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Abstract—Collaboration graphs are relevant sources of information to
understand behavioural tendencies of groups of individuals. The study
of these graphs enables figuring out factors that may affect the effi-
ciency and the sustainability of cooperative work. For example, such a
collaboration involves researchers who develop relationships with their
external counterparts to address scientific challenges. As relations and
projects change over time, the evolution of social structures must be
tackled. We propose a statistical approach considering different struc-
tural collaboration patterns and captures the dynamic of the relational
structures over the years. Our approach combines spatial processes
modelling and Exponential Random Graph Models used to analyse
social processes. Since the normalising constant involved in classical
Markov Chain Monte Carlo (MCMC) approaches is intractable, the
inference remains challenging. To overcome this issue, we propose a
Bayesian tool that relies on the recent ABC Shadow algorithm. The
method is illustrated on real data sets from an open archive of scholarly
documents. Through a simple formalism, our approach highlights the
interactions between the different types of social relations at stake in the
collaboration network.

1 INTRODUCTION

Networks are widely studied mathematical objects [1],
[2]. They describe molecular interactions, relationships be-
tween individuals in a social application, collaboration links
among organisations, etc.

For example, when different organisations collaborate to
produce new scientific results, a part of these results are
presented through scientific papers. The publication process
induces a network describing interactions among the organ-
isations involved in this process. The network is made of
the co-authorship relation of researchers belonging to the
different organisations. This representation of collaboration
among scientists has already been deeply investigated [3]–
[5]. Most of the previous work in the state of the art had
a global approach considering communities of researchers.
They highlighted some properties related to small-world
model and preferential attachment mechanisms. The co-
authoring graph is used here for a slightly different purpose.
Our work focuses on more structural aspects of the co-
authoring graph. The approach we present, aims to charac-
terise the occurrence of relational links among researchers.

The data set serving as a paradigm here is the set of
scientific publications produced by LORIA1, over the three
years : 2017, 2018 and 2019. The laboratory is organised in 28
scientific teams. The data was gathered from the open pub-
lication archive HAL (https://data.archives-ouvertes.fr). We
collected all the publications submitted in the period 2017-
2019 with at least one author member of LORIA. The co-
authorship networks of each year are represented by a graph
structure. The network captured for the year 2018 is shown
in Figure 1 as the main picture. Thumbnails of the three co-
authorship networks (one for each year) are represented on
the right-hand side. The nodes of the graph are researchers.
An edge of the graph represents the link between two
researchers who collaborated in 2018. Nodes are coloured
according to researchers affiliation. LORIA members are
coloured in yellow. All the other institutions have their own
dedicated colour. The graph representing collaborations in
2018 is composed of 616 collaborators (nodes). The number
of nodes for the graphs in 2017 and 2019 are 731 and 1090
respectively.

Several connected components are visible among the
three networks. This tends to reflect the team oriented
activity developed by the Lab. Looking at a single connected
component or at a single research team raises several ques-
tions:

• What determines the occurrence of a collaboration
link? The link between two researchers is not a
random connection phenomenon in a social network.
The resulting graph components may look more
“clustered” or more “repulsive” than in a purely
random network.

• How cooperation relation between individuals can
be characterised? Inside a research team, people co-
operate with members of the same team or from
other institutes. Some of the researchers are able to
maintain both types of cooperation. We call them
“hubs”.

1. The equivalents in French for “Lorraine Research Laboratory in
Computer Science and its Applications” https://www.loria.fr

https://data.archives-ouvertes.fr
https://www.loria.fr
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• How to characterise the cooperative patterns of a
research team over time? The structure and the type
of interactions, the presence of hubs evolve as the
projects and the stakeholders change over time.

The aim of this paper is to propose a “morpho-statistical”
methodology approach for network description that will
answer these questions. We propose a model which captures
the morphological aspects of the observed graph. Each
parameter of the model gives a concrete meaning related to
the strength of relational links among collaborators from dif-
ferent organisations. The underlying motivation is to study
how researchers from different labs interact in their own lab
and with the outside. The evolution of the parameters fitting
observations for different years illustrates the dynamic of
the structure encompass by the model. The stochastic model
we propose is inspired by Exponential Random Graph
Models (ERGMs) and Markov random graph modelling.
Difficulties related to the estimation of such model, leads
us to adopt a Bayesian inference strategy based on Monte-
Carlo simulations.

Bayesian inference allows us to sample the posterior
distribution of parmeters which represents the distribution
of models that can explain the observation. This is a com-
plementary statistical analysis tool to the classical maximum
likelihood methods. The proposed approach allows statistics
computations and tests for each parameter, while including
the prior knowledge available for them.

The structure of the paper is as follows. Section 2
presents the modelling of the network as a line graph,
obtained by transforming the nodes of the initial graph into
edges, and the previous edges into nodes. Our application
considers the network as a graph with edges given by the
researchers and the nodes given by the co-authorship link.
This underscores the collaboration over the people.

Networks seen as labelled graphs are complex systems.
The different labels illustrate the diversity of relational ties,
but they induce an extremely high number of configura-
tions. Stochastic modelling allows us to deal with this situ-
ation. The approach we propose considers an appropriate
version of Exponential Random Graph Models (ERGMs)
to represent collaborations initiated by a community of
researchers.

The model presented in Section 2.3.1 is inspired by Potts
or Ising like models. The model distribution exhibits a
normalising constant that is intractable. Therefore, we use
Monte Carlo methods to perform statistical inference. We
provide at the end of Section 2 a presentation of the simu-
lation algorithms: the Metropolis-Hastings (MH) dynamics
and the Gibbs sampler. Next, in Section 3, we describe the
ABC Shadow algorithm [6] used to build posterior-based
inference. Section 4 demonstrates the relevance of ABC
Shadow on simulated data.

The remainder of the paper (Section 5) is dedicated to
the practical application based on real data analysis. The
case study handles the structures of scientific collaborations
of research teams from the LORIA laboratory. We consider
three years of publication (2017, 2018 and 2019) as they can
illustrate the evolution of collaborations over the years. The
ABC Shadow algorithm is applied to this dataset providing
the whole a posteriori distribution of the model. Thereafter,

the output results are used to perform parameter estimation,
statistical tests and classification procedures, in order to
analyse and characterise the collaboration patterns within
this institution. We propose here an approach based on a
fixed time step to study the dynamic of the collaboration
structures over the years. The posterior distributions of
each year are put together so as to assess the evolution of
structural features controlled by the model.

Finally, in Section 6, conclusions and perspectives are
depicted. Source code, notebooks and instructions used for
this paper are provided in a GIT repository https://github.
com/quentinl-c/ABCShadow article assets.

2 MODELLING SOCIAL NETWORKS

Graphs have been used to model social networks in soci-
ology [7], [8]. We propose to understand intra and inter
relation between organisations based on participant collab-
oration network.

2.1 Related work
The study of interactions between groups of individuals
requires adapted modelling. For instance,it must encode
group affiliation information. We can represent these intra
and inter-group links with several hierarchically organised
networks also called multi-level networks [9], [10]. Each
level represents an observation of the social structure at a
different scale. Let us take the case of a company that is
structured in departments [11]. The lowest level represents
the interactions between the employees of the company. The
top level shows the links between the different departments.
Finally, an intermediate level represents the affiliation of
individuals in the different departments. This kind of repre-
sentation is suitable for the study of nested social structures,
but it is very complex as a variety of interactions within and
between these different layers are at stake.

Another approach is to take into account higher order
interactions [12]. Instead of representing social structures
only by pairwise interactions, we can consider interactions
between more complex structures (groups of people e.g.).
These kinds of representations involves multi-dimensional
mathematical objects such as hypergraphs [13] or simplicial
complexes [14]. These higher order interactions bring us
closer to the complexity of the observed world. However,
they do not allow us to intuit the individual and his or her
direct contribution to the topology of collaborative links.

From the collaboration graph illustrated by Figure 1, we
will associate a more relevant one, considering the relation
as the object of primary interest taking into account that
collaboration links can be internal or external. This is what
we explain in the next subsection.

2.2 Network representation through line graphs
Usually, social structure studies are conducted on graphs
whose vertices are individuals and links represent social
ties, as in Figure 1. Here we use a representation relying on
the dual graph of the network, the so-called line graph. This
graph is obtained from the initial graph by transforming
edges into nodes, and nodes into edges, as in [15]. This prin-
ciple is illustrated in Figures 2a and 2b. The first example in

https://github.com/quentinl-c/ABCShadow_article_assets
https://github.com/quentinl-c/ABCShadow_article_assets
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20182019 2017

Fig. 1. Collaborations among researchers within the LORIA laboratory during the period 2017-2019 – The main network represents the co-
authorship graph in 2018. Each node of the graph represents a researcher, the edges are collaboration links and nodes’ colour represent the
affiliation to a laboratory. For example, all LORIA members are coloured in yellow, while the members of the other labs are differently coloured. We
observe highly connected nodes and patterns that evolve over the years. How to quantify this evolution?

Figure 2a shows the dual transformation of a graph towards
its dual. The second example shows that the dual graph is
not necessarily a complete graph. The line graph provides a
representation of the network that emphasises relationships
over people and allows us to reason on these relationships
and the structure they propose.

Throughout this paper, we assess the extent to which
inter and intra-organisational links occur. In the example
presented in Figure 2a, A and B represent researchers work-
ing in the organisation of interest -in our case LORIA- while
C and D are researchers working at other institutes. The
augmented line graph in Figure 2c describes the structure
of the type of interactions as follows. The green node is
an intra-organisational relation, the orange ones are inter-
organisational relations, while the grey ones represent a nil
relation. This last type of relation represents two researchers
potentially connected that do not work together at all.

2.3 Markov Random Fields on graphs.
The example of Figure 2c illustrates our two main questions.
The first one is the morpho-statistical description of different
interactions in a social network. The second one is the
description of the labelling distribution of the nodes in a
graph. To each vertex of the line graph is associated a label,
depending on the kind of link of the corresponding edge of
the social graph nil, intra organisational, inter organisational.

The uncertain and dynamic nature of the individuals’
behaviour recommends stochastic modelling of social inter-
actions [16]. Within this context we propose a random graph
model whose parameters provide a meaningful description
of the social network of interest. Markov Random Fields
(MRFs) provide a framework to deal with this type of prob-
lems [17]–[19]. They are also known in literature related to
social networks modelling under the name of ERGMs [20],
[21].

The graph illustrated by the the Figure2c can be more
formally defined as a MRF. Let G be the considered

A

C B

D

(A,C) (A,B)

(B,C)

(B,D)

(a) Collaboration graph

A

C B

D

yac yab

ybc

ybd

(b) The corresponding line graph

yac

yab

yad

ycd

ybc ybd

(c) Augmented line graph representation
taking nil edges into account

Fig. 2. An example of collaboration graph and its line graph repre-
sentation . In the collaboration graph (Figure 2a), the nodes represent
individuals and coloured according to the affiliation : organisation 1 ,
organisation 2 and organisation 3 . In the line graph (Figures 2b
and 2c), the nodes represent the relations (i.e. links in the collaboration
graph) and are coloured according to which type the relation is : intra-
organisational or inter-organisational

line graph, with V = {1, . . . , n} the vertices index set,
E = {eij |i ∼ j,∀i, j ∈ V} the set of its edges and
L = {(`1, · · · , `m} the set of possible labels. The structure
of L was chosen discrete for the sake of the simplicity and
for the purpose on the application on hand. Its description
using more general measurable spaces is perfectly possible.
Following [17], a random field Y is associated with G, via
the labels in a phase space that we denote L that have
been attached to each vertex. A realisation of the random
field Y is denoted by y. The set LV of all possible label
configurations is denoted Ω and called the state space.
Note that the nodes of the graph in Figure 2c are labelled
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to underline their correspondence with the edges of the
original graph (Figure 2a). In the following, since we only
consider the line graph and for the sake of clarity, nodes will
be labelled yi where i ∈ V .

In Section 2.3.1, general notions on MRFs applied to
social network analysis are given. The related simulation
and inference procedure are given in Section 2.4.1. For a
thorough and rigorous presentation of MRFs we recom-
mend and the references within [19].

2.3.1 Markov Random Fields models and social network
analysis
The MRFs were applied for social networks analysis by [15],
[20], [21]. This class of models enables us to take into account
dependencies between vertices assuming local interactions
associated with the graph nodes.

In order to specify a MRF we need a neighbourhood
relation. Here, two vertices i and j are neighbours, i ∼ j,
if there is a direct edge linking them. Following [17], the
probability function of a MRF Y is described by a Gibbs
distribution of the form:

p(Y = y|θ) =
exp(U(y|θ))

κ(θ)
=

exp(〈θ, t(y)〉)
κ(θ)

, (1)

where:

• θ ∈ Θ ⊆ Rd is the vector of d model parameters
associated with the vector of sufficient statistics t(y).

• U(·|·) is the energy function
• κ(θ) the normalising constant.

The difficulty with this class of model is that κ(θ), the
normalising constant is intractable. This requires special
procedures for simulation and inference. Still, their ad-
vantage is that through local specifications they allow the
modelling of complex systems.

2.3.2 A Potts-like model for characterising interactions on
social networks
For the problem in hand, the aim is to characterise inter-
actions between researchers. Let us consider the following
MRF model:

p(Y = y|θ) =
1

κ(θ)
exp

[
θ11

∑
i∼j

1{yi = 1, yj = 1}

+ θ12

∑
i∼j

1{yi = 1, yj = 2}

+ θ22

∑
i∼j

1{yi = 2, yj = 2}
]
.

(2)

where y is the realisation of the graph representation given
by the labels {0, 1, 2} (which means that m = 3) associated
with each node. They correspond respectively to nil, intra-
organisational and inter-organisational links. The sufficient
statistics vector is given by

t(y) =[ t11(y), t12(y), t22(y) ]

=
[∑
i∼j

1{yi = 1, yj = 1},∑
i∼j

1{yi = 1, yj = 2},

∑
i∼j

1{yi = 2, yj = 2}
]
.

(3)

The condition in 1{y1 = 1, yj = 1} is verified whenever
a researcher cooperates with two members of his team. It
means that the statistic t11 indicates how the researchers
interact within their own team. The condition 1{yi = 1, yj =
2} is checked whenever a researcher cooperates with a
member of his own team and a member of a different team.
The statistic t12 indicates how the researchers exhibit a hub
behaviour, since they interact with both kinds of teams, their
own and different ones. Finally, 1{yi = 2, yj = 2} is checked
whenever a researcher cooperates with two members not
belonging to his own team. Then, the statistic t22 indicates
how the researchers interact with other teams. To sum up,
the vector θ = [θ11, θ12, θ22] controls the “weight” of the
previous statistics. If θij > 0 then the model tends to favour
configurations with a high value for the statistic tij .

This model colours the line graph associated with a
network in a similar manner as the Potts model does it. If
important patches of (1, 1) appear this means that there is
an important tendency that the researchers on the network
cooperate within their teams. Similar interpretation can be
given, for the patches (1, 2) and (2, 2). The weight, the
importance of these patches, hence of the general behaviour
of the members of the network is given by the model
parameters.

2.4 Simulation and inference procedures.

In this section, we review the state-of-art of inference of ran-
dom graphs, briefly beginning with simulation procedures,
since it is a key part of the inference process presented in
Section 2.4.1.

The presence of κ(θ) in (2) imposes special strategies
for the sampling of the model, Markov chains Monte Carlo
methods. The best known sampling algorithms are the MH
and the Gibbs sampler. In this paper, the data structure
and the model construction made us opt for the Gibbs
sampler [22], [23].

2.4.1 Inference procedures

Parameter estimation of MRFs (2) is not trivial due to the
presence of an intractable normalising constant:

κ(θ) =
∑
y∈Ω

exp(〈θ, t(y)〉).

where · represents the scalar product between the parame-
ters and sufficient vector, respectively.

The frequentist approach to dealing with the presence
of an intractable likelihood normalising constant is to use
Monte Carlo Maximum Likelihood estimation [24]–[26]. Let
yobs be an observed graph and let us consider θ0 a given
parameter value. The log-likelihood function can be written
as:

lθ0(θ) = 〈(θ − θ0), t(yobs)〉 − log
[
κ(θ)

κ(θ0)

]
. (4)

[25], [27] and [28] show that the ratio of the normalising
constants is

κ(θ)

κ(θ0)
= Eθ0 exp(〈(θ − θ0), t(Y )〉). (5)
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In practice, estimation of (4) is achieved by gathering a
sample of random graphs y′1 . . . y

′
n ∼ f(·|θ0) via forward

simulation [29], yielding the approximation :

κ(θ)

κ(θ0)
≈ 1

n

n−1∑
i=0

exp(〈(θ − θ0), t(yi)〉) (6)

where the {yi}0≤i<n are realisations of {Yi}0≤i<n i.i.d.
sampled from p(y|θ0).

The simulated chain exhibits convergence properties (ir-
reducibility, recurrence, ergodicity) [30]–[33] In fact (6) is
plugged into (4) and the Monte Carlo likelihood is obtained

ln,θ0(θ) =〈(θ − θ0), t(yobs)〉

− log
[

1

n

n−1∑
i=0

exp(〈(θ − θ0), t(yi)〉)
]
.

(7)

For the exponential family models, the log-likelihood is
concave [25], [27]. This motivates to compute the gradient
and the Hessian of (7). The approximated gradient and
Hessian can be easily computed via importance sampling.
These quantities are consistent estimators of their exact
counterparts, respectively, that are computed from the orig-
inal log-likelihood. Finally, using these quantities a Monte
Carlo Newton Raphson (MCNR) local optimisation method
can be implemented.

This method exhibits convergence results and two
asymptotics explaining the estimation error can be com-
puted. The first error is the Monte Carlo Standard Error
may be interpreted as the difference between the true model
parameters and the Maximum Likelihood Estimate, that
are both unknown. The second error is the Monte Carlo
Maximum Likelihood Error that approximates the differ-
ence between the Maximum Likelihood Estimate (which
is unknown) and the Monte Carlo Maximum Likelihood
Estimate, the result given by the MCNR method.

The drawback of the MCNR method is that it requires θ0

to be close to the final estimate. This is due to the fact that the
computation of the importance sampling weights needed
in the evaluation of the gradient and the Hessian are not
stable from a numerical point of view. Several strategies are
available. Among them, the most robust is to resample the
model p(y|θ) whenever the difference between the current
value of the parameters and θ0 exceeds a given threshold.
Due to the concavity of the log-likelihood function, this
strategy leads towards a convergent method but with a
high computational cost. This question is still an open
problem [24], [25], [34].

Markov models can suffer from degeneracy problems.
This is a complex issue, especially for multidimensional
models. [26] gave a strategy to plot the support of the field
of sufficient statistics. The calculation of the asymptotic pre-
sented in Sections 4 and 5 are indicators of the convergence
of the inference algorithm.

3 POSTERIOR-BASED INFERENCE

According to Bayes’s theorem, with p(θ) the prior knowl-
edge on parameter distribution, the posterior distribution
p(θ|y) is:

p(θ|y) ∝ p(y|θ) · p(θ) =
exp〈t(y), θ〉

κ(θ)
p(θ). (8)

The difference between maximum likelihood that we
described in Section 2.4.1 and posterior inference is the
following. In the first case, under the assumption of a
parametric model and with no prior knowledge regarding
these parameters, the most probable model is proposed as
an explanation of the observed data. The posterior-based
inference also assumes a parametric model and it uses prior
knowledge with respect to these parameters. But any model
belonging to the family may explain the data. The quality
of this explanation is given by the posterior distribution
that weights each model within the considered parametric
family. Posterior-based inference is much more informative.
It can also be seen as a generalisation of the maximum
likelihood approach. Whenever p(θ) is the uniform distri-
bution of the parameter space Θ, both the Bayesian and the
frequentist approach are strictly equivalent.

Despite the interest in performing posterior-based infer-
ence, this is not done often, since sampling the posterior or
the likelihood is far from being a trivial task. A straightfor-
ward application of Monte Carlo sampling strategies such
as MH or Gibbs dynamics requires the computation of the
normalising constants ratio (5).

The authors in [35] give a very elegant solution to this
problem. They propose a MH dynamics based on auxiliary
variables. The use of the auxiliary variables requires appro-
priate proposal distributions. The proposal distributions can
be tailored to cancel the computation of the normalising
constants within the acceptance ratio of the MH algorithm.
The authors indicate themselves that their rigorous math-
ematical solution cannot prevent the resulting chain from
poor mixing.

The work presented in [36] propose the Exchange Algo-
rithm, which implements a strategy similar to the auxiliary
variable solution of [35]. Essentially, this algorithm uses a
swap mechanism among the variables of the distribution
of interest. The resulting algorithm is also a Metropolis-
Hastings dynamics which samples from the augmented
distribution: p(θ′, x, θ|y). The exchange algorithm conver-
gence requires exact simulation for the auxiliary variable
and it depends of the choice of the proposal distribution. An
implementation of this algorithm dedicated to the ERGMs
is proposed by [37].

Approximate Bayesian Computation (ABC) algorithms
are methods used to approximately sample from the poste-
rior distributions of the models that are intractable. They are
easy to implement, but the control of the algorithm is done
on a rather heuristic base. Among, the pointed drawbacks
regarding these methods, one indicates the choices of the
distance between the observed statistics and the outputs
of the algorithm statistics, the selection of these statistics
and the setup of the control error threshold [38]–[41]. Still in
many situations these choices may be considered rather nat-
ural, especially whenever sufficient statistics are available.

The ABC Shadow method proposed by [6] is directly
inspired by the previous ideas, auxiliary variable based
simulation and approximate sampling, while trying to solve
some of their mentioned drawbacks. The ABC Shadow is
an approximate sampling method for posterior distribution,
exhibiting better numerical properties than the auxiliary
variable method and offering a more robust control than
the ABC classical framework. Recent work [42] builds a
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simulated convergent annealing process based on a ABC
Shadow dynamics.

The ABC Shadow algorithm is presented in Algorithm 1.
For all the technical details and mathematical proofs the
reader has to refer to [6]. The method is general in the
sense that it can be applied to sample posterior distribu-
tions, assuming only their continuous differentiability with
respect to the model parameters. The algorithm needs for
initialisation the observed graph yobs, the initial value θ0 of
θ, ∆ an error control parameter and m the number of steps
the algorithm runs. The ∆ parameter supports the proposal
distribution whose form is given line 4 of Algorithm 1. All
theoretical details about the construction of the proposal can
be found in [6]. First the algorithm samples an auxiliary
graph x according to the chosen model. Then for each step
in the loop it proposes a new parameter value θ′ that is
accepted with the probability α (see line 7 of Algorithm 1).
If this new state is not accepted, the algorithm remains
in its previous state. The distribution of the output of the
algorithm follows approximately p(θ|yobs) with an error
limits controlled by m and ∆. The value of ∆ has to be
tuned in a fine way, since there is an acceptable compromise
to reach between quality of approximation and good mixing
properties of the chain. If the number of steps m is too
large, the algorithm goes away from the posterior of interest
whereas if m is too small the mixing property is negatively
impacted. Hence, a reasonable value for these two param-
eters is needed. In [6] is proved that for any fixed value m
there exists a positive value ∆ so that the outputs of the
ABC Shadow algorithm are distributed as close as desired
from the posterior distribution of interest. If more than one
sample from the posterior is needed, this can be obtained by
iterating the ABC Shadow algorithm (Algorithm 1).

Algorithm 1 ABC Shadow algorithm
1: function ABC SHADOW(θ0, yobs, m, ∆)
. Where θ0 - initial parameters, yobs - observation

2: x ∼ p(x|θ0) . Choose an auxiliary variable
3: for i = 1 to m do
4: θ′ ∼ U∆(θi−1 → θ′)
5: α← min

{
1,

exp[(t(yobs)−t(x))(θ′−θi−1)] p(θ′)
p(θi−1)

}
6: accepted← U(0, 1)
7: if α > accepted then
8: θi ← θ′

9: else
10: θi ← θi−1

11: end if
12: end for
13: return θm
14: end function

ABC Shadow is an alternative strategy between classical
ABC methods and the Metropolis-Hastings sampling algo-
rithms based on auxiliary variables. Its practical implemen-
tation is similar to the one proposed by [37], while providing
the needed theoretical and practical control of the output
and preventing from poor mixing. Note that ABC Shadow
explicitly allows the control of the approximation by in-
strumenting the proposal distribution with the parameter

∆. The control over the approximation provided by ABC
Shadow is shown on known models in the following section.

4 ABC SHADOW IN PRACTICE : ILLUSTRATION ON
SYNTHETIC DATA

The use of the ABC Shadow algorithm requires the set-up of
its parameters. In order to chose m and ∆ the ABC Shadow
algorithm was run on known models, with controllable
expected results. Whenever it was possible, the outputs of
the ABC Shadow algorithm were compared with a classical
Monte Carlo sampler of the posterior, the MH algorithm and
the Exchange algorithm [36].

4.1 Binomial distribution

Let y be generated by a Binomial distribution of parameters
n and p. This may correspond to the independent random
labelling, following a Bernoulli distribution with the param-
eter p, of a bi-coloured graph of size of n. We know the
parameter n and we want to estimate p. Within this context
the likelihood reads :

p(y|θ) =

(
n

y

)
py(1− p)(N−y)

= exp

[
yθ − n log(1 + eθ) + log

(
n

y

)] (9)

with θ = log(p/(1−p)). For our experiment n = 20, p = 0.4
(θ = −0.405) and m = 100. The observed Binomial variable
obtained with these values was y = 8. The MH algorithm
is set up to sample from the distribution (9). Within the
context of posterior sampling of a binomial distribution,
the main difference between the implementation of the
ABC Shadow and the Exchange algorithm is given by the
choice of the proposal distribution. For the ABC Shadow,
the chosen proposal is uniform over the interval [−100, 100]
of width ∆ = 0.005 centred on the current value. While for
the Exchange Algorithm the adopted proposal is a normal
distribution with mean corresponding to the current value
and σ = ∆

2 . The procedures were executed to sample
1.002×106 posteriors. The first 2×103 samples were cut off
and a sample were kept every 100 iterations. This resulted
in a chain (θ(t))t=1,··· ,T of 104 samples.

For the ABC Shadow, the proposal distribution is the
same as the one of the MH algorithm. The auxiliary variable
is simulated from 100 samples following (9). The procedure
described in Algorithm 1 is implemented and applied to our
simulated data with m = 100 and repeated iters = 1.002×
106 times. Like the MH, the output is a chain (θ(t))t=1,··· ,T
that we subsample, keeping only every 100. It improves the
mixing properties of the chain. In addition, we skipped the
first 2× 103 samples of the chain (θ(t))t=1,··· ,T . To illustrate
the robustness of these two algorithms, the initial value of
the chain of samples θ(0) is chosen far from the true value
of θ. We set θ(0) = 1.

Figure 3 represents the three distributions respectively
obtained with the standard implementation of the MH
algorithm, the ABC Shadow and the Exchange Algorithm.
According to the box plot and the quantile-quantile plot
schemas, the three distributions are very close to each
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other. It is worth noticing that the three algorithms (es-
pecially ABC) converge toward the true parameter value
θ = −0.405, although the initial value of the chain (θ(0) = 1)
is quite far from the truth. Statistics, Maximum A Posteriori
(MAP) and errors of the three distributions are summarised
in Table 1. The three methods indicate equivalent perfor-
mances for the provided inference. These results encourage
us, in the following, to give preference for the ABC Shadow
algorithm, since exact simulation is not required, for its
control.

4.2 Posterior sampling on the Potts Model

We now consider the Potts model involved in the descrip-
tion of our application context. Due to the normalising
constant, the Potts model (described in Section 2.3.2) is
not directly tractable with the traditional MH algorithm as
previously performed in Section 4. To circumvent this prob-
lem and following the strategy in [6], we tested the Potts
model by comparing the maximum of the approximated a
posteriori distribution with the true parameter of the model
previously simulated.

In the first experiment, all interaction parameters were
fixed to 0 : θ11 = θ12 = θ22 = 0, so that interaction effects are
annihilated. Since we have three type of patterns, this leads
to a Bernoulli graph model with an occurrence probability
for each pattern equal to 1

3 . The observation represents an
artificial collaboration involving 12 members of the same
organisation and 8 collaborators from the outside i.e. with
a size = (12, 8). It was generated from N = 103 sam-
ples yielded by a Gibbs sampler. By averaging sufficient
statistics we obtain t̄(y) = [164.747, 263.495, 83.7645] (see
Equation 3) from the ABC Algorithm. In the ABC algorithm,
the prior distribution p(θ) was a uniform distribution on the
interval [−4, 4]× [−4, 4]× [−4, 4]. The parameters n and ∆
were respectively set to n = 200 and ∆ = [0.01, 0.01, 0.01]
according to [6]. As in Section 4.1, the ABC Shadow was ex-
ecuted to yield iters = 1.002×106 samples. We subsampled
keeping every 100 value and rejected the 2 × 103 first burn
in samples. At each iteration the auxiliary variable x was
updated using 200 steps of a Gibbs sampler. Error metrics
were computed: the asymptotic standard deviation σ̂θ and
the Monte Carlo standard deviation σ̂MC

θ . The numerical
values of both metrics are depicted in Table 2.

Figure 4a represents the histograms of the posterior
distributions provided by the ABC Shadow of each pa-
rameter as well as two-dimensional posterior distribu-
tions for each couple of parameters. Blue lines mark the
MAP for each parameter’s distribution computed by tak-
ing the maximum of the kernel density estimation: θ̂ =
[−0.0262, 0.036,−0.0436]. The green lines are the true pa-
rameter values : θ = [0, 0, 0].

We now consider a model with repulsion effects. To that
end, we set θ11 = −0.5, θ12 = 0.2, θ22 = 0.3 and we
simulate N = 103 samples with a size = (12, 8) using a
Gibbs sampler as we did before. The vector ∆ has been
appropriately selected following the strategy given by [6].
It was set to ∆ = [0.005, 0.005, 0.005]. The generated obser-
vation yielded the following averaged sufficient statistics:
t̄(y) = [78.8842, 360.732, 295.548]. Figure 4b represents the
resulting posterior distribution. Blue lines representing the

MAP are aligned on θ̂ = [−0.5374, 0.2086, 0.2916] which is
close to the true parameter θ = [−0.5, 0.2, 0.3] represented
with green lines. The dashed lines are respectively the
first quartile, the median and the third quartile. The mean
and the median of the posterior estimates are respectively:
[−0.702, 0.293, 0.258] and [−0.658, 0.274, 0.265]. The error
metrics, respectively the asymptotic standard deviation and
the Monte Carlo standard deviation are presented in Ta-
ble 2. The traces of the sampled distributions are given in
Appendix.

We showed on simulated examples how to control and
set up the ABC Shadow on models similar to the one used
for inference from real data.

5 APPLICATION

The research works illustrated by scientific productions
(such as conference papers and articles) rely on collaborative
and social links. We want to identify the structural patterns
formed by those links and capture their dynamic over
time. The collaboration networks of three different years
(2017, 2018, 2019) are obtained using the HAL publication
database. In those graphs, a node represents a researcher.
Two researchers are connected if they have at least a com-
mon publication during the considered year. We collected
metadata of publications deposited by the members of LO-
RIA in the period 2017-2019. The dataset is available at [43].

The aim of the study is to fit the model defined in
Section 2.3.2 to the graph associated with each team of
LORIA. Comparing the structural aspects of those graphs
through posterior analysis enables the identification of pat-
terns characteristic of these scientific collaborations.

For each team, the graph is constructed as follows.
Figure 5 exhibits the different steps of the processing. First,
two kinds of nodes were distinguished, the members of
LORIA and the other researchers who had no affiliation with
LORIA, the external stakeholders (Figure 5a). We took the
point of view of each team and studied the way they collab-
orate with internal and external stakeholders. This means
that only edges linking at least one member of LORIA
are considered (Figure 5b). In addition, we only took into
account interactions between edges linked by a member of
LORIA (Figure 5c). Following the framework of Section 2.2,
the line graph representation encodes the different types
of research collaboration. An inter-organisational link con-
nects one member of LORIA with an external collaborator
whereas intra-organisational links connect two collaborators
who are affiliated to LORIA. Under the hypothesis of the
model, the sufficient statistics were computed. The results
are presented in Table 3 (in Appendix).

The number of authors from LORIA as well as external
stakeholders are different according to each team and for
each year. Statistics of both quantities are given in Table 4.
Compared to the means (µ), the standard deviations are
important : approximately 0.5 × µ for LORIA’s members
and strictly greater than 0.5 × µ for external collaborators.
This indicates that the sizes of the different collaborations
are distributed on an important range.

We identified 11 teams with a sufficiently large number
of publications in the three considered years. The ABC
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Fig. 3. Posterior sampling of a Bernoulli distribution using Metropolis Hasting, ABC Shadow and the Exchange algorithm

TABLE 1
Statistics on the posterior of Binomial distribution

Q10 Q25 Q50 mean Q75 Q95 MAP σ̂θ σ̂MC
θ

ABC (θ) -0.992 -0.69 -0.383 -0.392 -0.075 0.345 -0.4257 0.453 4.2× 10−4

MH (θ) -0.961 -0.672 -0.371 -0.377 -0.071 0.353 -0.3775 0.452 4.3× 10−4

Exchange (θ) -1.009 -0.721 -0.41 -0.415 -0.102 -0.344 -0.445 0.455 4.3× 10−4

TABLE 2
Statistics on the posteriors of the Potts model under two configurations : θ11 = θ12 = θ22 = 0 and θ11 = −0.5, θ12 = 0.2, θ22 = 0.3.

θ̂11 θ̂12 θ̂22 σ̂θ11 σ̂θ12 σ̂θ22 σ̂MC
θ11

σ̂MC
θ12

σ̂MC
θ22

θ = [0, 0, 0] ABC (θ) -0.0262 0.036 -0.0436 0.08 0.093 0.144 3.80× 10−7 5.80× 10−7 1.98× 10−6

θ = [−0.5, 0.2, 0.3] ABC (θ) -0.5374 0.2086 0.2916 0.364 0.169 0.116 7.106× 10−5 1.433× 10−5 5.370× 10−6

Shadow algorithm was launched with the same initial con-
ditions for every team and every year. The ABC Shadow
algorithm was setup to generate iters = 107 samples,
the number of iterations of the shadow chain and the
volume bound were set respectively to m = 200 and
∆ = [0.005, 0.005, 0.005]. The auxiliary variable x was sam-
pled with 50 iterations of the Gibbs sampler. The first 9×106

burn in samples were discarded. In addition, a subsampling
procedure kept every 103 value of each remaining chain
yielded by the ABC Shadow. Consequently, for each team
the size of the corresponding chain was 103 samples.

Figures 6, 7 and 8 show the box plots of posteriors sam-
pled by the ABC Shadow respectively for the parameters
θ11, θ12 and θ22 for each team and each year. The box plots
are grouped by teams and differently coloured according to
the year so as to observe the evolution of parameter values
over the years for a given team. In complement to these
three Figures, Table 5 in Appendix present the mean, the
median and the estimated MAP of the posterior distribution
of θ for each team and each year.

A positive parameter indicates a positive inclination
to observe the corresponding pattern compared to a pure
random process. Conversely, a negative parameter means
that the corresponding pattern has a weaker probability to
occur than a pure random process. The parameter values are
good indicators on the way researchers interact with their
counterparts.

The value ranges of parameters are near to zero, even
lower than zero for the majority of teams. Relatively to all
possible connections, this reflects a weak global tendency for
a researcher to co-author with all other researchers whether

he belongs to the same lab or not. At the scale of teams
this means that the collaboration graph is sparse. Putting
this observation in the context of publication activities, this
corroborates the intuition that every researcher does not co-
author with everyone else. Co-authoring a paper implies
that all stakeholders are involved in the same scientific
work. These are demanding tasks. It restricts the number
of publications and the underlying potential collaborations
a researcher is able to undertake.

At first sight, there is no clear evidence that teams
share the same evolution pattern regarding the posterior
distributions of the parameters. For some teams and some
parameters, the box plots tend to decrease over the years,
this suggests a diminishing occurrence probability of the
corresponding controlled pattern. We can also observe the
opposite phenomenon which is illustrated by ascending
box plots. However, the evolution of one parameter over
time must be studied in combination with the evolution of
the other parameters. Let us take the CARAMBA team as
a first example. The range of values of the θ11 parameter
drops drastically in 2019. Such evolution is not observed for
parameters θ12 and θ22. Moreover, the sufficient statistics
(Table 3) decrease over time, until 0 (the 1 ↔ 1 pattern is
no longer observed in 2019). This allows us to conclude that
there is a real decrease in the tendency to collaborate within
the CARAMBA team. But the decreasing box plot over time
does not necessarily mean that the corresponding tendency
is falling down. The team CAPSID is a good example. As the
team CARAMBA, the parameter θ11 drop drastically in the
last year. But conversely, the parameter θ12 increases in pos-
itive values. More than a decreasing tendency to observe the
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pattern 1 ↔ 1, this suggests a change in the collaboration
dynamic. The balance between intra-organisational links
and inter-organisational links shifts, illustrating a much
more outward-looking collaboration behaviour.

Regarding Table 5 in Appendix, both the median and the
mean are close to the estimated MAP. Similarly to [6], [44],
we computed the asymptotic standard deviation and the
Monte Carlo standard deviation. To that end, for each esti-
mated model we performed a simulation providing 10,000
samples (samples were uncorrelated by keeping every 103

sample out of the 107 simulated). Given the Monte Carlo
standard deviation, we can determinate the 95% confidence
interval. Error measures and 95% confidence intervals are
reported in Table 6 (in Appendix).

The results in Tables 5 and 6 show the good perfor-
mances of the parameter estimation procedure. Neverthe-
less these results should be interpreted with care. Model
degeneracy is an important problem that should be taken
into account whenever using MRF [26]. In Appendix B
these results are further investigated through simulations
using the estimated parameters. In particular, pathological
situation with teams exhibiting no collaboration inside the
team or outside the team are considered.

The closeness of value ranges to 0, especially for the
posteriors of the parameter θ11, raises the question of their
significance. Are the three studied patterns more likely to
occur in the collaboration than pure randomness? To answer
this question we applied for each parameter a t-test to
determine if the expectations of the posteriors equal 0. The
null hypothesis and the alternative hypothesis are written
as follows for each parameter:

H0 : E[θ] = 0,

H1 : E[θ] 6= 0.

The results are shown in Table 7 (in Appendix). For most
of the teams, the parameters are significantly non-zero since
the associated p-values of the t-test are very small. There
are only four observed networks for which the p-value
is greater than the usual 5% level of significance. In this
case, the rejection of the null hypothesis is not relevant. In
conclusion, for almost all networks (except the two latter
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Fig. 4. Corner plots of marginal distributions of posterior sampling for
the Potts model using an ABC algorithm. (Blue lines mark the MAP of
each parameter, green lines correspond to the true parameter values)

(a) step 1: Distinguish
two kinds of nodes,
members of LORIA
(in blue) and external
stakeholders (in red).

(b) step 2: Keep edges
involving at least one
member of LORIA.

(c) step 3: Consider
only interactions be-
tween edges linked by
a member of LORIA.

Fig. 5. An example of a pre-processing performed on a team’s collabora-
tive graph. The graph in Figure 5a illustrated co-authoring links involving
the members of the team COAST in 2018. Blue nodes represents the
members of LORIA, whereas red nodes are external collaborators.
The inter-organisational links are coloured in orange , while the intra-
organisational links are in green .
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mentioned), the likelihood of link creation is not merely due
to chance.

Figure 9 presents the three 2d projections of the Potts
model parameters. Each team is associated with a colour
and each year with a different marker. Grey dashed lines set
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estimated from the collaboration graphs

limits between positive and negative trends. For instance,
considering (θ11, θ22), the vertical line delimits the positive
and negative tendencies that a pattern linking two intra-
organisational ties occurs, while the horizontal line is about
the occurrence of inter-organisational links. Depending on
projections, we have an overview of trends followed by
teams.

The major part of the estimated MAPs is concentrated
in the same region. For the parameter θ11 the MAPs are
distributed closely around 0. For θ12 and θ22, they are
mostly negative. This observation refines our analysis. The
latter two, show that hub patterns and collaboration links
with the outside are less likely to occur in collaboration
graphs. This strengthens the prior idea that collaborations
with external teams are complex to set up and maintain.
The weak presence of hubs in the collaboration means
that only few researchers are connected at the same time
with members of their team and researchers from other
labs. If a hub leaves, the ties between the corresponding
organisations break [45]. This is a serious concern that
should be carefully addressed in the design of collaborative
applications to ensure the availability of the collaboration
against the churn.

Some outliers presenting different structural features are
identifiable. For instance, the team SMaRT in 2019, located
at the top right-hand corner of the first frame (Figure 9),
shows a slight positive tendency for the pattern 2 ↔ 2 to
occur. The team CAPSID in 2019 is also an outlier with
respect to other parameters values: θ11 and θ12, as we can
see at the top left-hand corner of the third frame (Figure 9).
The MAP of the parameter θ11 is extremely low while the
MAP of θ12 is high. This parameters configuration suggests
that hub (1 ↔ 2) patterns are likely to occur while the
emergence probability of (1 ↔ 1) patterns is weak. In
other words, the collaborations are outward looking for
that team. Looking at the network statistics, the number of
external researchers is very high compared to the number of
referenced authors from LORIA (Table 3 in Appendix). This
fosters the emergence of inter-organisational links to the
detriment of intra-organisational links. Figure 10 illustrates
the co-authorship graph of the team CAPSID. The two
noticeable clusters are related to two articles involving a

large number of authors. The few authors of theses articles
affiliated to LORIA and connected to a few other LORIA’s
members generated themselves a very large number of hub
patterns. This is a special configuration met only in the co-
authorship graph of the team ORPAILLEUR in 2019 which
closely worked with CAPSID as they shared numerous
publications.

Figure 9 shows some overlapping points or points very
close to each other. This suggests that some teams share with
each other similar structural characteristics. By relying not
only on the MAPs but on the whole posterior distributions,
we aim to verify these observations.

An unsupervised hierarchical classification was per-
formed, from the Kolmogorov-Smirnov distance computed
between all posterior distributions of the three parameters:
θ11, θ12 and θ22. The results in Figure 11 are shown in
the form of dendrograms. The branches’ height of the den-
drogram gives indications about the proximity of the sub-
clusters : shallower is a branch, closer are the sub-clusters
and vice-versa. The few identified clusters correspond to
the coloured branches.

The lab is organised in 5 departments gathering teams
working on the same research thematic. The team’s names
are coloured according to the affiliation to one of these
departments. The clustered team’s names are not similarly
coloured and then, don’t necessarily work on the same topic.
Consequently, structural patterns are not a feature specific
to the research thematic. We also noticed that the closeness
between two teams can be related to the fact that one
originates from the other. It is not unusual that a researcher
keep signing with an old affiliation a long time after the
creation of a new team. Also, when a team splits in new
teams, members of teams keep collaborating. This means
that both teams keep intrinsic collaboration links affecting
their collaboration networks. This requires to pay particular
attention to the real-life context in particular to the teams’
life cycle : birth, split, death.

6 CONCLUSION

In this paper, we proposed a method to make inference on
structural aspects of collaboration networks. The work we
present is embedded in the context of inter-organisational
collaborations, a topic yet sparsely addressed by the state of
the art. For instance, researchers from different organisation
often collaborate to conduct research and write publications.
We extracted the collaboration network among researchers
by considering the co-authorship of publications from the
French open-archive HAL as collaboration links between
authors.

First we presented the representation of the collaboration
graph. We relied on the line graph instead of taking the
collaboration network directly as the observation of our
study. Considering this alternate representation as fixed
random field, we considered link creation in the collabora-
tion as a labelling issue respecting Markov’s properties. We
were able to better encompass structural interactions not
between individuals but among relations themselves. We
used a generalisation of the Ising model, the Potts model,
to describe the interactions between relations. As for all
exponential models, the inference remains difficult due to
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Fig. 10. Co-authorship graph of the team CAPSID. Blue nodes rep-
resents the members of LORIA, whereas red nodes are external
collaborators. Size of nodes is proportional to their degree. The two
red clusters represent two publications involving a very large number
of authors.

the intractable normalising constant. To that end, we used
a Bayesian tool, the ABC Shadow algorithm which was
firstly tuned on tractable model and simulated data. We
applied it on collaboration networks of different research
teams for three different years. The main aim was to charac-
terise and classify collaborations among researchers in their
publication activities and their evolution over time. First of
all, we observed that links formation between collaborators
are not mere coincidence but the result of tendencies for
almost all teams. From the posterior distributions provided
by the ABC Shadow, we showed that a few actors play a key
role since they connect collaborators of their organisation
toward the outside. The combined evolution of the model’s
parameter allows us to assess the dynamics of the collabora-
tions over time. Given the posteriors, we also demonstrated
how to classify the way the different teams collaborate and
conclude that structural features at stake are not related to
the scientific topic addressed.

The sizes of the teams are relatively disparate and may
affect the prevalence of the observed patterns. One of the
first perspectives to pursue is to come up with a normalising
procedure to put all the observed graph on the same level.

Hub in the collaboration are points of failure who
can endanger the inter-organisational collaboration if they
leave. This is a concern that must be addressed in the
design of collaborative applications, to better support inter-
organisational scenarios. Study of the dynamic of the net-
work [46] enables the assessment of the churn and the
detection of breaks over time.

The approach we propose to observe the dynamics of
collaborative networks is based on a fixed time step and
relies on networks involving different actors over time.
This raises several issues. The observations are difficult to
compare with each other, since they do not have the same
size and do not necessarily involve the same individuals.
Moreover, the time step used is important and does not
allow the gradual evolution of interactions to be captured.
The development of a longitudinal approach is part to our
future work. It requires both adapted observations and a
modelling integrating the time dependency [47], [48].

The selection of the model is a very sensitive aspect of
our approach which might influence the relevance of the
estimates in regard to the observation. This concern should
be further investigated in a future work [49]. For instance,
other classes of models such as the Markov Connected Com-
ponent Fields [50] might be good candidates for structural
graph pattern analysis.

Finally, the approach we proposed here can be applied
in different contexts. Extending this study to other collab-
orative contexts is required to acquire a comprehensive
understanding of features inherent to inter-organisational
collaborations.
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APPENDIX A
TRACES OF DISTRIBUTIONS SAMPLED FROM SYN-
THETIC DATA WITH FIXED AND KNOWN PARAMETERS
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Fig. 12. Traces of parameters sampled with ABC Shadow from synthetic
data. The true parameters are θ = [0, 0, 0] and are represented by
dashed red lines.

0 2000 4000 6000 8000 10000

iterations

2.0

1.5

1.0

0.5

0.0

11
pa

ra
m

et
er

 A
B

C

0 2000 4000 6000 8000 10000

iterations

0.0

0.2

0.4

0.6

0.8

1.0

12
pa

ra
m

et
er

 A
B

C

0 2000 4000 6000 8000 10000

iterations

0.2

0.0

0.2

0.4

0.6

22
pa

ra
m

et
er

 A
B

C

Fig. 13. Traces of parameters sampled with ABC Shadow from synthetic
data. The true parameters are θ = [−0.5, 0.2, 0.3] and are represented
by dashed red lines.
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APPENDIX B
DIAGNOSTIC OF THE MODEL DEGENERACY
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Fig. 14. The box plots represent the distributions of sufficient statistics,
respectively t11, t12 and t22, generated from the MAP. The red points
linked by dashes show the observed sufficient statics.

Figure 14 presents a comparison of the observed statis-
tics with those obtained through simulations using the
estimated MAP. In the first plot (on the left-hand side),
the observed statistics do not match the sufficient statistics
generated from the estimated MAP (Table 5). This situation
is symptomatic of a model degeneracy [26]. The CAPSID
team in 2019 shows very few researcher acting as “intra-
organisational bridge” (1 ↔ 1 pattern) compared to the
other two patterns (1 ↔ 2 and 2 ↔ 2). The second plot
exhibit analysis results for which statistics generated from
the MAP correspond on average to the observed statistics.
At our best knowledge, formulating an analytical solution
for the degeneracy problem, is still an open question. As
immediate perspective strategies for dealing with patholog-
ical situations, we mention model conditioning and tailored
simulation dynamics. Regarding the inference, we mention
recent developments presented in [42] allowing a variable
∆ whenever sampling the posterior and stronger theoretical
control of the obtained result.

APPENDIX C
NUMERICAL RESULTS AND EMPIRICAL STATISTICS

TABLE 3
Sufficient statistics of each observed collaboration graph

Team Year t11 t12 t22 # LORIA # External
members collaborators

CAPSID 2017 54 291 463 10 45
2018 104 111 79 13 16
2019 123 5697 92796 19 311

CARAMBA 2017 6 28 38 10 15
2018 3 4 5 9 9
2019 0 2 26 8 15

LARSEN 2017 145 606 1446 21 78
2018 173 259 171 21 16
2019 176 295 199 23 22

MULTISPEECH 2017 238 345 543 33 65
2018 141 561 648 26 70
2019 332 1009 2268 36 120

NEUROSYS 2017 73 45 42 13 9
2018 26 106 102 11 18
2019 8 139 474 10 33

ORPAILLEUR 2017 280 402 314 29 39
2018 324 374 202 31 33
2019 308 5946 91322 34 332

PESTO 2017 49 116 146 16 26
2018 18 36 282 12 33
2019 6 30 88 12 28

RESIST 2017 40 95 73 9 13
2018 54 60 40 15 11
2019 146 491 500 23 56

SEMAGRAMME 2017 8 48 64 9 11
2018 1 15 801 7 45
2019 0 21 49 8 12

SMarT 2017 98 102 57 12 12
2018 78 301 325 11 19
2019 213 588 582 14 16

VERIDIS 2017 47 177 332 21 39
2018 29 42 112 17 26
2019 95 124 104 23 30

TABLE 4
Statistics on the number of internal and external stakeholders

accounted for each team

Year Mean Median Standard
deviation

Number of LORIA’s members 2017 16.64 13.0 7.97
Number of external collaborator 2017 32.00 26.0 22.42
Number of LORIA’s members 2018 15.73 13.0 7.11
Number of external collaborator 2018 26.91 19.0 17.09
Number of LORIA’s members 2019 19.09 19.0 9.34
Number of external collaborator 2019 88.64 30.0 113.60
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TABLE 5
Summary of estimates obtained from the collaboration networks of teams for the parameters θ11, θ12 and θ22.

Team Year θ11 Q50 θ11 MAP θ11 θ12 Q50 θ12 MAP θ12 θ22 Q50 θ22 MAP θ22

CAPSID 2017 0.119 0.133 0.163 -0.077 -0.079 -0.081 -0.111 -0.110 -0.109
2018 0.082 0.084 0.083 -0.258 -0.257 -0.254 -0.158 -0.155 -0.148
2019 -99.915 -99.946 -99.974 2.323 2.327 2.331 -0.077 -0.078 -0.095

CARAMBA 2017 -0.309 -0.237 -0.098 -0.294 -0.300 -0.308 -0.452 -0.444 -0.445
2018 -0.413 -0.305 -0.114 -1.273 -1.217 -1.190 -1.410 -1.324 -1.151
2019 -4.738 -4.014 -3.785 -1.277 -1.107 -0.955 -0.572 -0.562 -0.534

LARSEN 2017 0.059 0.061 0.060 -0.105 -0.103 -0.100 -0.123 -0.124 -0.124
2018 0.001 0.004 0.011 -0.205 -0.205 -0.206 -0.097 -0.096 -0.098
2019 -0.004 -0.001 0.006 -0.208 -0.209 -0.209 -0.183 -0.182 -0.184

MULTISPEECH 2017 -0.003 -0.002 0.001 -0.243 -0.242 -0.242 -0.300 -0.301 -0.307
2018 -0.030 -0.024 -0.002 -0.127 -0.129 -0.132 -0.252 -0.252 -0.251
2019 0.017 0.018 0.020 -0.126 -0.125 -0.121 -0.169 -0.171 -0.171

NEUROSYS 2017 0.043 0.046 0.047 -0.418 -0.414 -0.400 -0.096 -0.092 -0.097
2018 -0.126 -0.100 -0.061 -0.098 -0.107 -0.121 -0.218 -0.214 -0.210
2019 -0.542 -0.443 -0.336 -0.032 -0.037 -0.045 -0.082 -0.082 -0.081

ORPAILLEUR 2017 -0.000 0.000 -0.003 -0.222 -0.221 -0.222 -0.260 -0.260 -0.260
2018 -0.018 -0.017 -0.014 -0.257 -0.256 -0.255 -0.309 -0.309 -0.311
2019 -1.097 -1.087 -1.065 0.017 0.018 0.023 -0.020 -0.021 -0.030

PESTO 2017 0.009 0.020 0.037 -0.248 -0.247 -0.246 -0.271 -0.270 -0.272
2018 0.102 0.121 0.143 -0.287 -0.278 -0.260 -0.171 -0.171 -0.175
2019 -0.214 -0.156 0.006 -0.331 -0.326 -0.322 -0.420 -0.417 -0.420

RESIST 2017 0.116 0.132 0.158 -0.148 -0.154 -0.169 -0.110 -0.104 -0.088
2018 -0.029 -0.023 -0.014 -0.392 -0.391 -0.375 -0.236 -0.228 -0.218
2019 -0.000 0.006 0.018 -0.137 -0.139 -0.143 -0.234 -0.234 -0.236

SEMAGRAMME 2017 -0.367 -0.300 -0.190 -0.115 -0.121 -0.129 -0.125 -0.118 -0.089
2018 -0.629 -0.226 0.223 -0.215 -0.179 -0.145 -0.042 -0.043 -0.044
2019 -6.792 -5.984 -5.613 0.009 -0.005 -0.034 -0.261 -0.253 -0.227

SMarT 2017 0.079 0.083 0.083 -0.242 -0.243 -0.244 -0.109 -0.105 -0.094
2018 0.074 0.087 0.116 -0.072 -0.076 -0.077 -0.015 -0.014 -0.014
2019 0.100 0.102 0.104 -0.081 -0.080 -0.077 0.082 0.082 0.081

VERIDIS 2017 -0.024 -0.014 0.005 -0.218 -0.219 -0.219 -0.255 -0.256 -0.252
2018 -0.022 -0.011 0.006 -0.441 -0.434 -0.422 -0.398 -0.397 -0.393
2019 -0.026 -0.023 -0.018 -0.379 -0.377 -0.375 -0.461 -0.459 -0.458
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TABLE 6
Error of the estimations: Asymptotic standard deviation and Monte Carlo standard deviation. Ranges of confidence intervals 95% for estimated

MAPs

Team Year σ̂θ11 σ̂θ12 σ̂θ22 σ̂MCθ11
σ̂MCθ12

σ̂MCθ22
CI 95% θ11 CI 95% θ12 CI 95% θ22

CAPSID 2017 9.67e-02 3.11e-02 1.75e-02 6.40e-04 1.84e-04 5.99e-05 0.163 ± 1.3e-03 -0.081 ± 3.7e-04 -0.109 ± 1.2e-04
2018 6.74e-02 5.17e-02 4.31e-02 2.61e-04 1.73e-04 1.49e-04 0.083 ± 5.2e-04 -0.254 ± 3.5e-04 -0.148 ± 3.e-04
2019 6.74e-02 5.17e-02 4.31e-02 2.61e-04 1.73e-04 1.49e-04 -99.974 ± 5.2e-04 2.331 ± 3.5e-04 -0.095 ± 3.e-04

CARAMBA 2017 3.06e-01 1.38e-01 1.17e-01 6.75e-03 2.06e-03 1.43e-03 -0.098 ± 1.3e-02 -0.308 ± 4.1e-03 -0.445 ± 2.9e-03
2018 3.19e-01 4.07e-01 3.8e-01 8.94e-03 1.49e-02 1.32e-02 -0.114 ± 1.8e-02 -1.19 ± 3.e-02 -1.151 ± 2.6e-02
2019 3.19e-01 4.07e-01 3.8e-01 8.94e-03 1.49e-02 1.32e-02 -3.785 ± 1.8e-02 -0.955 ± 3.e-02 -0.534 ± 2.6e-02

LARSEN 2017 1.04e-01 2.07e-02 8.72e-03 8.83e-04 1.56e-04 2.80e-05 0.06 ± 1.8e-03 -0.1 ± 3.1e-04 -0.124 ± 5.6e-05
2018 2.78e-02 3.31e-02 3.58e-02 5.77e-05 8.30e-05 1.01e-04 0.011 ± 1.2e-04 -0.206 ± 1.7e-04 -0.098 ± 2.0e-04
2019 2.78e-02 3.31e-02 3.58e-02 5.77e-05 8.30e-05 1.01e-04 0.006 ± 1.2e-04 -0.209 ± 1.7e-04 -0.184 ± 2.0e-04

MULTISPEECH 2017 8.68e-02 3.03e-02 1.9e-02 5.44e-04 1.45e-04 4.94e-05 0.001 ± 1.1e-03 -0.242 ± 2.9e-04 -0.307 ± 9.9e-05
2018 5.97e-02 2.89e-02 2.03e-02 1.96e-04 7.83e-05 4.41e-05 -0.002 ± 3.9e-04 -0.132 ± 1.6e-04 -0.251 ± 8.8e-05
2019 5.97e-02 2.89e-02 2.03e-02 1.96e-04 7.83e-05 4.41e-05 0.02 ± 3.9e-04 -0.121 ± 1.6e-04 -0.171 ± 8.8e-05

NEUROSYS 2017 2.68e-02 6.86e-02 7.37e-02 1.05e-04 4.42e-04 4.48e-04 0.047 ± 2.1e-04 -0.4 ± 8.8e-04 -0.097 ± 9.e-04
2018 1.90e-01 8.58e-02 6.16e-02 2.36e-03 8.35e-04 4.74e-04 -0.061 ± 4.7e-03 -0.121 ± 1.7e-03 -0.21 ± 9.5e-04
2019 1.90e-01 8.58e-02 6.16e-02 2.36e-03 8.35e-04 4.74e-04 -0.336 ± 4.7e-03 -0.045 ± 1.7e-03 -0.081 ± 9.5e-04

ORPAILLEUR 2017 4.39e-02 2.96e-02 2.5e-02 9.45e-05 5.2e-05 4.78e-05 -0.003 ± 1.9e-04 -0.222 ± 1.0e-04 -0.26 ± 9.6e-05
2018 2.30e-02 2.94e-02 3.67e-02 4.94e-05 6.88e-05 1.11e-04 -0.014 ± 9.9e-05 -0.255 ± 1.4e-04 -0.311 ± 2.2e-04
2019 2.30e-02 2.94e-02 3.67e-02 4.94e-05 6.88e-05 1.11e-04 -1.065 ± 9.9e-05 0.023 ± 1.4e-04 -0.03 ± 2.2e-04

PESTO 2017 9.52e-02 5.37e-02 4.16e-02 5.37e-04 2.21e-04 1.54e-04 0.037 ± 1.1e-03 -0.246 ± 4.4e-04 -0.272 ± 3.1e-04
2018 8.05e-01 7.36e-02 2.41e-02 6.17e-02 3.90e-03 1.99e-04 0.143 ± 1.2e-01 -0.26 ± 7.8e-03 -0.175 ± 4.e-04
2019 8.05e-01 7.36e-02 2.41e-02 6.17e-02 3.90e-03 1.99e-04 0.006 ± 1.2e-01 -0.322 ± 7.8e-03 -0.42 ± 4.e-04

RESIST 2017 6.67e-02 5.71e-02 6.45e-02 2.28e-04 1.91e-04 3.15e-04 0.158 ± 4.6e-04 -0.169 ± 3.8e-04 -0.088 ± 6.3e-04
2018 6.73e-02 7.77e-02 8.21e-02 3.33e-04 4.90e-04 5.58e-04 -0.014 ± 6.7e-04 -0.375 ± 9.8e-04 -0.218 ± 1.1e-03
2019 6.73e-02 7.77e-02 8.21e-02 3.33e-04 4.90e-04 5.58e-04 0.018 ± 6.7e-04 -0.143 ± 9.8e-04 -0.236 ± 1.1e-03

SEMAGRAMME 2017 3.72e-01 1.15e-01 6.79e-02 1.09e-02 2.59e-03 9.77e-04 -0.19 ± 2.2e-02 -0.129 ± 5.2e-03 -0.089 ± 2.e-03
2018 5.9e+00 7.36e-02 9.37e-03 3.47e+00 2.16e-02 1.64e-04 0.223 ± 6.9e+00 -0.145 ± 4.3e-02 -0.044 ± 3.3e-04
2019 5.9e+00 7.36e-02 9.37e-03 3.47e+00 2.16e-02 1.64e-04 -5.613 ± 6.9e+00 -0.034 ± 4.3e-02 -0.227 ± 3.3e-04

SMarT 2017 4.76e-02 5.27e-02 5.51e-02 1.52e-04 2.04e-04 2.42e-04 0.083 ± 3.0e-04 -0.244 ± 4.1e-04 -0.094 ± 4.8e-04
2018 6.39e-02 3.65e-02 2.84e-02 1.79e-04 8.52e-05 6.58e-05 0.116 ± 3.6e-04 -0.077 ± 1.7e-04 -0.014 ± 1.3e-04
2019 6.39e-02 3.65e-02 2.84e-02 1.79e-04 8.52e-05 6.58e-05 0.104 ± 3.6e-04 -0.077 ± 1.7e-04 0.081 ± 1.3e-04

VERIDIS 2017 1.23e-01 4.19e-02 2.53e-02 1.11e-03 2.88e-04 9.59e-05 0.005 ± 2.2e-03 -0.219 ± 5.8e-04 -0.252 ± 1.9e-04
2018 2.49e-01 8.48e-02 5.15e-02 5.04e-03 1.07e-03 3.35e-04 0.006 ± 1.0e-02 -0.422 ± 2.1e-03 -0.393 ± 6.7e-04
2019 2.49e-01 8.48e-02 5.15e-02 5.04e-03 1.07e-03 3.35e-04 -0.018 ± 1.0e-02 -0.375 ± 2.1e-03 -0.458 ± 6.7e-04



18

TABLE 7
Results of the t-test applied on each parameter to check if the parameter are significant against pure chance. Here the score of the test as well as

the corresponding p-value are presented. Except for four observed networks marked by ∗, the parameters are significant.

Team Year TS(θ11, 0) p-val1 TS(θ12, 0) p-val2 TS(θ22, 0) p-val3

CAPSID 2017 43.125 ≤ 10−6 -80.089 ≤ 10−6 -193.181 ≤ 10−6

2018 111.135 ≤ 10−6 -199.204 ≤ 10−6 -101.268 ≤ 10−6

2019 -34830.327 ≤ 10−6 699.856 ≤ 10−6 -95.875 ≤ 10−6

CARAMBA 2017 -28.036 ≤ 10−6 -69.123 ≤ 10−6 -126.066 ≤ 10−6

2018 -31.093 ≤ 10−6 -89.480 ≤ 10−6 -90.430 ≤ 10−6

2019 -46.805 ≤ 10−6 -57.079 ≤ 10−6 -123.379 ≤ 10−6

LARSEN 2017 87.699 ≤ 10−6 -199.394 ≤ 10−6 -273.585 ≤ 10−6

2018∗ 1.662 9.683e-02 -224.536 ≤ 10−6 -95.604 ≤ 10−6

2019 -5.170 ≤ 10−6 -243.612 ≤ 10−6 -180.908 ≤ 10−6

MULTISPEECH 2017 -6.971 ≤ 10−6 -402.422 ≤ 10−6 -437.728 ≤ 10−6

2018 -21.629 ≤ 10−6 -170.839 ≤ 10−6 -418.720 ≤ 10−6

2019 36.814 ≤ 10−6 -258.178 ≤ 10−6 -356.691 ≤ 10−6

NEUROSYS 2017 51.231 ≤ 10−6 -177.527 ≤ 10−6 -41.829 ≤ 10−6

2018 -22.524 ≤ 10−6 -38.494 ≤ 10−6 -111.927 ≤ 10−6

2019 -35.630 ≤ 10−6 -17.616 ≤ 10−6 -147.183 ≤ 10−6

ORPAILLEUR 2017∗ -1.495 1.353e-01 -362.590 ≤ 10−6 -322.979 ≤ 10−6

2018 -36.256 ≤ 10−6 -347.376 ≤ 10−6 -288.879 ≤ 10−6

2019 -81.610 ≤ 10−6 18.218 ≤ 10−6 -24.374 ≤ 10−6

PESTO 2017 5.266 ≤ 10−6 -188.814 ≤ 10−6 -211.214 ≤ 10−6

2018 42.418 ≤ 10−6 -141.148 ≤ 10−6 -207.922 ≤ 10−6

2019 -24.260 ≤ 10−6 -118.935 ≤ 10−6 -209.319 ≤ 10−6

RESIST 2017 42.744 ≤ 10−6 -75.633 ≤ 10−6 -56.265 ≤ 10−6

2018 -21.262 ≤ 10−6 -169.616 ≤ 10−6 -86.393 ≤ 10−6

2019∗ -0.192 8.475e-01 -185.076 ≤ 10−6 -349.118 ≤ 10−6

SEMAGRAMME 2017 -31.127 ≤ 10−6 -31.295 ≤ 10−6 -53.773 ≤ 10−6

2018 -17.907 ≤ 10−6 -52.145 ≤ 10−6 -89.476 ≤ 10−6

2019∗ -60.880 ≤ 10−6 1.474 1.409e-01 -88.590 ≤ 10−6

SMarT 2017 92.722 ≤ 10−6 -160.254 ≤ 10−6 -54.549 ≤ 10−6

2018 32.730 ≤ 10−6 -65.715 ≤ 10−6 -20.331 ≤ 10−6

2019 132.546 ≤ 10−6 -141.465 ≤ 10−6 154.850 ≤ 10−6

VERIDIS 2017 -13.685 ≤ 10−6 -229.062 ≤ 10−6 -316.399 ≤ 10−6

2018 -12.669 ≤ 10−6 -206.286 ≤ 10−6 -237.182 ≤ 10−6

2019 -31.123 ≤ 10−6 -275.823 ≤ 10−6 -270.959 ≤ 10−6


