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Local geometry of polyhedra

We give a formula that relates internal and external angles of polyhedra and some geometric applications.

Introduction and notations

Dealing with polyhedra of genus 0 in the usual three dimensional space, we focus on the relationship between the angles of the faces (the "internal angles"), and the angles between the faces (the "external angles") . Our formula is based on the description of each star of the polyhedron (cf. below) by mean of the quaternionic algebra ( [START_REF] Honvault | Similarities of the sphere[END_REF]), and the Graham-Schmidt orthonormalisation process. We will restrict our study to triangulated polyhedra, because each face of a given polyhedron can be triangulated. In this case, some external angles between consecutive faces may be flat.

The article is organized as follows. In the remainder of this section we fix the notation. In §2 we introduce the tools required for the formula, which is presented in §3 with some applications.

Let P be a triangulated polyhedron. For a choosen vertex p, there exists at least three adjacent vertices v 1 , v 2 , v 3 such that the two positively oriented triangles pp, v 1 , v 2 q and pp, v 2 , v 3 q are some faces of P . Let:

• δ 2 P p´2π, 0q be the dihedral oriented angle ("external angle") from pp, v 1 , v 2 q to pp, v 2 , v 3 q, rp, v 2 s being oriented from v 2 to p.

• α 1 P p0, πq be the non-oriented angle at p ("internal angle") of the face pp, v 1 , v 2 q.

Moreover, we denote Sppq the local polyhedron of vertex p (the "star" of p), that is the union of the faces containing p, and d the degree of the vertex p, see [START_REF] Alexandrov | Convex polyhedra[END_REF][START_REF] Devadoss | Discrete and computational geometry[END_REF] for an elementary presentation. This star, seen as a polyhedron with boundary, is not rigid except when d " 3, i.e when Sppq is a tetrahedron with boundary. We use also the notation S `ppq to design the minimal half-cone of vertex p containing Sppq. 
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Local euclidean conditions

The euclidean parameters presented in §1 above are required to define a local polyhedron Sppq, i.e to describe the local geometry near each vertex p. Indeed, as shown in [START_REF] Honvault | Similarities of the sphere[END_REF] the internal and external angles α i and δ i , i " 1, . . . , d, at a vertex p of degree d are related through equations ensuring local constructibility of the polyhedron. We obtain these equations using the quaternionic algebra as follows, by identifying the vector

q i " p `Ý Ñ pv i {|| Ý Ñ pv i || with the unitary corresponding quaternion. p f 1 f 2 f 3 f d´2 f d´1 f d α 1 α 2 α 3 α d´2 α d´1 α d δ 2 q 2 δ 3 q 3 δ d´1 δ d q d δ 1 q 1 Figure 2: Local polyhedron Sppq 2
The set of all quaternions H " tq " pλ, a, b, cq|λ, a, b, c P Ru is a four-dimensional real algebra, generated by 1 " p1, 0, 0, 0q, i " p0, 1, 0, 0q, j " p0, 0, 1, 0q and k " p0, 0, 0, 1q, with the usual addition and multiplication rules: i 2 " j 2 " k 2 " ´1, ij " k, jk " i, ki " j, etc. If λ " 0, we say that q is a pure quaternion. In this case, q " ai `bj `ck represents the vector pa, b, cq of the usual space R 3 , and the multiplication rule for two pure quaternions becomes: qq 1 " ´q.q 1 `q ^q1 where q.q 1 is the usual dot product and q ^q1 the cross product. Finally, the norm of q is defined by |q| " ? qq ˚" ? λ 2 `a2 `b2 `c2 where q ˚" λ ´ai ´bj ´ck. If u is a unitary pure quaternion and Q " cospθ{2q `sinpθ{2qu, then the map:

q P R 3 Þ Ñ QqQ ˚P R 3
is the rotation of axis Ru and angle θ. Now, denote f i the faces containing p, δ i " { f i´1 , f i the external angles and α i " { q i , p, q i`1 the internal angles, for i " 1, . . . , d (in fact each index i is replaced by its representative modulo d in t1, . . . , du). The unit sphere of centre p intersects S `ppq in a union of great circles Ŕ q i , q i`1 , and for q 1 " p0, 1, 0, 0q, q 2 " p0, cospα 1 q, sinpα 1 q, 0q in the canonical basis of H we have (see [START_REF] Honvault | Similarities of the sphere[END_REF]),

q i`1 " sinpα i´1 ´αi qq i `sinpα i qQ i q i´1 Q i sinpα i´1 q with Q i :" cosp δ i 2 q `sinp δ i 2 qq i , (R)
for i " 1, . . . , d ´1. This formula gives q i`1 from q i´1 , q i , α i , α i`1 and δ i . Thus, for a vertex of degree d we have d ´1 parameters for the internal angles α 1 , . . . , α d´1 , d ´2 parameters for the external angles δ 1 , . . . , δ d´2 , and d parameters for the edge lengths, that is a total 3d ´3 parameters. Let us rewrite Eq. (R) in terms of matrices. We first make use of the Gram-Schmidt orthonormalisation process: Lemma 1. For i P Z{dZ let e i :" q i´1 ´cospα i´1 qq i sinpα i´1 q and f i :" q i . Then pe i , f i , e i ^fi q is a direct orthonormal basis.

The proof is a straightforward application of the definitions.

Lemma 2. For i P Z{dZ and Q i as defined in Eq. (R), we have

$ & % Q i e i Q i " ´cospα i qe i`1 `sinpα i qf i`1 Q i f i Q i " sinpα i qe i`1 `cospα i qf i`1 Q i pe i ^fi q Q i " ´ei`1 ^fi`1 .
Proof. By direct calculation

Q i e i Q i " Q i ˆqi´1 ´cospα i´1 qq i sinpα i´1 q ˙Qi " Q i ˆqi´1 sinpα i´1 q ˙Qi ´cospα i´1 q sinpα i´1 q Q i q i Q i " q i`1 sinpα i q ´cospα i q sinpα i q q i
where the last result follows from Eq. (R) and Q i q i Q i " q i . On the other hand we can express q i and q i`1 in the basis pe i`1 , f i`1 q by Lemma 1,

" q i " sinpα i qe i`1 `cospα i qf i`1 , q i`1 " f i`1 .
For the last formula, recall that the map q Þ Ñ Q i qQ i is a rotation and therefore

Q i pe i ^fi qQ i " pQ i e i Q i q ^pQ i f i Q i q.
We are now ready to present Eq. (R) in matrix form:

Proposition 1. For i P Z{dZ, let S i :" ¨´cospα i q sinpα i q 0 sinpα i q cospα i q 0 0 0 ´1'

, R i :" ¨cospδ i q 0 ´sinpδ i q 0 1 0 sinpδ i q 0 cospδ i q ', and T i :" S i .R i . Then we have, ¨ei`1

f i`1 e i`1 ^fi`1 '" T i ¨ei f i e i ^fi '.
Proof. We can rewrite the equations of lemma 2 as

Q i ¨ei f i e i ^fi 'Q i " S i ¨ei`1 f i`1 e i`1 ^fi`1 '.
Since S i is a rotation of angle π, this leads to ¨ei`1

f i`1 e i`1 ^fi`1 '" S i .Q i ¨ei f i e i ^fi 'Q i ,
and finally, we have

Q i ¨ei f i e i ^fi 'Q i " ¨Qi e i Q i Q i f i Q i Q i pe i ^fi qQ i ' " ¨cospδ i qe i ´sinpδ i qe i ^fi f i sinpδ i qe i `cospδ i qe i ^fi ' " R i ¨ei f i e i ^fi '
and the proposition follows.

Theorem and applications

We may establish a connection between the internal angles α i and external angles δ i . The fundamental geometric result is that the composition of all T i yields the identity. Theorem 1. Let T i be defined as in Proposition 1. Then

T d . . . . .T 1 " Id R 3 .
Proof. T d . . . . .T 1 is the matrix of a linear map sending the basis pe 1 , f 1 , e 1 ^f1 q onto itself, so it is the identity matrix of R 3 .

The above formula can be rewritten as:

R d .T d´1 .T d´2 " S d .pT d´3 ...T 1 q ´1, (1) 
and if we note pa ij q 3 i,j"1 the coefficients of the left-hand side, we obtain: a 22 " cospα d´2 q cospα d´1 q `sinpα d´2 q sinpα d´1 q cospδ d´1 q.

(2)

This equation shows that cospδ d´1 q can be computed in terms of the other external angles δ 1 , ..., δ d´3 , the cosines being sufficient in the convex case for instance. Then, the other coefficients of the matrix provides us the values of cospδ d´2 q and cospδ d q. Thus we have d´3 degrees of freedom for the external angles if the internal ones are fixed.

In the particular case of the tetrahedron (d " 3), we find that: cospα 1 q cospα 2 q `sinpα 1 q sinpα 2 q cospδ 2 q " cospα 3 q (3) and sinpδ 1 q sinpα 2 q " sinpδ 2 q sinpα 3 q .

(4)

Thus we can express the cosines of the external angles in terms of the internal adjacent angles, and the sines of the external angles are proportional to the sines of the opposite internal angles.

Finally, let us look at the angles of a regular star with n faces, for which external angles are equal, as well as internal ones. Note respectively δ and α these common values. The equation of theorem 1 becomes:

T n " Id R 3 (5) 
where:

T " ¨´cospαq cospδq sinpαq cospαq sinpδq sinpαq cospδq cospαq ´sinpαq sinpδq ´sinpδq 0 ´cospδq '.

It is the matrix of a rotation of angle θ " ˘arccospptrpT q ´1q{2q where trpT q " cospαq ´cospδq ´cospαq cospδq " 2 sin 2 pδ{2q cos 2 pα{2q ´1 is the trace of T . Then, equation p5q leads, after easy calculations, to the well-known formula: sinpδ{2q cospα{2q " cospπ{nq. [START_REF] Honvault | Euclidean realizations of triangulated polyhedra[END_REF] In the general case, the formula of theorem 1 holds for each vertex of the polyhedron, and we think that we should be able to connect them in order to prove the Cauchy rigidity theorem, which states that convex polyhedra cannot be moved without changing their internal angles.
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