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Chapter 5
Dealing with Large Volumes of Complex
Relational Data using RCA

Agnès Braud, Xavier Dolques, Alain Gutierrez, Marianne Huchard, Priscilla Keip,
Florence Le Ber, Pierre Martin, Cristina Nica and Pierre Silvie

Abstract Most of available data are inherently relational, with e.g. temporal, spatial,
causal or social relations. Besides, many datasets involve complex and voluminous
data. Therefore, the exploration of relational data is a major challenge for Formal
Concept Analysis (FCA). Relational Concept Analysis (RCA) is specifically designed
to investigate the relational structure of a dataset in the FCA paradigm. In this chapter,
we examine how RCA can take over the issues raised by complex data. Using two
datasets, one about the quality monitoring of waterbodies in France, the other about
the use of pesticidal and antimicrobial plants in Africa, we study the limitations of
di�erent FCA algorithms, and their current implementations to explore these datasets
with RCA. We also show how pattern extraction combined with the presentation of
data in hierarchical structures is appropriate for the analysis of temporal datasets by
the domain expert. Finally, we discuss about the possible directions to investigate.
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5.1 Introduction

Many data are inherently relational, and their relations can be complex, numerous,
fuzzy and sometimes cyclic. Multi-relational datasets are based on a schema (data
model), where entities (objects) of several categories are described by characteristics
(attributes, fields) and where relations link objects from two categories (possibly from
the same one). Several approaches have been implemented to explore such data [17].
Relational Concept Analysis (RCA), based on Formal Concept Analysis (FCA), has
been specifically designed for this task: it builds a classification (a lattice of formal
concepts) for each category of objects contained in a dataset, and allows to obtain
implication rules including relations between objects [28, 45].

RCA, as FCA, comes with a major challenge, linked to the fact that dealing with
large and complex data produces huge and complex results. Many methods have
been proposed to reduce the lattice size, either by reducing the original data (e.g. by
granular reduction [55]) or by projection [48], or by reducing the number of concepts
to be built (e.g., by thresholding [49]), or by using AOC-posets [15].

Another approach is to help the user to navigate the results, e.g. by focusing on
specific subsets of concepts, based on interestingness measures [6, 11], or by using
local views and computation on-demand [16, 20]. Regarding RCA, the issue is also
to navigate a family of lattices, each concept of a lattice being possibly linked to
several concepts of other lattices.

RCA has been applied to multi-relational datasets from various domains, e.g.
for the fuzzy semantic annotation of web resources [13], or for the analysis and
reengineering of software models [14] and semantic wikis [47]. In previous works, we
have applied RCA for exploring hydroecological [15,38] and agricultural data [29],
the two domains considered in the following.

In this paper, we experiment the application of RCA on complex environmental
datasets coming from the real world and built under guidance of domain experts.
The two application domains are biopesticides and antimicrobial products made
from plants (K������ project) and the monitoring of the ecological quality of
waterbodies (F�������� project). In the context of the environmental domains we
deal with, the studied datasets can be considered large volume data with regard to
the type of data and data collection. In K������, data are manually collected or
revised by experts in scientific publications. The publications are of di�erent types
and there is a cross-check in di�erent sources, and a cleaning of information to
ensure the data quality. In F��������, data are manually collected and manipulated
by field biologists in rivers, which di�ers from data collection from sensors. We
show the scope of the RCA process in terms of quantitative opportunities and limits
on our datasets, by comparing di�erent algorithms. We also describe an application
of RCA to the extraction of graphs from temporal data: the issue is to link sequences
of physico-chemical parameter values with bio-indicator values used for assessing
the quality of waterbodies. This temporal data pattern extraction shows how we can
concretely help domain experts.

As said before, these two datasets have already been studied [15, 29, 38]. In this
paper, we propose a synthesis of observations made during these earlier studies,
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with enhanced datasets, taking into account more information or applied to the
whole initial data rather than to an excerpt. We also compare the algorithms with a
same metric set on both datasets.

Section 5.2 presents RCA principles while Sect. 5.3 compares RCA with the
related work. Section 5.4 introduces the two complex environmental datasets, and
compares the results obtained on these datasets by a few algorithms. Section 5.5
describes the variant of RCA used for analysing sequential datasets. Besides, it
shows how summarizing interrelated concepts by a graph can help the analysis of
the RCA results. Section 5.6 discusses the results and draws up some perspectives.

5.2 Background

Formal Concept Analysis (FCA) has several dimensions, including being a knowl-
edge engineering method based on lattice theory [25]. In its simplest form, FCA
deals with datasets formalized into formal contexts comprising objects described
by attributes (object-attribute contexts). Attributes in formal contexts are some-
times refered as Boolean attributes. For example, the top of Tab. 5.1 shows four
formal contexts: Biopesticide describes the toxicity of six biopesticides (from
p1 to p6) using two attributes (toxic, nonToxic); Bioaggressor informs on the
type of six bioaggressors (from a1 to a6) using two attributes (worm, rodent);
ProtectedSystem presents six biological systems to be protected (from s1 to s6)
using four attributes (seed, cerealSeed, cucurbitSeed, leaf); Country local-
izes four countries (from c1 to c4) in two regions using two attributes (west, east).
A formal context may have a specific shape: it may partition the objects with mu-
tually exclusive attributes; it may be diagonal if it has the same number of objects
and attributes, and each object is described by exactly one attribute (the relation
corresponds to a 1-1 mapping).

FCA highlights hierarchies of concepts, each concept being composed of a max-
imal group of objects (extent) and the maximal group of attributes they share
(intent). Since only objects s3 and s4 share attributes seed and cerealSeed,
Concept_ProtectedSystem_2= ({s3, s4}, {seed, cerealSeed}) is a con-
cept. For similar reasons, Concept_ProtectedSystem_4= ({s1, s2, s3, s4},
{seed}) is another concept. The set of all concepts provided with inclusion be-
tween concept extents (from bottom to top) forms a lattice (the concept lat-
tice). Concept_ProtectedSystem_2 is a subconcept of Concept_Protected
System_4 in this lattice, as the extent of the former is included in the extent
of the latter. Fig. 5.1 shows the concept lattices associated with Biopesticide,
Bioaggressor, ProtectedSystem, and Country. In this representation of lat-
tices, the attributes (resp. objects) are written only in the highest (resp. lowest)
concept where they appear (their introducer concept) and are inherited top to bottom
(resp. bottom to top). For instance, Concept_Biopesticide_2 groups non toxic
biopesticides p1, p2, p3, and p4, Concept_Bioaggressor_2 groups worms a1,
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p1
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p3 ⇥
p4 ⇥ ⇥
p5 ⇥
p6 ⇥

attacks s1 s2 s3 s4 s5 s6

a1 ⇥
a2 ⇥
a3 ⇥
a4 ⇥
a5 ⇥
a6 ⇥

isHostedIn c1 c2 c3 c4

a1 ⇥
a2 ⇥
a3 ⇥
a4 ⇥
a5 ⇥
a6 ⇥

Table 5.1: Relational Context Family. Top: the formal contexts (object-attribute
contexts) Biopesticide, Bioaggressor, ProtectedSystem, Country. Bottom:
the relational contexts (object-object contexts): treats, attacks, isHostedIn

a2, a3, and a4, Concept_ProtectedSystem_4 groups seeds s1, s2, s3 and s4,
and Concept_Country_1 groups western countries c1 and c2.

FCA and all its extensions are well-founded mathematical frameworks thanks
to lattice theory, delivering to experts explainable results on which they can base
their decisions. FCA is the reference for building exact hierarchies of object/attribute
structures, attributes being possibly complex descriptions, and has no competitor for
that feature. Uta Priss notes that “the basic FCA structures have been rediscovered
over and over by di�erent researchers and in di�erent settings.” [46], emphasizing
their fundamental aspect. FCA has also a central position as a swiss knife in knowl-
edge engineering and discovery, as the conceptual structures intrinsically contain the
search space for rules of di�erent kinds, traceable knowledge patterns and hierarchi-
cal structures [43]. FCA is human centered, suitable for interactive and incremental
analyses, with visual presentation of extracted patterns. Besides, FCA extensions en-
able to deal with complex information: numbers, sequences, graphs, temporal data,
etc. without converting datasets into simplified formats.

RCA extends the purpose of FCA to relational data, conforming to a conceptual
model, e.g. a UML model. We follow up the example with data conforming to the
UML model shown in Fig. 5.2: biopesticides treat bioaggressors that attack protected
systems; bioaggressors are hosted in countries. This UML model thus structures the
dataset into object categories (here biopesticides, bioaggressors, protected systems
and countries), objects still being described by attributes. Relationships connect
objects of di�erent (or the same) categories: here treats connects biopesticides to
bioaggressors; attacks connects bioaggressors to protected systems; isHostedIn
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Concept_Biopesticide_3

Concept_Biopesticide_1
toxic
p5
p6

Concept_Biopesticide_0

Concept_Biopesticide_2
nonToxic

p1
p2
p3
p4

Concept_Bioaggressor_3

Concept_Bioaggressor_2
worm
a1
a2
a3
a4

Concept_Bioaggressor_0

Concept_Bioaggressor_1
rodent
a5
a6

Concept_ProtectedSystem_5

Concept_ProtectedSystem_4
seed

Concept_ProtectedSystem_2
cerealSeed

s3
s4

Concept_ProtectedSystem_0

Concept_ProtectedSystem_1
curcubitSeed

s1
s2

Concept_ProtectedSystem_3
leaf
s5
s6

Concept_Country_3

Concept_Country_1
west
c1
c2

Concept_Country_0

Concept_Country_2
east
c3
c4

Fig. 5.1: Concept lattices associated with the four formal contexts Biopesticide,
Bioaggressor, ProtectedSystem, Country from left to right and top to bottom

treats ►
Biopesticide

isHostedIn ►

attacks ►

Bioaggressor

Country

ProtectedSystem

Fig. 5.2: Biopesticides treat bioaggressors that attack protected systems. The bioag-
gressors are hosted in countries

connects bioaggressors to countries. These relations are shown at the bottom of
Tab. 5.1.

The UML model and its instantiation are formalized as a Relational Context Fam-
ily (RCF). An RCF is a pair (K ,R), where K is a set of object-attribute contexts
(formal contexts) and R is a set of object-object contexts (relational contexts or rela-
tions). K contains n object-attribute contexts Ki = (Gi,Mi, Ii) , i 2 {1, ...,n} (formal
contexts). R contains m object-object contexts R j = (Gk,Gl ,r j), j 2 {1, ...,m} (rela-
tional contexts). r j ✓Gk⇥Gl is a binary relation with k, l 2 {1, ...,n}. Gk = dom(r j)
is the domain of the relation, and Gl = ran(r j) is the range of the relation.

The RCA process starts by applying FCA first on each object-attribute context of
an RCF. This results in the concept lattices presented in Fig. 5.1.

In the following steps, RCA relies on the construction of particular attributes,
called relational attributes. These attributes express the relationships an object of
one category has with a concept extent (which is a group of objects of a given
category). For example, based on Concept_ProtectedSystem_2 which groups
cereal seeds s3 and s4, the relational attribute 9attack(Concept_Protected-
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System_2), meaning “attack at least one cereal seed”, can be formed. This attribute
is true for worms a3, a4. This is formalized as follows. A relational attribute 9r j(C),
where 9 is the existential quantifier, C = (X ,Y ) is a concept, and X ✓ ran(r j), is
owned by an object g 2 dom(r j) if r j(g)\X 6= /0. Other quantifiers are defined
in [9, 28]. In particular, percentage quantifiers are introduced to take into account
incomplete, noisy data or approximate satisfaction of a property.

The relational scaling mechanism is used to implement the additional description
of objects by relational attributes. It maps every relation r j into a set of relational
attributes that extend the object-attribute context describing the objects of dom(r j).
This operation is called the relational extension of a context. Table 5.2 shows the
relational extension of Bioaggressor at step 1. The first two columns show the
original attributes. The next six columns are the relational attributes formed with
9 quantifier, attacks relation, and the concepts of ProtectedSystem lattice of
step 0. The next four columns are the relational attributes formed with 9 quantifier,
isHostedIn relation, and the concepts of Country lattice of step 0. From this table,
worms a3, a4 own relational attributes 9attacks(Concept_ProtectedSystem_2)
(cereal seeds) and 9 isHostedIn(Concept_Country_1) (western countries).
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a1 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
a2 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
a3 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
a4 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
a5 ⇥ ⇥ ⇥ ⇥ ⇥
a6 ⇥ ⇥ ⇥ ⇥ ⇥

Table 5.2: Relational extension of Bioaggressor at step 1, with relational attributes
built on lattices of step 0 (Cpt stands for Concept)

The application of FCA to all the extended contexts refines the original concept
lattices. Figure 5.3 shows the Bioaggressor concept lattice at step 1, as a refine-
ment of step 0 (Fig. 5.1). Three concepts are added, in particular Concept_Bio-
aggressor_4 which groups a1 and a2, that are worms that attack cucurbit seeds
and Concept_Bioaggressor_5 which groups a3 and a4, that are worms hosted
in western countries and attack cereal seeds. These two concepts emerged thanks to
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the addition of relational concepts and divide the group of worms (Concept_Bio-
aggressor_2).

Concept_Bioaggressor_3
exist attacks(Concept_ProtectedSystem_5)

exist isHostedIn(Concept_Country_3)

Concept_Bioaggressor_2
worm

exist attacks(Concept_ProtectedSystem_4)

Concept_Bioaggressor_0
exist attacks(Concept_ProtectedSystem_0)

exist isHostedIn(Concept_Country_0)

Concept_Bioaggressor_1
rodent

exist attacks(Concept_ProtectedSystem_3)
a5
a6

Concept_Bioaggressor_4
exist attacks(Concept_ProtectedSystem_1)

a1
a2

Concept_Bioaggressor_5
exist attacks(Concept_ProtectedSystem_2)

exist isHostedIn(Concept_Country_1)
a3
a4

Concept_Bioaggressor_6
exist isHostedIn(Concept_Country_2)

Fig. 5.3: Bioaggressor concept lattice at step 1, refining the concept lattice of
step 0 (Fig. 5.1)

The complete process operates through successive steps. Each step consists in
applying FCA on each object-attribute context extended by the relational attributes
created using the concepts from the previous step. This results in a family of concept
lattices.

Fig. 5.4: A diagrammatic view on the relational context family with focuses on some
concept and sub-concept extents formed at step 0 (top right), step 1 (down right) and
step 2 (down left)
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Concept formation propagates from one object category to a neighbouring object
category along the relations, refining the concept lattices at each step with con-
cept completion, or new concept addition. To continue on our example, Fig. 5.4
represents the relations and objects in the form of a graph (top, left-hand side); it
highlights how groups of non toxic biopesticides, worms, cereal seeds and west-
ern countries are created at step 0 (blue ellipses). Then, at step 1, one can ob-
serve the group of worms from western countries attacking cereal seeds (green
ellipse). Then at step 2, the group of non toxic biopesticides allowing to treat them
is created (red ellipse). This information appears in the lattice of Fig. 5.5, where
Concept_Biopesticide_7 groups p2 and p3, that are non toxic biopesticides that
treat worms hosted in western countries and attacking cereal seeds (through relational
attribute 9 treats(Concept_Bioaggressor_5)).

Concept_Biopesticide_3

Concept_Biopesticide_1
toxic

exist treats(Concept_Bioaggressor_1)
p5
p6

Concept_Biopesticide_8
exist treats(Concept_Bioaggressor_6)

Concept_Biopesticide_0
exist treats(Concept_Bioaggressor_0)

Concept_Biopesticide_6
exist treats(Concept_Bioaggressor_4)

p4

Concept_Biopesticide_7
exist treats(Concept_Bioaggressor_5)

p2
p3

Concept_Biopesticide_2
nonToxic

p1

Concept_Biopesticide_4
exist treats(Concept_Bioaggressor_2)

Concept_Biopesticide_5
exist treats(Concept_Bioaggressor_3)

Fig. 5.5: Biopesticide concept lattice at step 2 (final step), refining the concept
lattice of step 1 (Fig. 5.3)

The RCA process stops when a fixpoint is reached, i.e. when the families of
lattices of two consecutive steps are isomorphic and the extended object-attribute
contexts are unchanged. The UML model may contain directed cycles, without risk
of divergence of the process, as rows (objects) are unchanged, only new columns
can be added at each step (with possibly new concepts appearing) and the concept
number in each lattice is bounded by 2min(|O|,|A|) where O is the object set and A is
the attribute set.
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5.3 Related Work

Formal Concept Analysis handles multi-relational data through several perspectives.
Some approaches extract and classify graph patterns that connect objects or object
groups [24,34,44]. Relational data have also been dealt with logical concept analysis
[23]. Besides, K. E. Wol� has introduced the Relational Semantic Systems: the data
model is represented through a conceptual graph, while the relational knowledge is
represented through object traces and relation concept traces in trace diagrams [53].
Tuples of Boolean factors are extracted from various tables thanks to an extended
version of the Boolean Factor Analysis [31]. An n-ary relation may be in many
concrete cases considered as an aggregation of several relations of lower arity. Thus
FCA also has been generalized to Triadic Concept Analysis, that considers a ternary
relation including objects, attributes and conditions [33]. This yields triadic concepts
that are organised in a complete trilattice. This framework has been generalized to
n-adic contexts (n-ary relations) in Polyadic Concept Analysis [52].

In [30], a Galois connection (and the derived concept lattice) is introduced to
query sets of objects connected by relations. Only existential queries are expressed
and there is no iteration. Graph-FCA [21](G-FCA) proposes to consider knowledge
graphs based on n-ary relationships as formal contexts. The intent of a G-FCA
concept is a projected graph pattern and the extent is an object relation.

Pattern structures [24] can also be used to deal with relational data, for example
temporal data. Authors in [10] propose to use pattern structures to build a concept
lattice on complex sequential data about care trajectories. The pattern structure is
(P,(S,u),d ), where P is the set of patients, S is a set of sequences and their sub-
sequences, and u is the set intersection. Each patient of P is described by a sequence
(and its sub-sequences) through d relation. This approach is deepened in [12], where
object descriptions are organised into a semi-lattice of closed sets of closed sub-
sequences. A similar approach is used for analysing demographic sequences in [26].

Compared to these approaches, RCA benefits from several features. Its derivation
from the binary framework makes its results more easy to understand than new
diagrams introduced in Relational Semantic Systems. It is relevant for incremental
data exploration tasks, as it iterates on knowledge construction, showing the progress
in concept construction, contrarily to Boolean factor analysis, pattern structures or
Graph-FCA. Compared to the other approaches, it provides several operators to take
into account incomplete or noisy data. It has been the subject of research on assisting
domain experts in the parametrization and exploration [42].

Several papers push the limits of FCA and show e�ects of application of FCA
or RCA in computation time and conceptual structure size on huge or complex
datasets. In [54], a huge Museum collection dataset is analysed and made navigable
with FCA, showing the e�cacy of the recent algorithms. In [37], RCA is applied to
UML class model reengineering, with an underlying circular data schema provoking
the construction of large amounts of concepts. Such experiments show that (1) FCA
can be applied to huge datasets, (2) RCA, that iterates on FCA, is risky in the presence
of cycles and has to be handled with care.
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In this paper, we focus on a particular kind of datasets, namely in the environmental
domain (with observations, plants, animals, etc.), having in mind that they may
present some similarities (in the form of data and the form of querying and exploration
needs) and that we should learn some lessons when applying RCA for that specific
domain.

5.4 RCA for Environmental Data

In this section, we introduce our datasets, the K������ dataset, and the F��������
dataset in Sect. 5.4.1. In the following Sect. 5.4.2, we analyse the performances of
the current RCA algorithms and implementations on two excerpts of these datasets.
After describing the UML model of each excerpt, we give the dimensions of the
corresponding context family, the computation time of various RCA algorithms
when processing these data, and finally the numbers of concepts and relational
attributes of the final lattices. Last section 5.4.3 is a discussion about these results.

5.4.1 Two complex datasets from the environmental domain

5.4.1.1 Pesticidal and Antimicrobial Data

The excessive use of pesticides and antibiotics in agriculture compromises their ther-
apeutic e�ectiveness and is a threat to human, animal and environmental health [41].
One alternative consists in using natural plant based products. For African farmers,
preparing such products using some of the local plants is a challenge. Unfortunately,
knowledge on plant use in agriculture is scattered. To support knowledge exchange,
description of plants used in Africa was extracted from the scientific literature and
collected in a knowledge base called K������ [35]. In K������, each use of
plant is described using 72 data types, among which the protecting plant, the tar-
geted organism (insect, disease, virus, etc.), and the protected system (agricultural
crop, animal or human being). In October 2019, K������ gathered 40.800 plant
use descriptions for plant, animal, and human health from 410 documents, dated
between 1957 and 2019. These uses consider 523 plant protection species, 127 tar-
geted organism species, and 28 protected organism species. In the following (see
Sect. 5.4.2) we will explore an excerpt from this database1.

1 https://dataverse.cirad.fr/dataverse.xhtml?alias=knomana

https://dataverse.cirad.fr/dataverse.xhtml?alias=knomana
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5.4.1.2 Water Data

The assessment of aquatic ecosystems, as required by the Water Framework Directive
[51], relies on monitoring, which generates large volumes of heterogeneous data
from multiple sources at di�erent temporal scales. Actually, when assessing the
water quality of watercourses, hydroecologists measure both biological and physico-
chemical parameters. In metropolitan France, assessment is done on a network of
1781 sampling sites, called stations. Each station is described by biological data, e.g.
the number of individuals for each taxon (animal or plant), and by physico-chemical
data, e.g. chemical oxygen demand (denoted DCO), ammonium (denoted NH4),
temperature (denoted T), suspended organic matter (denoted MES), etc. Taxons are
themselves described by qualitative characteristics, called traits. Based on biological
data, biological indicators are computed, e.g. the IBGN (“indice biologique global
normalisé”) that summarizes information from macro-invertebrate samples into a
rating [3], or the IBD (“indice biologique diatomées”) that summarizes information
from micro-alga samples [2]. Stations are also described by physical and contextual
characteristics (e.g. they belong to a waterbody). The assessment varies on time:
major physico-chemical parameters are analysed 12 times a year, and minor elements
four or six times a year; biological sampling is achieved once a year or once every
two years.

Data collected from the 1781 sampling sites from 2007 to 2013 have been recorded
into a PostgreSQL/PostGIS database that was designed during the ANR 11 MONU
14 F�������� project2. In the following, we will explore two datasets from this
database.

• The first dataset focuses on the annual descriptions of the sampling sites from
Jan. 2017 to Nov. 2013: each pair (site, year) is described by the annual average
measures of physico-chemical parameters, by taxon lists and by geographical
parameters (see Sect. 5.4.2.2).

• The second dataset focuses on the temporal dimension of the data: indeed, each
sampling site can be described by a sequence of time stamped physico-chemical
parameter measures and time stamped biological indicators (see Sect. 5.5).

All these data are public data, and are freely available on the Naiades (Eau France)
website3.

5.4.2 Experimenting RCA Algorithms

In this section, we assess the ability and limits of RCA and of its current implemen-
tation to analyse datasets from the F�������� and K������ databases.

Both databases can be used in a variety of analyses. To determine the limits of the
current RCA implementations, we selected two datasets with representative UML

2 http://dataqual.engees.unistra.fr/fresqueau_presentation_gb

3 http://www.naiades.eaufrance.fr/acces-donnees

http://dataqual.engees.unistra.fr/fresqueau_presentation_gb
http://www.naiades.eaufrance.fr/acces-donnees
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models. These models were encoded into relational context families. Tables 3 (Sect.
5.4.2.1) and 7 (Sect. 5.4.2.2) describe the formal contexts (object number, attribute
number, density) and the relational contexts for each dataset. For the later, only
density is indicated as the number of rows and columns results from the source and
range formal context object number. The density of a formal context (resp. relational
context) is given by the size of the relation (pair number) divided by the object
number multiplied by the Boolean attribute number (resp. the source object number
multiplied by the range object number).

As the (Boolean) attribute number (column number) corresponds to a scaling
of the original (quantitative or multi-valued) attributes, we also indicate these two
numbers.

Then the following conceptual structures were built using the 9 quantifier: the
concept lattice (addIntent/addExtent algorithm [36]), the AOC-poset (Ceres algo-
rithms [32], Pluton [8], and Hermes [7]), and the Iceberg lattice (Titanic algo-
rithm [50], with minimal support 10%, 30% and 40%). Result tables 4, 5, 6 (Sect.
5.4.2.1) and 8, 9, 10 (Sect. 5.4.2.2) present metrics on the running time, step number,
concept number and relational attribute number, and whether computing the structure
failed for each dataset. We chose the 9 quantifier, as it generates the largest number
of concepts in the worst case, this being the most constraining [9]. Experiments are
realized using a laptop with a 4 core Intel i7 2.70 GHz processor.

5.4.2.1 Experiments on K������ Dataset

Figure 5.6 shows the UML model, without cycle, chosen for experimenting RCA
algorithms on K������ project. In this model, a Document is described by var-
ious multi-valued attributes. A document owns a piece of Knowledge with a cer-
tain quality. This piece of knowledge describes a form of HealthProtection
which: protects a ProtectedSystem composed of ProtectedOrganisms; targets
a TargetedOrganism; uses a Biopesticidemade from a UsedPlant from which
a technician extracts PlantParts.

Table 5.3 shows the dimensions of the RCF for the considered excerpt of K��-
���� knowledge base. This RCF is composed of 9 formal contexts and 8 relational
contexts. The longest path in the UML model graph is made of 5 edges (from
Document to PlantPart). The largest formal contexts are HealthProtection
(more than 10000 objects), Biopesticide (more than 5000 objects), UsedPlant
(about 4000 objects), and Document (about 3500 objects). Furthermore, Table 3
(and this can also be observed in Table 7 for the F�������� dataset) shows that
the number of objects (rows in formal contexts) is higher than the number of real
objects, because an object is described in various situations (e.g. Lantana camara
may be described in n di�erent documents, leading to n occurrences of Lantana
camara (implicitly observations) in the formal context UsedPlant). Densities are
most of the time low (e.g. HealthProtection) to very low (e.g. for uses). When
the number of objects and attributes are equal, the context may be more complex
than a diagonal.
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Fig. 5.6: K������: the UML model used for experimenting RCA algorithms
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Document 3541 10 6350 7.73 E-4 owns 0.062
Knowledge 16 1 16 0.062 describes 0.063

HealthProtection 10172 1 30 0.033 protects 0.168
ProtectedSystem 6 1 6 0.167 composedOf 0.206

ProtectedOrganism 195 1 195 0.005
targets 0.001

TargetedOrganism 934 1 934 0.001
uses 3.2 E-4

Biopesticide 3127 1 30 0.033 madeFrom 3.23 E-4
UsedPlant 4078 5 4353 7.37 E-4 extracts 0.068
PlantPart 344 2 377 0.005

Table 5.3: K������: Dimensions of the relational context family

Table 5.4 shows the step number and the running time. The RCA process con-
verged at step 7 (the 7th step being to confirm that the fixpoint is reached). The
computing time to construct the concept lattice (���) was about 2 minutes. The one
for AOC-poset varied between 1 and 8 minutes according to the adopted algorithm,
����� being the most e�cient. Iceberg lattices were built in 1 second.
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#steps
��� 7

����� 7
������ 7
������ 7

�������10 7
�������30 7
�������40 7

time (ms) time (mn)
��� 135582 [Sim] 2

����� 45355 [Sim] 1
������ 498299 [Sim] 8
������ 362232 [Sim] 6

�������10 517 [Sim] 0.01
�������30 246 [Sim] 0.01
�������40 206 [Sim] 0.01

Table 5.4: K������: (left) Final step number and (right) computation time (mil-
liseconds) and (minutes)

Table 5.5 shows the number of concepts at the final step. The number of concepts
in concept lattices varies from one to five times the number of concepts in AOC-
posets, except for the HealthProtection lattice. In this case, there are 18 times
more concepts in the lattice than in the AOC-poset. The concept number of Iceberg
lattices is very low compared to the others, suggesting there are no large groups of
objects with the same content.

Formal Context ������� ������� ���-����� �������10 �������30 �������40
BioPesticide 8586 3503 18 11 11

HealthProtection 224992 12182 102 31 15
UsedPlant 5651 4708 8 5 5

ProtectedSystem 23 21 8 8 2
ProtectedOrganism 197 195 2 2 2

PlantPart 386 384 5 2 2
Knowledge 568 116 49 20 8

TargetedOrganism 936 934 2 2 2
Document 6272 4181 74 28 7
TOTAL 247611 26224 268 109 54

Table 5.5: K������: Number of concepts for each conceptual structure

Table 5.6 shows the number of relational attributes at the final step. For a formal
context Source, this number is related to the number of concepts of the ranges of
the nout relational contexts, i.e. Rangei, 1  i  nout , leaving Source. For exam-
ple, the Document relational attributes in the concept lattice (568) originated from
the concepts of the Knowledge concept lattice. There was a cumulative e�ect for
HealthProtection, the relational attributes in the concept lattice (9545) resulting
from the union of concepts in ProtectedSystem (23), TargetedOrganism (936),
and Biopesticide (8586) concept lattices. This number of relational attributes in
HealthProtection concept lattice (9545) generated a high number of concepts in
HealthProtection concept lattice (224992) due to a dispersion of descriptions.
During the propagation along describes relation, this dispersion was absorbed: 568
concepts only in Knowledge concept lattice, and further re-expanded during propa-
gation through owns relation in Document concept lattice (6272 concepts).
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Formal Context ������� ������� ���-����� �������10 �������30 �������40
BioPesticide 5651 4716 8 5 5

HealthProtection 9545 4458 28 21 15
UsedPlant 386 384 5 2 2

ProtectedSystem 197 195 2 2 2
ProtectedOrganism 0 0 0 0 0

PlantPart 0 0 0 0 0
Knowledge 224992 12464 102 31 15

TargetedOrganism 0 0 0 0 0
Document 568 116 49 20 8
TOTAL 241339 22333 194 81 47

Table 5.6: K������: Number of relational attributes for each conceptual structure

5.4.2.2 Experiments on F�������� Dataset

Figure 5.7 shows the UML model, with a loop, chosen for experimenting RCA algo-
rithms on the F�������� database. As noted above, the dataset represents sampling
sites (Stations) described by attributes and relations. A station is characterized by
a Year of observation, it depends on a WaterBody and is located in a HER (i.e. a
Hydro-Eco-Region). A station is described by annual average physico-chemical val-
ues (PhCValue) measured there for 22 parameters (ParameterName), and by some
fauna or flora lists (FaunaFloraList) containing the numbers (TaxonNumber) of
the various types of taxons (Taxon) collected there at most once a year. Furthermore,
taxons have family relationships (ParentOf). The aim is to extract groups of stations
having similar biological and physico-chemical characteristics.

isDescribedByPC ►

▼	isDescribedByFF

contains ►

Station

Year:Integer

HER:Integer

WaterBody:String

ofType ►

parentOf ►

FaunaFloraList

Year:Integer

Substratum:String

PhCValue

Year:Integer

ParameterName:String

Value:Float

TaxonNumber

Value:Float

Taxon

LatinName:String

Fig. 5.7: F��������: the UML model used for experimenting RCA algorithms

Table 5.7 shows the dimensions of the RCF for the considered excerpt of F���-
����� database. This RCF has less contexts but they are larger than those of K��-
���� RCF. Here, the RCF is composed of 4 formal contexts and 5 relational contexts.
The longest path (omitting the loop) in the UML model graph has 4 edges (from
Stations to Taxon). The largest contexts are TaxonNumber (more than 120000 ob-
jects) and PhCValue (more than 18000 objects). Original attributes with float values
have been discretized into quartiles. Nominal/integer original attributes generated
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many Boolean attributes, e.g. 383 for the Station context. Taxons are described
with no attribute except their name, and thus, Taxon context is diagonal. Densities
are most of the time low to very low, except for context TaxonNumber where there
is only 4 Boolean attributes.
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Station 4808 3 383 0.008 isDescribedByPC 0.004
PhCValue 18524 3 512 0.010 isDescribedByFF 0.001

FaunaFloraList 510 2 59 0.051 contains 1.41E-4
TaxonNumber 124242 1 4 0.25 ofType 2.94E-4

Taxon 3400 1 3389 2.95E-4 parentOf 2.15E-4

Table 5.7: F��������: Dimensions of the relational context family

Table 5.8 shows the step number and the running time for the di�erent algorithms
applied to the F�������� dataset. Concept lattices construction with the add inten-
t/extent algorithm (���) cannot finish due to a lack of memory. The RCA process
converges in 5 steps for AOC-poset algorithms and Iceberg lattices construction
with minimal support 10 (the 5th step being to confirm that the fixpoint is reached).
Iceberg lattices construction with minimal supports 30 and 40 needs only 3 steps,
due to the fact that less concepts are built and need to be propagated (see Tab. 5.9).
AOC-poset construction takes between 4 and 25 minutes depending on the algo-
rithms, ����� being again the most e�cient. As for the K������ dataset, Iceberg
lattices are easily built in about 1 or 2 seconds.

#steps
��� (-)

����� 5
������ 5
������ 5

�������10 5
�������30 3
�������40 3

time (ms) time (mn)
��� (-) (-)

����� 214577 [Sim] 4
������ 1492604 [Sim] 25
������ 979421 [Sim] 16

�������10 2152 [Sim] 0.04
�������30 892 [Sim] 0.01
�������40 711 [Sim] 0.01

Table 5.8: F��������: (left) Final step number and (right) computation time (mil-
liseconds) and (minutes)

Table 5.9 shows the number of concepts for each formal context at the final step.
The AOC-poset with the highest number of concepts is the one built for PhCValue
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context. The concept number of Iceberg lattices is low or very low, suggesting, as
for the K������ dataset, that there are no large groups of objects with the same
description.

Formal Context ������� ������� ���-����� �������10 �������30 �������40
Station (-) 1671 89 3 2

PhCValue (-) 19013 7 2 2
FaunaFloraList (-) 1171 110 5 5
TaxonNumber (-) 4524 9 3 3

Taxon (-) 3392 3 2 2
TOTAL (-) 29771 218 15 14

Table 5.9: F��������: Number of concepts for each conceptual structure

Table 5.10 shows the number of relational attributes for each formal context at
the final step. Context PhCValue has no relational attribute, not being the domain
of any relation. Station context is extended with relational attributes pointing
to either PhCValue or FaunaFloraList concepts. Extended contexts Taxon and
TaxonNumber have the same number of relational attributes (the number of concepts
of the corresponding Taxon lattice, see Tab. 5.9), due to the diagonality of Taxon
context and the reflexivity of parentOf relation.

Formal Context ������� ������� ���-����� �������10 �������30 �������40
Station (-) 20321 117 7 7

PhCValue (-) 0 0 0 0
FaunaFloraList (-) 4524 9 3 3
TaxonNumber (-) 3392 3 2 2

Taxon (-) 3392 3 2 2
TOTAL (-) 31629 132 14 14

Table 5.10: F��������: Number of relational attributes for each conceptual structure

5.4.3 Discussion

In this section, we presented quantitative results about computation time and con-
ceptual structure size for two datasets. We can learn lessons from these experiments
on real environmental datasets. Their dimensions present di�erences, with a very
huge object number in one of the formal contexts of F�������� (TaxonNumber).
They also have some similarities, with low to very low densities in their formal and
relational contexts. The presence of a loop in F�������� UML model may explain
the impossibility to reach the fixpoint for concept lattice construction. Furthermore,
when adding all the opposite relations in K������ UML model, some conceptual
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structure computation reach the fixpoint: AOC-posets using ����� algorithm are
computed within 25 steps in more than one hour and Iceberg 40 lattices are com-
puted within 13 steps in less than a minute. Concept lattices can be built until step
3, Iceberg 10 lattices until step 4 and Iceberg 30 lattices until step 7. This suggests
considering other computation strategies to assist domain experts during data explo-
ration tasks: e.g. the process can be interrupted at a certain concept propagation step,
which delivers knowledge patterns that can be su�cient for some investigations, or
rather than building the whole conceptual structures, concepts can be built around
a first focus concept, issued from a set of attributes or objects that have a particular
interest for the experts [4].

Furthermore, considering that the conceptual structures are the informative search
space for domain experts, raises the question of assisting experts in interpreting
and drawing conclusions from the results. This can be made through summarizing
patterns (as shown in next section), rule extraction [15,42], or guided exploration of
a focus concept neighbourhood [5]. Examples of domain questions for K������
can be found in [29, 42]. Next section develops this question with the specific case
of the F�������� project, giving insight on how it can be exploited by an expert to
analyse relational data.

5.5 Analysing Sequences from Water Quality Monitoring using
RCA

In this section,we consider a smaller but complex relational dataset from F��������
database (see Sect. 5.4.1.2), that generates large number of concepts when processed
by RCA. We show how the lattice family resulting from RCA can be summarized into
a single lattice of graphs, to help the interpretation. The approach presented here can
be generalized on any relational dataset, possibly larger, thanks to Iceberg lattices
construction, and being provided a main lattice to start the summarizing process.

The approach was originally designed to help hydro-ecologists when analysing
river water data, and trying to answer the following question: can sets of physico-
chemical parameter values be temporally linked with bio-indicator values? To answer
this question, Fabrègue et al. [18, 19] proposed to use a temporal pattern based
method, extracting closed partially ordered patterns (CPO-patterns) from a sequence
dataset. Following this idea, and to facilitate the analysis, RCA-Seq has been devised
[39,40] for extracting a hierarchy of CPO-patterns from the same datasets. The idea
is to represent sequences within a relational context family, to build the lattice family,
and then to transform a concept and its related concepts into a CPO-pattern, i.e. a
directed acyclic graph (DAG), where each concept corresponds to a vertex, and each
relational attribute to an edge. Thus, the lattice family is summarized into a hierarchy
of concept graphs [22]. In the following we will explain the functioning of RCA-Seq
and present some experiments. Finally we show how the obtained hierarchy can be
used to help the expert analysis.
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Fig. 5.8: The modelling [38] of hydro-ecological sequential data collected during
the F�������� project; Bio and PhC stand respectively for biological and physico-
chemical

5.5.1 RCA-Seq

RCA-Seq spans three main steps: a) modelling sequential data, b) exploring sequen-
tial data with RCA and c) extracting DAGs (CPO-patterns) by navigating the RCA
output. In the following, we concisely introduce them.

5.5.1.1 Modelling Hydro-Ecological Sequential Data.

In the following a sequence is a list of successive physico-chemical samples collected
during a certain period before a biological sampling. To explore these sequential data
with RCA, we use the model depicted in Fig. 5.8. The four rectangles represent the
four sets of objects we manipulate, as follows: biological (Bio) samples, physico-
chemical (PhC) samples, Bio indicators and PhC parameters. Let us note that the
analysis only focuses on one Bio indicator at a time. The links between Bio/PhC
samples and PhC samples are highlighted by the temporal binary relation is preceded
by. This temporal relation associates one sample with another one if the first sample
is preceded in time by the second one, on the same river stations. Data have been
discretised, and the Bio/PhC samples are thus described only by the following binary
quality relations has parameter blue (very good quality), has parameter green (good
quality), has parameter yellow (medium quality), has parameter orange (bad quality)
and has parameter red (very bad quality) that link the Bio/PhC samples with the
measured Bio indicators/PhC parameters.

5.5.1.2 Exploring Hydro-Ecological Sequential Data with RCA.

Firstly, based on the data model given in Fig. 5.8, all sequences, e.g.
Seq1 = h{NITRgreen, PHOSgreen} {NITRblue} {NITRgreen, PHOSblue} {NITRgreen,
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PHOSgreen} {NITRgreen} {IBGNgreen}i, are encoded into the RCA input as depicted in
Tab. 5.11. The tables KPHC (PhC parameters), KBIOS (Bio samples) and KPHCS (PhC
samples) represent object-attribute contexts. There is no object-attribute context for
Bio indicators because all analysed sequences end with the same e.g. IBGNgreen.
KBIOS and KPHCS have no column since the samples are only described using
the quality relations. Moreover they are identified based on the corresponding se-
quence. The tables RPHCS-ipb-PHCS, RBIOS-ipb-PHCS , RbPHC and RgPHC rep-
resent object-object contexts. For example, RPHCS-ipb-PHCS defines the temporal
relations (ipb) between PhC samples and has KPHCS both as domain and range.
RbPHC (resp. RgPHC) defines the quality relations between PhC samples and PhC
parameters that have the blue (b) (resp. the green (g)) quality value.

object-attribute contexts object-object contexts

KPHC NI
TR

PH
OS

NITR ⇥
PHOS ⇥

KBIOS
Seq1

KPHCS
I1_Seq1
I2_Seq1
I3_Seq1
I4_Seq1
I5_Seq1

RBIOS-ipb-PHCS I
1_
S
e
q
1

I
2_
S
e
q
1

I
3_
S
e
q
1

I
4_
S
e
q
1

I
5_
S
e
q
1

Seq1 ⇥ ⇥ ⇥ ⇥ ⇥

RPHCS-ipb-PHCS I
1_
S
e
q
1

I
2_
S
e
q
1

I
3_
S
e
q
1

I
4_
S
e
q
1

I
5_
S
e
q
1

I1_Seq1
I2_Seq1 ⇥
I3_Seq1 ⇥ ⇥
I4_Seq1 ⇥ ⇥ ⇥
I5_Seq1 ⇥ ⇥ ⇥ ⇥

RbPHC NI
TR

PH
OS

I1_Seq1
I2_Seq1 ⇥
I3_Seq1 ⇥
I4_Seq1
I5_Seq1

RgPHC NI
TR

PH
OS

I1_Seq1 ⇥ ⇥
I2_Seq1
I3_Seq1 ⇥
I4_Seq1 ⇥ ⇥
I5_Seq1 ⇥

Table 5.11: RCF composed of object-attribute contexts: KPHC, KBIOS and KPHCS;
temporal object-object contexts: RBIOS-ipb-PHCS and RPHCS-ipb-PHCS; quality
object-object contexts: RbPHC and RgPHC; Ik_Seq1 uniquely identifies a PHC sample
within a sequence Seq1

Secondly, by applying RCA to an RCF as depicted in Tab. 5.11, three lattices
are generated as follows: the main lattice LKBIOS = (CKBIOS,�KBIOS), the temporal
lattice LKPHCS = (CKPHCS,�KPHCS) (i.e. PhC samples) and the lattice of items LKPHC =
(CKPHC,�KPHC) (i.e. PhC parameters). Throughout the RCA process two types of
relational attributes are defined based on the introduced binary relations, either on
time or quality. When Cm = (Xm,Ym) 2 CKBIOS has 9RBIOS-ipb-PHCS(Ct1) 2 Ym,
then Cm points to Ct1 2CKPHCS. When Ct1 = (Xt1,Yt1) has 9RPHCS-ipb-PHCS(Ct2)2
Yt1, then Ct1 points to Ct2 2CKPHCS (i.e. to another concept from the temporal lattice).
In addition, when 9RbPHC(Ci) 2 Yt1, then Ct1 points to Ci = (Xi,Yi) 2 CKPHC. When
Ci ⌘>(LKPHC), Xi contains all PhC parameters; for other concepts Xi contains only
one PhC parameter.

5.5.1.3 Extracting DAG by Navigating the RCA Output.

As explained in [40], for each concept of the main lattice Cm = (Xm,Ym) 2LKBIOS

is extracted a DAG (or CPO-pattern), namely GCm , by navigating interrelated con-
cept intents starting with Ym; we define Support(GCm) = |Xm|, i.e. the number of
sequences that are summarized by GCm . All generated DAG are directly organised
into a hierarchy according to the inclusion on the associated main concept extents.
This order corresponds to the subsumption on graphs �g.
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Briefly, we explain how to extract a DAG GCm = (Vm,Em, lm) (lm is a la-
belling function) associated with a main concept Cm = (Xm,Ym) 2 CKBIOS whose
intent has at least one temporal relational attribute 9RBIOS-ipb-PHCS(Ct1), where
Ct1 = (Xt1,Yt1) 2 CKPHCS. Concept Cm reveals a vertex vm 2 Vm labelled with an
itemset containing the assessed Bio indicator, e.g {IBGNgreen}. The aforementioned
temporal relational attribute leads to another vertex vt1 2 Vm derived from Ct1, i.e.
the edge (vt1,vm)2 Em is disclosed. If a quality relational attribute 9RbPHC(Ci)2Yt1
with Ci = (Xi,Yi) 2 CKPHC, then vt1 is labelled with Yi. Precisely, if Ci ⌘ >(LKPHC),
then the abstract quality value ?blue 2 l(vt1) is derived; if Ci �KPHC >(LKPHC) with
e.g. Yi = {PHOS}, then the concrete quality value PHOSblue 2 l(vt1); if Yt1 has no
quality relational attribute, then the abstract value ?? 2 l(vt1). If Yt1 contains a tem-
poral relational attribute 9RPHCS-ipb-PHCS(Ct2), then Ct1 leads to another vertex
vt2 2 Vm derived from Ct2. Therefore, the order on vertices in GCm is revealed by
temporal relational attributes; the itemsets labelling the vertices are revealed by qual-
ity relational attributes. When all next navigated concept intents have no temporal
relational attribute, then the extraction of GCm is finished.

Fig. 5.9: Extracting a DAG by navigating the relational attributes starting from a
KBIOS concept; the objects in the extents represent (station, time stamp) pairs, the
intents of CKPHC_N concepts are parameters, NITR (N=1), PHOS (2), any (3)

Figure 5.9 illustrates the extraction of a DAG starting from a concept CKBIOS_4
(right of the figure). This concept has 5 temporal relational attributes that lead to
5 concepts of the lattice LKPHCS. Some of these concepts have quality relational
attributes (e.g. 9RgPHC(CKPHC_3) for concept CKPHCS_7) leading to concepts of LKPHC;
while others (e.g. CKPHCS_4) have temporal relational attributes that lead again to
concepts of LKPHCS (left of the figure). Since these last concepts (CKPHCS_5, CKPHCS_0)
have no temporal relational attributes, the extraction is finished.
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5.5.2 Experiments

This section presents an experimental study of our approach. The experiments were
carried out on a MacBook Pro with a 2.9 GHz Intel Core i7, 8GB DDR3 RAM
running OS X 10.9.5. The family lattice was built with RCAExplore4. The extraction
step relied on the CPOHrchy algorithm from [40].

To assess the performance of RCA-Seq we used two hydro-ecological sequential
datasets, IBD blue and IBGN blue, whose characteristics, i.e, number of sequences,
number of PHC samples, number of PHC parameters, average sequence length (the
number of PHC samples in the sequence), maximum sequence length and density,
are shown in Tab. 5.12. Figures 5.10(a) and 5.10(d) depict the number of obtained
DAGs (vertical axis) with respect to the minimum support q (%) (horizontal axis) in
the IBD and IBGN blue dataset. Even if both datasets have almost the same number
of sequences, the extracted number of DAGs varies. For instance, 300411 DAGs are
discovered in the IBGN blue dataset with q = 9%, while for the same minimum
support in the IBD blue dataset only 16525 DAGs are discovered. This di�erence
can be linked to each dataset heterogeneity.

Dataset #sequences #PHC samples #PHC Avg. seq. Max. seq. Density
parameters length length

IBD blue 1196 3012 46 2.51 7 2.37E-4
IBGN blue 1102 3077 26 2.79 8 3.17E-4

Table 5.12: Dataset characteristics

The number of extracted DAGs is important, even if the dataset is rather small,
e.g. we report a number of 569202 DAGs discovered with q = 3% for the IBD
dataset that contains only 1196 sequences built from 46 items and having an average
sequence length of 2.51 (Fig. 5.10(a)).

Figure 5.10(b) illustrates the execution time of the RCA-based exploration. As
explained in [40], to optimise RCA-Seq we defined respectively for the lattices LKBIOS

and LKPHCS the minimum supports q and q 0, where q 0 = q |GKBIOS|
|GKPHCS| . GKBIOS and GKPHCS

are respectively the set of objects of the KBIOS and KPHCS object-attribute contexts.
For instance, when q 0 is not defined (i.e. non-optimised RCA-exploration), during
the iterative steps the relational scaling mechanism processes |CKPHCS| = 105850
temporal concepts even if not all of them are used to extract DAGs. When q = 6%
and q 0 = 3%, only |CKPHCS|= 4429 temporal concepts are generated; when q = 3%
and q 0 = 1%, then |CKPHCS| = 31854 temporal concepts are generated. Thus, for
q = 6% and q = 3% the optimised RCA-based exploration is respectively 3.49 and
1.33 times faster than the non-optimised one.

Figure 5.10(c) shows the computation time of the algorithm CPOHrchy. It is noted
that low values of q , i.e. < 4%, and high numbers of DAGs, i.e. � 300000, slow
down the extraction step. In addition, the e�ciency of CPOHrchy can be influenced

4 http://dataqual.engees.unistra.fr/logiciels/rcaExplore

http://dataqual.engees.unistra.fr/logiciels/rcaExplore
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Fig. 5.10: Performance evaluation based on IBD and IBGN blue datasets of Tab.
5.12; minimum support q is defined for LKBIOS; q 0 is defined for LKPHCS

by the used implementation5, which is not currently optimised for searching in large
collections.

5.5.3 Navigating the Resulting Hierarchy of Graphs

Figure 5.11 depicts an excerpt from a hierarchy of DAGs extracted by applying RCA-
Seq to an IBGN blue dataset with 80 analysed hydro-ecological sequences. This
excerpt highlights two benefits of exploring qualitative sequential data by means of
RCA. Firstly, the generalisation order regarding the structure of the extracted DAGs.
For example, the structure of DAG (e) is more specific than the structure of its ancestor
DAGs, i.e. there exists a projection from its ancestor DAGs into (e). Secondly, the par-
tial order on items, and the inclusion order on itemsets. For instance, DAG (g) reveals
the regularity {MOOXblue} {IBGNblue} (i.e. a blue quality of IBGN Bio indicator is
frequently preceded by a blue quality of MOOX PhC parameter) that is a specialisa-
tion of the less accurate regularity {?blue} {IBGNblue} (i.e. a blue quality of IBGN
Bio indicator is frequently preceded by a blue quality of some PhC parameter) re-
vealed by DAG (b). Similarly, DAG (i) reveals {PHOSblue,NITRblue} {IBGNblue}
regularity that is a specialisation of the regularity {PHOSblue} {IBGNblue} re-
vealed by (e). In addition, DAG (e), having 12.5% frequency (i.e. in Fig. 5.11, DAG

5 based on Java Collection Framework and Lambda Expressions
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Fig. 5.11: Excerpt from a hierarchy of DAGs generated from an IBGN blue dataset
with 80 analysed hydro-ecological sequences

(e) has Support = 10, and the total number of analysed sequences is equal to 80),
can be found when, e.g. q = 12%, even if its accurate specialization DAG (i) is not
frequent, and thus is not extracted. These properties of the extracted hierarchies help
experts in understanding the obtained knowledge, and, besides, provide a quick way
to navigate to interesting DAGs.

Accordingly, the hierarchy in Fig. 5.11 can be navigated starting from the more
general DAGs. Thus, the experts have an overview of the trends within analysed data,
and minimize the chance of overlooking interesting ones. DAG (a) confirms that all
analysed Bio samples are preceded by at least one PhC sample. Both direct descen-
dants, the (b) and (c) DAGs, emphasize two well-known correspondence between
the qualities of PhC parameters and the ones of IBGN Bio indicator. Firstly, DAG
(b), which is retrieved with 78.75% frequency in the analysed data, highlights that
IBGNblue is frequently preceded by PhC parameters having blue qualities. Secondly,
DAG (c), which is retrieved in 17.5% of the analysed data, stresses that red PhC
parameters are not frequently measured before an IBGNblue since they produce a
degradation of the watercourse qualities, and do not lead to a very good ecological
status. As expected, in contrast with DAG (b), DAG (c) has a low support. Therefore,
the experts can navigate only descendants of DAG (b) in order to find patterns reveal-
ing pertinent synergies between PhC parameters and IBGNblue that provide a very
good quality of watercourses. In addition, the experts can focus only on descendants
of (c) to find out how the watercourse degradation is neutralised when red PhC
parameters are measured. For example, the neutralisation of ?red is possible when
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these very bad values of PhC parameters coexist at the same time with the good
values MOOXblue and NITRblue as shown by DAG (f). Following the same principles,
the experts can continue the navigation being guided by the relationships between
the extracted DAGs and the information about their support.

5.6 Conclusion

In this paper, we have presented results on the application of RCA to environmental
datasets coming from the real world and built under guidance of domain experts.
The two application domains are biopesticides and antimicrobial products made from
plants and assessment of the quality of waterbodies. We have shown the scope of the
RCA process in terms of quantitative opportunities and limits on our datasets. We
also have described qualitative results in the second domain, about the challenging
issue of temporally linking physico-chemical parameter values with bio-indicator
values.

We are pursuing two related main tracks of research: (1) improving time and
space e�ciency of the RCA implementation and adding new algorithmic strategies;
(2) improving guidance of experts in their analysis.

Concerning track (1), finding opportunities for space and time e�ciency im-
provement is a main and complex task, with tangled concerns, both theoretical and
technical. We are experimenting various collection types as many libraries exist that
can have an impact on e�ciency: Java API collections (currently BitSet is used
as a main provider for e�ciency in experiments of Sect. 5.4), colt library 6 (used
in experiments of Sect. 5.5), Apache common collection library 7, Google Guava
8, etc. Other construction algorithms for the concept lattice will be implemented as
well, such as described and experimented in [1,54]. Another technical but important
concern is about the data, whose input and output file format (currently textual input
format, and dot output format, with optionnally XML output file unfeasible on large
results) and memory encoding (currently adjacency lists) have an impact on e�-
ciency. We also are designing on-demand and local algorithms for RCA, following
the first work presented in [5]. There are plenty of di�erent ways to consider an
on-demand local algorithm, and this way of computing and delivering results has a
strong potential for complex, large and evolving datasets.

Concerning track (2), guidance of experts can be strenghten by various means.
RCA quantifiers o�er many possibilities for analysis, with the counterpart that the
expert may be lost when choosing parameters (quantifiers and conceptual structures).
To that aim, we are studying assisting methodologies, by providing a controlled lan-
guage for expressing a general “query” with di�erent quantifiers associated with the
various relations, and the possible choice of only parts of the RCF; by controlling the

6 https://dst.lbl.gov/ACSSoftware/colt/

7 https://commons.apache.org/proper/commons-collections/

8 https://github.com/google/guava/wiki

https://dst.lbl.gov/ACSSoftware/colt/
https://commons.apache.org/proper/commons-collections/
https://github.com/google/guava/wiki
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coherence between the quantifier choices on semantically connected relations; and
by anticipating the result size on neighbouring configurations (with slight changes
in the analysed RCF part, or with “similar” quantifiers). The other challenge is
providing a user interface with result visualization adapted to the domain experts.
Presenting concept orders is used in many tools, while others focus on a particular
concept and allow navigating to its neighbours [20], or give an alternative view on
the conceptual structure through tag clouds [27].
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