a spline coupling[END_REF][START_REF] Volfson | Stress sources and critical stress combinations for splined shaft[END_REF] show that the axial load distribution on the teeth is non-uniform and therefore contradicts standardisation assumptions related to spline coupling sizing [START_REF]American standardization[END_REF][START_REF]Spline coupling (in inch)[END_REF][START_REF]Cannelures cylindriques droites à flancs en développante et centrage sur flancs -Angles de pression 30[END_REF]. This can have harmful consequences. For example, errors in dimensioning can lead to failure despite correct dimensioning in accordance with standards. It is therefore advantageous to be able to develop fast analytical methods allowing for direct analysis of the most significant parameters describing the behaviour of spline coupling, especially avoiding Finite Elements model development.

According to Tatur and Vygonnyi [START_REF] Tatur | Stress Sources and Critical Stress Combinations for Splined Shaft[END_REF], axial torque distribution can be calculated thanks to the equation (1), where the running torque t(z) is the torque transmitted from the external spline to the internal spline along the axial direction z. t(z) is directly linked to the mean pressure acting on section z:
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where T e (z) is the shaft torque (for every z, the sum of T e (z) and T i (z), the sleeve torque, being equal to the external torque T o ), c ϕ is the torsional stiffness of the joint, considered as constant whatever the value of z, and ϕ i (z) and ϕ e (z) are the twisting angles for the internal spline and external spline: where G i and G e are the shear modulus for the internal spline and external spline, I i and I e are the second moment of area for the internal spline and external spline.
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Equation (1) can be developed to obtain the distribution torque along the shaft or sleeve. Using the expression of the twisting angles, (1) gives:
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After simplification and resolution of this differential equation, the shaft distribution torque is obtained. It expression is gives at the equation (2).
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Equation (2) is governed by three parameters: torsional stiffness, shaft, and sleeve second moment of area. The accuracy of the results is highly dependent on the values given to these parameters. It is therefore important to assign the appropriate values to c ϕ , I e and I i .

A number of studies have been devoted to the evaluation of c ϕ . Analytical methods were developed by Hayashi I. and Hayashi T. [START_REF] Hayashi | Miniaturisation of involute splined couplings. Discussion from torsional stiffness and yield torque[END_REF] or Marmol et al. [START_REF] Marmol | Spline coupling induced nonsynchronous rotor vibrations[END_REF]. These methods are analysed in a recent work by Barrot et al. [START_REF] Barrot | Determining both radial pressure distribution and torsional teeth stiffness of involute spline coupling[END_REF]. However, it appears that they fail to take all phenomena that can be present in such a joint into account. In the study by Barrot et al., an algorithm was proposed to determine the torsional stiffness of involute spline couplings. This algorithm takes into account the pressure distribution on the teeth flanks, geometric properties and teeth distortion. In the preliminary study in the first stage of the design process, this method turned out to be difficult to apply.

Few articles address the determination of I e and I i for spline coupling. Tjenberg [START_REF] Tjernberg | Load distribution in the axial direction in a spline coupling[END_REF] and

Isakower [START_REF] Isakower | Don't guess on non-circular shafts[END_REF] propose two methods but do not evaluate the consequence of their choice.

Second moments of area remain difficult to determine, due to the behaviour of the spline coupling teeth.

The present paper firstly presents how the algorithm developed in Barrot et al. [START_REF] Barrot | Determining both radial pressure distribution and torsional teeth stiffness of involute spline coupling[END_REF] is used to construct a simplified method to calculate c ϕ .. Secondly, a process to calculate the shaft and sleeve second moment of area is detailed.

Torsional stiffness estimation, c ϕ ϕ ϕ ϕ

As with teeth gear stiffness determination, studied by example by Cornell [START_REF] Cornell | Compliance and stress sensitivity of spur gear teeth[END_REF], the spline geometry requires the shaft and sleeve teeth to be divided up into segments. Moreover, an analytical method, dedicated to determining torsional stiffness of standard involute spline couplings, was developed in a previous work [START_REF] Barrot | Determining both radial pressure distribution and torsional teeth stiffness of involute spline coupling[END_REF]. This method seeks to consider the interdependence between teeth distortions and pressure distribution in its calculations.

In the present paragraph, a simplified and quicker method is proposed. This can be used for involute spline couplings. Torsional teeth stiffness estimation commences by analysing its expression as follows:

' = ext g T c ϕ θ , (3) 
where, T' ext is the moment applied on the contact surface per unit width and θ g is the global rotation. Thanks to the algorithm developed [START_REF] Barrot | Determining both radial pressure distribution and torsional teeth stiffness of involute spline coupling[END_REF] 
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where θ b is the rotation due to bending of the teeth of both sleeve and shaft, θ s the rotation due to shear of the teeth of both sleeve and shaft, θ c the rotation due to compression at the contact, θ f the rotation due to teeth foundation rotation of the sleeve and the shaft. These rotations depend on a number of factors: contact pressure, teeth geometry, and material. θ sl is the rotation due to sliding between the internal and external spline teeth. This rotation depends on the same factors as the others but to be determined also requires knowledge of the internal and external diameters of the spline coupling. All these rotations are illustrated in Fig. 2. The dependence between rotations and the cited factors precludes describing global rotation using a single equation.

One solution is to consider global rotation as a sum of two entities. The first entity takes into account rotations that do not depend on the inside and outside diameters, while the second takes into account rotation due to sliding. This method can be used if certain basic assumptions are respected, with all sections being straight before and during distortion and only long spline couplings being used.

Rotations not dependent on inside and outside diameters

According to Barrot et al. [START_REF] Barrot | Determining both radial pressure distribution and torsional teeth stiffness of involute spline coupling[END_REF], rotation equations due to bending, shear, compression, and foundation rotation do not depend on the outside and inside diameter of the spline coupling. A simplified analytical equation to determine the sum of these four rotations, known as θ ws , has then to be determined:
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To describe a phenomenon, an equation can be used accounting for a set of parameters. Not all such parameters have the same weight in the final equation and may lead to unnecessary complexity. Identifying the most appropriate parameters is therefore essential in formulating the equation that fits.

-Search for relevant parameters An attempt will now be made to reduce the number of parameters.

The equations describing these rotations depend on the circular pitch, P, the number of spline coupling teeth, N and finally the material parameters G i and G e . To facilitate calculation, a modulus m, equal to P/π is applied.

The modulus and number of teeth parameters are linked by the pitch diameter, D. One way of reducing the number of parameters could be to replace m and N by D alone. This would be acceptable if two different involute spline couplings having the same pitch diameter also have identical values for θ ws rotations. A test is conducted for a first spline coupling where N=18, m=2.5mm and a further test where N=27, m=1.667mm leading to a common value for D = 45mm. The gap between the results is 34 per cent, precluding the D alone being considered in the equations.

The material parameters G i and G e can also be studied. A solution to reduce the number of parameters could involve introducing the ratio between these two parameters.

Thus, a test is conducted with the same spline coupling where the material couple is

G i /G e = 1
with steel-steel and aluminium-aluminium couples. A Gap of θ ws is obtained close to 200 per cent. This result attests to the impossibility of considering only the G i /G e ratio to describe the material parameters. According to American standardisation [START_REF]American standardization[END_REF][START_REF]Spline coupling (in inch)[END_REF] and the most conventional uses of involute spline couplings, this study proposes to establish the law of torsional stiffness for two material couples: steel-steel and brass-steel (brass for the sleeve). The work presented is available for the commonest modulus and number of teeth.

-

Search for influential parameters

Various parameters to calculate θ ws were identified. The next step was to highlight the most influential ones. To this purpose, an approach using experimental design was developed.

This method is commonly used and is explained through for example in the work by Goupy [START_REF] Goupy | Introduction aux plans d'expériences. Technique et ingénierie[END_REF] and by Brisset et al. study [START_REF] Brisset | Optimization with experimental design. An approach using Taguchi's Methodology and Finite Element simulations[END_REF].

This process comprises inputs known as factors and outputs known as responses. The factor values can be continuous or discrete. The plan for a two-level design uses +1 and -1 notation to denote respectively the "high level" and the "low level" for each factor. In searching for the θ ws equation, the proposed factors are m and N. The levels are defined as:

For the modulus, -1 = 1.25mm and +1 = 2.5mm.

For the number of teeth, -1 = 12 and 1 = 22.

Remark: this study is available for a steel-steel spline coupling.

This process requires four trials to be conducted with each factor set to high or low values as described in the matrix of Tab. 1 in the three first columns. The fourth column, m N, corresponds to the interaction between factors on the response, obtained by multiplying m level with N level for each trial.

Finally, the model for the experiment is:

E = Y X ,
where Y is the vector consisting of the four trial responses, E (E 0 , E 1 , E 2 , E 3 ), the unknown coefficients called factor effects, and X the vector consisting of the factors and interaction. E 0 correspond to the average of responses, while E 1 , E 2 and E 3 correspond respectively to the effect of the factors m and N and the interaction m N. For the E i effect of the i factor, the equation is:

4 i j j j 1 1 . 4 E x y = = ∑
with y j the response of the i factor of j trial, and x j the level of this factor for the trial.

The experimental design graph is shown in Fig. 3. Each effect of the factors or interaction is represented by a straight line, which can be expressed by the generic equation i 0

y E x E = + ,
with y the response, and x the level for the factor.

It appears that all factors and interactions give different response values for low and high levels. Thus all parameters can be considered to be influential in the equation for determination of rotation without sliding.

To find the simplified equation for θ ws , its variations according to m and N must be known. Using analytical results from Barrot's algorithm, the change in θ ws can be determined. The form of the analytical result of the rotation evolution suggests a polynomial form of the solution. Then θ ws can be:

θ ws = f(N 3 , N 2 , N, m 2 , m, m N).
Optimisation using the least squares method to reduce the gap between the analytical values and the sought equation gives the result shown in Fig. 4. A comparison between the analytical and optimised results highlights the difference between them. θ ws must be known with greater accuracy. It is therefore impossible to describe it using the first suggested equation. Another proposition is to establish an equation for each material couple and for each modulus. θ ws form is yet:

θ ws = f(N 3 , N 2 , N).
A new comparison between the θ ws simplified equation and the analytical result is shown in Fig. 5. This represents a case for m = 1.25mm and the steel-steel material couple.

This figure reveals good correlation between the results, and suggests that generalisation to the other modulus can be performed. Finally, equations for the most popular modulus and for two commonest material couples are summarised in Tab.2. The N interval is between 12 and 30. The last column represents the correlation between the analytical result and the proposed equation. Correlation is measured using the Pearson Product Moment Correlation. A correlation of +1 means that there is a perfect positive relationship between results. The good correlation results show that θ ws can be easily calculated by using the equation of Tab. 2.

Rotation depending on inside and outside diameters

The second part of global rotation is rotation due to sliding [START_REF] Barrot | Determining both radial pressure distribution and torsional teeth stiffness of involute spline coupling[END_REF]. Equations describing sliding depend on inside and outside diameters. The principal equations are recalled below:
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, R b is the base radius and F the force applied on the contact surface per unit width.

All parameters dependent on geometry or material except the force F, which depends on the tilted angle, α, shown in Fig. 6. To evaluate exactly F, a method, applied in Barrot [START_REF] Barrot | Determining both radial pressure distribution and torsional teeth stiffness of involute spline coupling[END_REF], takes into account the equilibrium law applied to the external spline on the shaft section centre. This equation establishes a link between F, T' ext , R b , N and the teeth distortion represented by the tilted angle α, as shows equation (4). c represents the half contact length of tooth and χ is Kolosov's constant and µ the modulus of rigidity. Calculation of the tilted angle requires the pressure distribution on teeth flank to be known, imposing an iterative calculus.

The difficulty in determining the tilted angle requires a simplified form of F to be established.

The suggested equation, where k F is a corrective coefficient that optimises the rotation due to sliding, is equation (5).
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Estimation of the coefficient k F requires determination of the validity domain. As in the previous paragraph, an experimental design is developed to highlight the different influential factors. The graphic representation is shown in Fig. 7.

The factors taken into account are the ratios for the outside diameter, D ext by the pitch diameter D, the inside diameter, D int by the pitch diameter, the modulus and the number of teeth. Experimental design is conducted for a steel-steel material couple. The levels are:

For D ext /D, -1 = 1.25 and +1 = 2.

For D int /D, -1 = 0 and +1 = 1.2.

For N, -1 = 16 and +1 = 28.

For m, -1 = 1.25mm and +1 = 2.5mm. Finally, a value of k F can be found for the various material couples. For the steel-steel couple, k F = 0.9879 and for the brass-steel couple, k F = 0.9898. These coefficients are available for range of N between 12 to 30 for a modulus from 1.25mm to 5mm. This factor increases the accuracy of the value of the θ sl of less than 2 per cent. It can be thus considered that for the presented cases k F can be removed.

Torsional stiffness validation

For each modulus, the simplified equations to estimate c ϕ are checked. A selection of comparisons between the torsional stiffness obtained by the analytical method from Barrot et al. [START_REF] Barrot | Determining both radial pressure distribution and torsional teeth stiffness of involute spline coupling[END_REF] and the simplified equations is shown in Tab. 3. It appeared to be of interest also to compare the simplified equation results with torsional stiffness calculated by the FE model.

The gap between the analytical method and simplified equations for the different tests is less than 5 per cent, being enough to consider that torsional stiffness is known with a good estimation. The developed equations are available for long spline couplings, where the sleeve material can be steel or brass and the shaft material is steel. This model is valid for the considered domain, where N can vary between 12 and 30 and m between 1.25mm and 5mm.

Shaft and sleeve second moment of area determination I e , I i

According to the literature, various solutions exist to determine second moments of area of internal and external spline. During this study, various calculations of I e and I i are proposed. To determine the most appropriate one, torque distribution along the spline coupling was analysed. This distribution is obtained thanks to the Tatur and Vygonnyi differential equation (2) solution and Finite Element model results. The value for torsional stiffness used was obtained by applying the simplified equations presented in the first section of the present article.

Different calculation possibilities

Four determinations were checked as illustrated in Fig. 8.

Second moment of area calculated with the part bodies (Fig. 8a)

The ends of the two parts are the outside limits D ext and D int and the teeth are ignored.

The other limits are the teeth foundations, D re and D ri . Finally, shaft and sleeve second moments of area equations are respectively:

( ) 32
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This Tjenberg [START_REF] Tjernberg | Load distribution in the axial direction in a spline coupling[END_REF] method is used to apply equation (1). In Isakower [START_REF] Isakower | Don't guess on non-circular shafts[END_REF], the final second moments of area are obtained with an increase in 10 per cent in this value.

Second moments of area calculated with the teeth end diameters (Fig. 8b)

As previously, external limits are identical, and the other diameters are the major diameters. Shaft and sleeve second moment of area equations are respectively:

( ) 32
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)
Second moments of area are calculated with the pitch diameter (Fig. 8c)

When influence of the teeth is taken into account with the pitch diameter the equations for shaft and sleeve second moments of area are respectively:

( ) 

Second moments of area calculated with influence of teeth shearing (Fig. 8d)

Second moments of area can be divided into two parts: the body and the teeth. The second moment of area of the two parts is the sum of the individual second moments of area.

For the external spline, the second moment of area of the body is calculated at the centre of the spline section:

( ) ( )
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where S i is the sleeve shear surface in a section plane.

Method for determination of spline coupling second moments of area

In order to select the best method of second moment of area evaluation, a reference has to be chosen. The 3D FE method is used for this. Indeed, various research works as with Three dimensional finite element models using ABAQUS have been developed for different spline couplings. The meshing used to model the two parts making up the coupling, the shaft and sleeve are shown in Fig. 9 and is composed by 26000 solid linear brick elements and 30000 nodes. The boundary conditions are defined as follows. The contact is specified on the teeth flanks (with no friction). This condition imposes a non linear resolution. The nodes of a sleeve's extremity are locked but radial expansion is allowed, as the figure illustrates with the small arrows. Nodes of the opposite shaft end can't move in the axial direction and a torque is applied to the same shaft surface. The loading is introduced by forces on nodes of the shaft surface, in order to introduce a linear shear stress on the section. Cyclic symmetry conditions are used on the two lateral surfaces to simulate behaviour of the complete spline coupling.

Comparison is made between the axial torque distribution according to FE models and the analytical model with different second moments of area calculation. The test is performed for four different involute spline couplings as described in Tab. 4 and the results are shown in Fig. 10. The torque transfer between the internal and external spline is located in particular at the ends of spline coupling. Indeed, it has been established for the load configuration shown in Fig. 9 that the pressure peaks are at the extremities [START_REF] Barrot | An assistance tool for spline coupling design[END_REF][START_REF] Tjernberg | Load distribution in the axial direction in a spline coupling[END_REF][START_REF] Volfson | Stress sources and critical stress combinations for splined shaft[END_REF]. If the gap between torque distribution result of FE and analytic models decreases, accuracy of knowledge on maximum pressure will be enhanced.

In accordance with the results shown in Fig. 10, the best calculation is that which takes shear teeth influence into account.

In calculation of the second moments of area, the error computed can be due to the influence of the teeth. This influence is less significant for the sleeve second moment of area than for the shaft. This explains why it is necessary to determine whether an optimisation of the shaft second moment of area can increase accuracy of the torque distribution result. In the next study, the new second moments of area considered are I i = I i s and I e = β I e s .

Moreover, thanks to this optimisation, and if the influence of the external diameter of the spline coupling is taken into account, the errors in the basic hypotheses of equation (1) can also diminish the end-contact effect, which can be neglected.

An experimental design is developed to estimate the influence of N, m and D ext /D on a population of spline couplings. For every spline couplings, the ratio D ext /D allows the same skin thickness above the sleeve teeth to be checked. An experimental design with 3 factors and 2 levels, corresponding to 9 tests, is conducted. The different levels are as follows:

For N -1 = 14 and +1 = 30

For m -1 = 1.25mm and +1 = 5mm

For D ext /D -1=1.25 and +1=2

The responses β 0 are obtained with minimisation of the gap between analytical and FE torque distribution using the least squares method.

Fig. 11 stresses the influence of factors and interactions taken into account in the experimental design. This graph shows that only the interaction of a high order appears not to be influential, i.e. having a value that has little effect on the response.

To determine the equation for the corrective coefficient β, a linear form is proposed. This is a function of the previous factors and interactions. To find the effect values of these parameters, the least squares method is used. It is important to note that to increase the The following equation is found: 

D m N D D D m N m N D D β - - - - - - = × + × + × - × + × - × (10) 
To estimate the accuracy of (10), a comparison between β and β 0 is highlighted in Tab. 5, which presents the gap, Gap β in per cent, corresponding to:

0 0 100 Gap β β β β - =
The average result is about 6%.

To evaluate the influence of the corrective coefficient, a calculation of the σ ratio between the model before and after correction is made. σ values are shown in the last column. This ratio is the division of the sum of the least squares fit between the analytical equation and The ratio represents the gain due to β. Tab. 5 reveals that β allows the accuracy of almost all torque distributions to be improved by a factor of two on average.

Second moment of area calculation validation

The utility of the corrective coefficient on the shaft second moment of area determination was highlighted in the previous paragraph. It is important to validate equation (10) on other spline couplings that are not used to determine this equation. Tests are conducted for four involute spline couplings, described in Tab. 6. It is possible to calculate the gap between the FE results and the analytical results with and without β. Taking the FE as reference, Fig. 12 illustrates these gaps along z-axis. According to Tab. 6 and Fig. 12, introducing β to calculate I e increases torque distribution accuracy on all the studied spline couplings.

Conclusion

Thanks to Tatur, there is an equation to estimate torque distribution along the spline coupling. This equation requires knowledge of torsional stiffness and shaft and sleeve second moments of area. In a previous study, a complex algorithm to determine the torsional stiffness of involute spline couplings was performed. In this paper simplified equations are proposed that are easily and rapidly used.

To determine the most appropriate equations, experimental designs are analysed.

Torsional stiffness is the result of rotations due to various distortion phenomena such as bending, shear, compression, rotation of teeth foundation and sliding of the teeth. These rotations are divided into two parts. The first takes into account the four first phenomena and the second addresses the issue of sliding. Two simplified equations are finally expressed to define stiffness. In this study two couples of materials are considered: steel -steel and brasssteel. The influential factors are highlighted through various experimental designs, and the equations are developed using the least squares method. A comparison with the simplified method and the complex algorithm underlines the good estimation of torsional stiffness.

This paper analyses several analytical solutions to describe these parameters, and reveals that the second moments of area have considerable influence on distribution. One particular solution that takes the teeth shear into account, is proposed as being the most effective. To increase accuracy, a β coefficient was added and its analytical detailed. The said coefficient is capable of enhancing accuracy of torque distribution analysis three-fold. 
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  tooth second moment of area, at the tooth's centre of gravity is negligible. This moment, at the centre of the shaft section can be determined from the Huygens theorem: S e is the shaft shear surface in a section plane. Finally, for a spline coupling the equations are:

  precision of the β equation, 27 tests are performed. In fact a new level is added: N = 22, m = 2.5mm, D ext /D = 1.625.

FE

  model results and sum of the least squares fit between the analytical equation and FE model results.

  Where, T e is the shaft torque value of the analytical equation, e FE T is the torque value of the FE model and e T β is the torque value of the analytical equation, with the optimised shaft second moment of area.
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  Barrot et al., Leen et al., Limmer et al., Sum et al., [2, 16-19] have shown that FE simulation and experimental studies give similar results.

  Gap between the optimised and calculated corrective coefficient and the influence of this coefficient on torque distribution Second moment of area calculation validation for four different spline couplings

	Tables Designations	Modulus	Number of teeth	Outside diameter	Inside diameter
	Number of the experiment Trial 1 Trial 2 Trial 3 Trial 4 Tab. 1 Analysis matrix for the rotation without sliding rotation m N m N θ ws [rad] -1 -1 +1 2.03×10 -5 +1 -1 -1 5.08×10 -6 -1 +1 -1 5.80×10 -6 +1 +1 +1 1.46×10 -6 Modulus Material Sleeve Material Shaft Equations 1.25 Steel Steel -9 3 -7 2 -5 ws = -5.963 10 N +4.468 10 N -1.229 10 N +1.101 10 θ × × × × Brass Steel -9 3 -7 2 -5 -4 ws =-8.424 10 N + 6.621 10 N -1.743 10 N + 1.566 10 θ × × × × 1.667 Steel Steel -9 3 -7 2 -6 -5 -4 ws = -4.095 10 N + 3.070 10 N -7.723 10 N + 6.657 10 θ × × × × Brass Steel -9 3 -7 2 -5 -5 ws = -5.441 10 N + 4.093 10 N -1.039 10 N + 9.085 10 θ × × × × 2.5 Steel Steel -9 3 -7 2 -6 -4 ws = -1.825 10 N + 1.362 10 N -3.417 10 N + 2.944 10 θ × × × × Brass Steel -9 3 -7 2 -6 -5 ws = -2.265 10 N + 1.738 10 N -4.482 10 N + 3.966 10 θ × × × × 5 Steel Steel -10 3 -8 2 -7 -6 ws = -2.314 10 N + 1.862 10 N -5.105 10 N + 4.875 10 θ × × × × Brass Steel -10 3 -8 2 -7 -6 ws = -3.318 10 N + 2.674 10 N -7.343 10 N + 7.025 10 θ × × × × Tab. 2 Equations of rotation without sliding for each couple (modulus, materials) R² 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 Modulus [mm] 1.25 1.667 2.5 5 Number of teeth 20 25 24 30 Outside diameter [mm] 37.5 60 90 250 Materiel Couple Steel-steel Brass-steel Steel-steel Brass-steel Torsional stiffness obtained by the analytical method from Barrot[9] ×10 6 [N/rad] 90.1 150 561 2590 Torsional stiffness obtained by the FE method ×10 6 [N/rad] 87.6 152 552 2555 Torsional stiffness obtained by the simplified equations ×10 6 [N/rad] 94.0 153 542 2550 Gap between FE model and simplified equations [%] +7.3 +0.65 -1.81 -0.19 Gap between analytical method and simplified equations [%] +4.30 1.85 -3.43 -1.49 m N D ext D int A 1.25 22 34.4 10 B 1.66 27 55 30 C 2.5 18 70 15 D 5 30 188 20 Tab. 4 Spline coupling designation for second moment of area calculus research m [mm] N D ext /D β 0 β Gap β [%] σ 1.25 14 1.25 0.89 0.76 14.33 1.95 1.25 14 1.625 0.82 0.86 4.60 9.91 1.25 14 2 0.88 0.96 8.70 2.84 1.25 22 1.625 0.98 1.00 1.88 1.01 1.25 22 2 1.11 1.08 2.02 1.99 1.25 22 1.25 1.03 0.91 11.39 1.36 1.25 30 2 1.15 1.21 4.78 1.80 1.25 30 1.25 0.97 1.06 8.82 1.13 1.25 30 1.625 1.01 1.13 11.59 1.01 2.5 14 1.25 0.91 0.82 9.31 1.99 2.5 14 1.625 0.85 0.92 9.11 5.69 2.5 14 2 0.92 1.03 11.88 1.77 2.5 22 2 1.09 1.12 2.41 1.10 2.5 22 1.25 0.96 0.94 1.99 1.40 2.5 22 1.625 0.97 1.03 6.16 1.42 2.5 30 1.25 0.99 1.05 6.70 1.05 2.5 30 1.625 1.10 1.13 3.35 1.38 2.5 30 2 1.33 1.21 9.16 2.35 5 14 1.25 0.94 0.94 0.86 4.60 5 14 1.625 0.99 1.05 5.75 1.00 5 14 2 1.18 1.16 1.98 2.52 5 22 1.25 0.96 1.00 3.44 1.26 5 22 1.625 1.07 1.09 2.49 1.19 5 22 2 1.27 1.19 6.20 3.27 5 30 1.25 0.99 1.05 5.88 1.02 5 30 1.625 1.06 1.13 6.78 1.18 5 30 2 1.26 1.22 3.42 3.00 coupling m [mm] N D ext /D I e s [mm 4 ] β I e [mm 4 ] σ A 1.25 18 1.56 2.40×10 4 0.923 2.14×10 4 3.57 B 1.667 20 1.49 1.19×10 5 0.927 1.11×10 5 3.45 C 1.667 27 1.22 3.20×10 5 0.998 3.19×10 5 2.17 D 5 18 1.66 63.3×10 5 1.08 68.3×10 5 1.12 Tab. 5 Spline Tab. 6
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