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Hydrodynamic simulations of neutron star cores that are based on a two-fluid description in terms of a
neutron-proton superfluid mixture require the knowledge of the Andreev-Bashkin entrainment matrix which
relates the momentum of one constituent to the currents of both constituents. This matrix is derived for arbitrary
nuclear asymmetry at zero temperature and in the limits of small relative currents in the framework of the energy
density functional theory. The Skyrme energy density functional is considered as a particular case. General
analytic formulas for the entrainment parameters and various corresponding effective masses are obtained. These
formulas are applied to the liquid core of a neutron star composed of homogeneous plasma of nucleons, electrons,
and possibly muons in β equilibrium.

DOI: 10.1103/PhysRevC.73.045802 PACS number(s): 26.60.+c, 97.10.Sj, 97.60.Jd, 47.37.+q

I. INTRODUCTION

In a standard model of a neutron star core, matter is a
uniform plasma consisting of neutrons of number density nn,
and a small admixture of protons and electrons of number
densities np and ne, respectively. Electrons ensure the overall
stability of the star by the condition of electroneutrality,
ne = np, but play a negligible role in mass transport because
their mass is very small compared to the nucleon mass. If the
electron Fermi energy exceeds the muon rest mass, muons
are present in matter, but their density is always smaller
than that of electrons. The electroneutrality condition is then
ne + nµ = np. The electrically charged particles are strongly
coupled to the magnetically braked solid crust. This builds
up a lag between the neutrons and the protons which is only
restored through glitch events. Neutron star cores are therefore
described within two-fluid models in terms of neutron and
proton components which are superfluid in some density range
when the temperature of the star falls below the corresponding
critical temperatures.

As a result of the nucleon-nucleon interactions, the mo-
mentum πq of each nucleon is not simply given by the
corresponding velocity vq (we use the convention that q =
n, p for neutron, proton, respectively) times the mass m (in
the following we shall neglect the small mass difference
between neutrons and protons), but in general it is a linear
combination of the neutron and proton velocities. This is
the so-called Andreev-Bashkin entrainment effect [1]. The
discussions in the literature have been usually obscured by
the confusion between momentum and velocity. Traditionally,
one introduces “superfluid velocities” V q defined by

V q = πq/m, (1)

in which it is recalled that the momenta πq are defined by the
partial derivative with respect to the nucleon current nqvq of
the Lagrangian density �(nq, nqvq) of the system [2,3]. The

mass current of some given nucleon species q

ρq = ρqvq, ρq = nqm (2)

is then expressible as

ρq =
∑
q ′

ρqq ′ V q ′ , (3)

in which ρqq ′ is the (symmetric) entrainment or mass density
matrix. Only one of these matrix elements has to be specified
since the other elements can be obtained from the identities
due to Galilean invariance

ρnn + ρnp = ρn, ρpp + ρpn = ρp. (4)

This matrix is a necessary ingredient in dynamic simulations of
neutron star cores, such as, for instance, the study of oscillation
modes. The (static) equation of state and the entrainment ma-
trix are usually obtained using different microscopic models.
In earlier calculations and even recently, the mass density
matrix was postulated to have some density dependence whose
parameters are determined from rough estimates.

Comer et al. [4] have built a self-consistent equation of
state in the framework of a minimal relativistic σ -ω mean
field model, ignoring nonlinear couplings between the meson
fields; these couplings, however, are essential in order to
reproduce nuclear properties such as the incompressibility of
nuclear matter. They obtained semianalytical formulas for the
entrainment parameters in the limit of small fluid velocities
(compared to that of light), which even within this simple
mean field model take a rather complicated form. It is not clear
that analytical formulas could still be obtained with realistic
relativistic mean field models, taking into account self meson
couplings and including as well the ρ meson which is required
for a correct treatment of the symmetry energy.

Despite the fact that nonrelativistic mean field models have
been widely applied in the study of terrestrial nuclei and
neutron stars, there has been no attempt so far to apply these
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models to the calculation of the mass density matrix. The
purpose of the present work is therefore to fill this gap and
to further investigate the density dependence of the various
entrainment parameters and effective masses that have been
introduced in the literature.

II. ENTRAINMENT IN A MIXTURE OF FERMI LIQUIDS

At zero temperature, entrainment effects have been shown
to be independent of the nucleon pairing correlations giving
rise to superfluidity [5,6]. Even at finite temperatures well
below the critical temperatures for the onset of superfluidity,
pairing as well as thermal effects are very small [6]. We can
therefore ignore pairing interactions and restrict ourself to the
limit of zero temperature.

Borumand et al. [7] have shown how to obtain the entrain-
ment matrix of a neutron-proton mixture in the framework of
the Landau Fermi liquid theory. In what follows, we will limit
ourselves to spin-unpolarized nuclear matter. Therefore, spin
indices will not appear in our formulas, and all quantities are
to be understood as spin averages. Under our assumptions, the
change in the total energy density of the system due to a small
current is expressed as

E = 2
∑

q

∫
d3k

(2π )3
e(q)(k)δñ(q)(k) + 2

∑
q,q ′

∫
d3k

(2π )3

×
∫

d3k′

(2π )3
f qq ′

(k, k′)δñ(q)(k)δñ(q ′)(k′), (5)

in which e(q)(k) is the energy of a quasiparticle (q = n, p

for neutron and proton, respectively) of wave vector k, and
f qq ′

(k, k′) is the (spin-averaged) interaction between the
quasiparticles. Moreover, δñ(q ′)(k′) denotes the change in
the distribution function of quasiparticle states from that of
the static (zero current) ground state characterized by the
Heaviside functions �(k(q)

F − k), where k
(q)
F is the Fermi

momentum (in units of h̄) k
(q)
F = (3π2nq)1/3. In the presence of

neutron and proton currents, the corresponding Fermi surfaces
are displaced by a vector Qq . In the limit of small currents

Qq � k
(q)
F and writing the superfluid velocities from (1) as

V q = h̄ Qq/m, (6)

it can be shown that the mass current ρq = ρqvq of each
nucleon species is linearly related to both the neutron and
proton superfluid velocities

ρq =
∑
q ′

ρqq ′ V q ′ , (7)

where the (symmetric) entrainment matrix ρqq ′ is given by

ρqq ′ = √
ρqρq ′

m√
m⊕

q m⊕
q ′

(
δqq ′ + Fqq ′

1 /3
)
. (8)

The (Landau) effective mass m⊕
q and the dimensionless Landau

parameters Fqq ′
	 are defined, respectively, by

1

m⊕
q

= 1

h̄2k
(q)
F

de

dk

∣∣∣∣
k=k

(q)
F

, (9)

Fqq ′
	 = √

NqNq ′f
qq ′
	 , (10)

in which Nq is the density of quasiparticle states at the Fermi
surface,

Nq = m⊕
q k

(q)
F

h̄2π2
, (11)

and the parameters f
qq ′
	 are obtained from the Legendre

expansion of the spin-averaged quasiparticle interaction,

f qq ′
(k, k′) =

∑
	

f
qq ′
	 P	(cos θ ), (12)

where θ is the angle between the wave vectors k and k′ lying
on the corresponding Fermi surface.

Alternative formulas for the entrainment matrix [8] have
been used in the literature, based on the decomposition of the
Landau effective masses in the form

m⊕
n = m + δm⊕

nn + δm⊕
np, (13)

m⊕
p = m + δm⊕

pp + δm⊕
pn, (14)

where the various contributions to the effective masses are
related to the Landau parameters by the simple formula [9]

δm⊕
qq ′ = 1

3
Fqq ′

1 m

√
nq ′m⊕

q

nqm
⊕
q ′

. (15)

The mass density matrix can then be equivalently written
explicitly as

ρnn = ρn

m + δm⊕
nn

m⊕
n

, (16)

ρpp = ρp

m + δm⊕
pp

m⊕
p

, (17)

ρnp = ρpn = ρn

δm⊕
np

m⊕
n

= ρp

δm⊕
pn

m⊕
p

. (18)

It should be remarked that in the formulas provided by Sauls
(see [8]), the terms proportional to δm⊕

nn and δm⊕
pp in the

expressions for ρnn and ρpp are omitted, and therefore those
formulas violate Galilean invariance.

The quasiparticle energies e(q)(k) and the quasiparticle
interaction f qq ′

(k, k′) can be deduced from a microscopic
approach. The solution of the many-body problem, starting
from the bare nucleon-nucleon interactions, is very difficult.
We shall here adopt a simpler approach based on self-
consistent mean field models with phenomenological effective
interactions (for a review, see for instance [10]), which have
been very successful in describing the nuclear properties of
terrestrial nuclei. Such mean field models have also been
widely applied in the context of neutron stars.

III. LANDAU PARAMETERS IN THE ENERGY
DENSITY FUNCTIONAL THEORY

We shall calculate in this section the Landau parameters for
asymmetric nuclear matter in the framework of the Hohenberg-
Kohn-Sham energy density functional theory [11,12].
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The energy density functional for spin-unpolarized homo-
geneous nuclear matter is written as a sum of the isoscalar
(T = 0) and isovector (T = 1) terms [10]

E =
∑

T =0,1

δ
T 0

h̄2

2m
τ

T
+ Cn

T
(nb)n2

T
+ Cτ

T
n

T
τ

T
+ Cj

T
j

T

2. (19)

The isoscalar and isovector parts of some quantity for a nucleon
system are given, respectively, by the sum and the difference
between the neutron and proton contributions. For example, the
isoscalar and isovector densities are given by n0 = nn + np =
nb and n1 = nn − np, respectively.

The nucleon density nq , kinetic energy density τq (in units
of h̄2/2m), and nucleon current jq are expressible in terms of
the nucleon distribution function ñ(q){k} by

nq =
∫

d3k
(2π )3

ñ(q)(k), (20)

τq =
∫

d3k
(2π )3

k2ñ(q)(k), (21)

jq =
∫

d3k
(2π )3

kñ(q)(k). (22)

Energy density functionals of the form (19) can be obtained
in the Hartree-Fock approximation with effective contact
nucleon-nucleon interactions v̂(r1, r2) of the Skyrme type,
whose standard parametrizations (ignoring spin-orbit terms
which are irrelevant in the present case) are

v̂(r1, r2) = t0(1 + x0P̂σ )δ(r1 − r2)

+ 1

2
t1(1 + x1P̂σ )(k̂

†2
δ(r1 − r2) + δ(r1 − r2)k̂

2
)

+ t2(1 + x2P̂σ )k̂
† · δ(r1 − r2)k̂

+ 1

6
t3(1 + x3P̂σ )δ(r1 − r2)nb

(
r1 + r2

2

)γ

,

(23)

where P̂σ = (1 + σ 1 · σ 2)/2 is the spin exchange operator
and k̂ = −i(∇1 − ∇2)/2. The density-dependent term propor-
tional to t3 represents the effects of three-body interactions.
The coefficients Cn

T
(nb), Cτ

T
, and Cj

T
can then be expressed

in terms of the parameters of the Skyrme interaction (see
appendix). It should be stressed, however, that the functional
(19) is more general than the Skyrme functional. In particular,
the coefficients Cn

T
(nb) can be any function of the baryon

density nb.
The single-particle energies are obtained from the func-

tional derivative of the energy density

e(q)(k) = δE
δñ(q)(k)

∣∣∣∣
0

, (24)

where the zero subscript indicates that the functional derivative
is evaluated in the static ground state (in which the currents jq

vanish), characterized by the distribution function

ñ
(q)
0 (k) = �

(
k(q)

F − k
)
. (25)

Substituting the functional (19) yields

eq(k) = h̄2k2

2m⊕
q

+ Uq, (26)

in which the effective mass m⊕
q [using the same symbol as

for the Landau effective mass defined by (9) since both defi-
nitions coincide] and the single-quasiparticle potential Uq are
given by

h̄2

2m⊕
q

= δE
δτq

= h̄2

2m
+ (

Cτ
0 − Cτ

1

)
nb + 2Cτ

1 nq, (27)

Uq = δE
δnq

= 4Cn
1 nq − 2nb

(
Cn

0 − Cn
1

) + (
Cτ

0 − Cτ
1

)
τb

+ 2Cτ
1 τq + dCn

0

dnb

n2
b + dCn

1

dnb

(2nq − nb)2, (28)

where τb = τn + τp.
The quasiparticle interaction, calculated as a second func-

tional derivative of the energy functional (19), is

f qq ′
(k, k′) = δ2E

δñ(q)(k)δñ(q ′)(k′)

∣∣∣∣
0

, (29)

and contains only 	 = 0 and 	 = 1 components.
The nonvanishing Landau parameters are found to be

expressible as

f nn
0 = 2k

(n)2
F

(
Cτ

0 + Cτ
1

) + 2
(
Cn

1 + Cn
0

)
+ dCn

0

dnb

4nb + 4
dCn

1

dnb

(nn − np)

+ d2Cn
0

dn2
b

n2
b + d2Cn

1

dn2
b

(nn − np)2, (30)

f
pp

0 = 2k
(p)2
F

(
Cτ

0 + Cτ
1

) + 2
(
Cn

1 + Cn
0

)
+ dCn

0

dnb

4nb − 4
dCn

1

dnb

(nn − np)

+ d2Cn
0

dn2
b

n2
b + d2Cn

1

dn2
b

(nn − np)2, (31)

f
np

0 = f
pn

0 = (
k

(n)2
F + k

(p)2
F

)(
Cτ

0 − Cτ
1

) + 2
(
Cn

0 − Cn
1

)
+ dCn

0

dnb

4nb + d2Cn
0

dn2
b

n2
b + d2Cn

1

dn2
b

(nn − np)2, (32)

f nn
1 = 2

(
C

j

0 + C
j

1

)
k

(n)2
F , (33)

f
pp

1 = 2
(
C

j

0 + C
j

1

)
k

(p)2
F , (34)

f
np

1 = f
pn

1 = 2
(
C

j

0 − C
j

1

)
k

(n)
F k

(p)
F . (35)

These formulas agree with those of Bender et al. [13]
for the limiting case of symmetric nuclear matter (using
standard notations f nn

	 = f
pp

	 = f	 + f ′
	 and f

np

	 = f	 − f ′
	)

and generalize the results of Blaizot and Haensel [14] for
asymmetric nuclear matter to any energy density functional of
the form (19).
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It should be remarked in particular that for any such
functional (19), the parameters f nn

1 and f
pp

1 are related by

f nn
1

f
pp

1

=
(

nn

np

)2/3

. (36)

The corresponding dimensionless 	 = 1 Landau parameters
can be expressed in compact form as

Fqq ′
1 = 3α̃qq ′

√
nqm

⊕
q nq ′m⊕

q ′ , (37)

in which the coefficients α̃qq ′ are defined by

α̃nn = α̃pp = 2

h̄2

(
C

j

0 + C
j

1

)
, (38)

α̃np = α̃pn = 2

h̄2

(
C

j

0 − C
j

1

)
. (39)

We conclude this section by remarking that in a general
case of asymmetric nuclear matter (i.e., with nn �= np) the
	 = 1 Landau parameters can be uniquely determined in terms
solely of the effective masses as

Fnp

1 = 3

m

√
nnm

⊕
n npm⊕

p

n2
p − n2

n

[
np

(
1 − m

m⊕
n

)
− nn

(
1 − m

m⊕
p

)]
,

(40)

Fnn
1 = 3

nn

n2
p − n2

n

m⊕
n

m

[
np

(
1 − m

m⊕
p

)
− nn

(
1 − m

m⊕
n

)]
,

(41)

Fpp

1 = 3
np

n2
p − n2

n

m⊕
p

m

[
np

(
1 − m

m⊕
p

)
− nn

(
1 − m

m⊕
n

)]
.

(42)

IV. ENTRAINMENT MATRIX AND EFFECTIVE MASSES

Subtituting the expressions (37) of the Landau parameters
obtained in the previous section, the entrainment matrix
elements (8) can be seen to be expressible as

ρqq ′ = ρq

m

m⊕
q

δqq ′ + α̃qq ′ρqρq ′ , (43)

or more explicitly in terms of the mass densities ρn and ρp,

ρnn = ρn(1 − α̃npρp), (44)

ρpp = ρp(1 − α̃npρn), (45)

ρnp = α̃npρnρp. (46)

It is readily seen that the formulas (44)–(46) imply a basic
property of the entrainment matrix, namely, ρnn + ρnp = ρn

and ρpp + ρnp = ρp, which guarantees the Galilean invariance
of the two-fluid model.

Two other kinds of effective masses, different from
the Landau effective masses m⊕

q , have been introduced in

the literature. Effective nucleon masses can be defined from
the mass density matrix elements by setting

ρqq

ρq

= m

m
q

�

(47)

in such a way that in the proton momentum rest frame (V p = 0)
we have πn = mn

�vn and similarly in the neutron momentum
rest frame, πp = m

p

� vp.
These effective masses have a very simple density depen-

dence, as shown in the formulas

mn
�

m
= 1

1 − α̃npρp

, (48)

m
p

�

m
= 1

1 − α̃npρn

. (49)

The �-effective masses differ from the Landau quasiparticle
effective masses and are related to the latter ones by

m

m
q

�

= m

m⊕
q

+ α̃qqρq, (50)

due to the nonvanishing quasiparticle interactions. The extra
term on the right hand side can be interpreted as resulting from
the backflow induced by the motion of the quasiparticles.

Alternatively, one can introduce effective masses m
q
� such

that in the proton rest frame (meaning vp = 0) we have πn =
mn

�vn and similarly in the neutron rest frame πp = m
p
� vp.

These effective masses are given by

mn
�

m
= 1 − α̃npρn

1 − α̃npρb

, (51)

m
p
�

m
= 1 − α̃npρp

1 − α̃npρb

. (52)

where ρb = ρn + ρp. The effective masses of the different
kinds are related by

mn
� − m = (mn

� − m)

[
1 + nn

np

(
mn

�

m
− 1

)]−1

, (53)

m
p

� − m = (mp
� − m)

[
1 + np

nn

(
m

p
�

m
− 1

)]−1

. (54)

These formulas show that, as pointed out by Prix et al.
[15], in the limit of a very small proton fraction np/nb � 1,
as relevant in the liquid core of neutron stars, we will have
mn

� ∼ mn
� ∼ m and m

p
� ∼ m

p

� . We will compute more accurate
values of the effective masses in Sec. VI.

In studies of neutron star cores, the nondiagonal entrain-
ment matrix element ρnp has often been parametrized as

ρnp = − ερn, (55)

in which the dimensionless parameter ε was taken as a constant
[16–18]. Other authors [15,19,20] have suggested instead to
set the dimensionless parameters defined by

εq = 1 − m
q
�

m
, (56)

as constants. However, comparison with (46), (51), and (52)
shows that neither ansatz is satysfying, since these parameters
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are found to vary with the densities according to

ε = − α̃npρp, (57)

εn = − α̃npρp

1 − α̃npρb

, (58)

εp = − α̃npρn

1 − α̃npρb

. (59)

The effective masses and entrainment parameters seem to
diverge at some points of the ρn-ρp plane. However, as will
be shown in the next section, once stability constraints are
imposed, these apparent singularities disappear.

V. STABILITY OF THE STATIC GROUND STATE AND
CONSTRAINTS ON THE ENTRAINMENT

PARAMETERS

Since the momentum of each nucleon is a linear combina-
tion of both the neutron and proton currents, this means that
the corresponding dynamical contribution to the Lagrangian
density of the system �dyn = Edyn is a bilinear symmetric form
of the currents. It is therefore readily seen that this dynamical
contribution is expressible in terms of the Andreev-Bashkin
entrainment matrix elements as

Edyn = 1
2

(
ρnnV 2

n + 2ρnpV n · V p + ρppV 2
p

)
. (60)

As a result, the total energy density E of the fluid mixture can
be written as the sum of the dynamical contribution Edyn and
an internal static contribution Eins which only depends on the
densities: E = Edyn + Eins.

The static ground state of the system is stable if the term
Edyn is strictly positive. This means that the entrainment matrix
must be positive definite (the minimum energy state thus
being obtained by the vanishing of the superfluid velocities
or equivalently of the currents, i.e., Edyn = 0), which means
that its eigenvalues must be strictly positive. This condition
entails that the matrix elements (44)–(46) should obey

ρnn + ρpp > 0, (61)

ρ2
np < ρnnρpp. (62)

These conditions lead to contraints on the 	 = 1 Landau
parameters (using the other constraint that the Landau effective
masses m⊕

n and m⊕
p have to be positive),

Fnn
1 > −3, Fpp

1 > −3, (63)

together with(
1 + 1

3
Fnn

1

) (
1 + 1

3
Fpp

1

)
>

(Fnp

1

3

)2

. (64)

The stability conditions can also be expressed in terms of
effective masses [21]

m
q
�

m
>

nq

nb

, (65)

or equivalently

m
q

�

m
<

nb

nq

. (66)

In terms of the dimensionless entrainment parameters εq , these
conditions can be expressed as

εq < 1 − nq

nb

. (67)

It should be remarked that the previous inequalities are very
general and have to be satisfied in any two-fluid model. In the
present case, these conditions also impose a constraint on the
energy functional (19) from which the entrainment matrix is
derived. Since the conditions (61) and (62) must be satisfied
for any neutron and proton densities, this leads to the following
requirement

C
j

0 � C
j

1 . (68)

In the particular case of Skyrme functionals, this last condition
reads

t1(2 + x1) + t2(2 + x2) � 0. (69)

Whenever this condition is fulfilled, it can be seen from
Eqs. (48)–(52) that for any neutron and proton densities, the
effective masses m

q
� and m

q

� are therefore positive and smaller
than the bare nucleon mass; that is,

0 < mq
� ,m

q

� � m. (70)

Combining the latter inequality with (65) shows in particular
that

nq/nb < mq
�/m � 1. (71)

Besides, since the proton fraction is very small inside neutron
stars, it can be seen from Eq. (68) and the definitions (48), (49),
(51), and (52) that in this case the neutron effective masses are
always larger than the proton ones,

mn
� > mp

� , mn
� > m

p

� . (72)

Likewise, it can be shown that εq � 0 which, in association
with (67), yields

0 � εq < 1 − nq

nb

. (73)

It is thus found that the entrainment parameters are well-
behaving functions of nucleon densities.

VI. APPLICATION TO NEUTRON STAR
MATTER IN β EQUILIBRIUM

In the previous section, we obtained general formulas for
the entrainment parameters and associated effective masses for
nuclear matter with arbitrary asymmetry. In the present section,
we will apply these formulas to construct a model of a neutron
star core. We will use the SLy4 Skyrme force specifically
devised for astrophysical purposes [22–25]. In the framework
of a compressible liquid drop model based on the SLy4 Skyrme
energy functional, Douchin and Haensel [26] found that the
bottom edge of the crust corresponds to the baryon density
nedge � 0.076 fm−3. In the following, we will consider the
density domain nedge < nb < 3ns, where ns = 0.16 fm−3 is
the nuclear saturation density.

We assume that the liquid core is composed of a homoge-
neous plasma of neutrons, protons, and electrons (and muons
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for baryon densities beyond some critical threshold) in β

equilibrium,

n ↔ p+ + e− + νe, µ− ↔ e− + νµ + ν̄e. (74)

This means that the chemical potentials of the various species
are related by (assuming that neutrinos escaped from the star)

µn = µp + µe, µe = µµ. (75)

In the Hartree-Fock approximation, chemical potentials of
nucleons are equal to the corresponding Fermi energies (q =
n, p) including the rest mass energy

µq = mqc
2 + h̄2k

(q)2
F

2m⊕
q

+ Uq. (76)

Considering the leptons as ideal relativistic Fermi gases, the
lepton chemical potentials are given by (l = e, µ)

µl =
√

mlc2 + h̄2c2(3π2nl)2/3. (77)

Charge neutrality requires that

np = ne + nµ. (78)

In Eqs. (76) and (77), we neglected the deviations in the
chemical potentials caused by the existence of nonvanish-
ing currents, since the relative velocities are typically very
small compared to the velocities of the various constituents.
For completeness, let us mention that the internal energy
density of the nucleons can be decomposed in the form

Eint = E0 + Eent, (79)

in which E0 is the functional (19) evaluated in the static ground
state with the distribution function (25) including the rest mass
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FIG. 1. (Color online) Equilibrium fractions of protons (dashed
line), electrons (thick line), and muons (thin line) in neutron star
liquid core as a function of the baryon density nb = np + nn from
the bottom edge of the crust nedge � 0.076 fm−3 down to 3ns , where
ns = 0.16 fm−3 is the nuclear saturation density. The results were
obtained with the Skyrme SLy4 energy density functional.
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FIG. 2. (Color online) Dimensionless entrainment parameter ε

for npeµ matter in β equilibrium (Skyrme SLy4 energy functional).

energies,

E0{nn, np} = nbmc2 +
(

h̄2

2m
+ Cτ

0 nb

)
3

5
(3π2)2/3

(
n5/3

n + n5/3
p

)
+Cn

0 n2
b + Cn

1 (nn − np)2 + Cτ
1 (nn − np)

× 3

5
(3π2)2/3(n5/3

n − n5/3
p

)
, (80)

and Eent is the entrainment contribution expressible as

Eent = − 1
2ρnεn(δv)2, (81)

where δv is the velocity difference between neutrons and
protons. The entrainment term is negligibly small compared
to the static term Eent � E0 even for the fastest pulsars and can
therefore be neglected.

The muons are present in matter when the electron chemical
potential µe exceeds the muon mass mµc2 � 105 MeV. This
occurs at a baryon density nb � 0.12 fm−3. In equilibrium,
the composition of the liquid core is therefore completely
determined by the baryon density nb (Fig. 1).

The dimensionless entrainment parameters as defined by
(55) and (56), which have been widely used in neutron star
simulations, are represented on Figs. 2 and 3, respectively.
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FIG. 3. (Color online) Dimensionless entrainment parameters εn

(solid line) and εp (dashed line) for npeµ matter in β equilibrium
(Skyrme SLy4 energy functional).
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FIG. 4. (Color online) Effective masses mn
�/m (solid line) and

m
p
� /m (dashed line) for npeµ matter in β equilibrium (Skyrme SLy4

energy functional).

The � and � effective masses are shown on Figs. 4 and
5, respectively. Due to the increase of the proton fraction
with the baryon density (see Fig. 1), the differences between
the two kinds of effective masses m

q
� and m

q

� , which are
negligible at the crust-core boundary, become significant in
deeper layers. We have also plotted the Landau effective
masses for comparison in Fig. 6. As can be seen in those
figures, the various definitions of “effective mass” do not
coincide. This concept should therefore be carefully employed,
and the definition that has been adopted should always be
clearly specified.

Finally we show in Fig. 7 the dimensionless determinant of
the entrainment matrix

ϒ = ρnnρpp − ρ2
np

ρnρp

, (82)

which appears in the perturbed hydrodynamic equations and
which is therefore important for the study of oscillation modes.
In the present case, this quantity is simply given by

ϒ = 1 − α̃npρb, (83)
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FIG. 5. (Color online) Effective masses mn
�/m (solid line) and

m
p

� /m (dashed line) for npeµ matter in β equilibrium (Skyrme SLy4
energy functional).
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FIG. 6. (Color online) Landau effective masses m⊕
n /m (solid line)

and m⊕
p /m (dashed line) for npeµ matter in β equilibrium (Skyrme

SLy4 energy functional).

and is therefore quite remarkably independent of the nuclear
asymmetry.

For comparison, we computed the coefficient α̃np from
which all the entrainment parameters can be obtained, for
the 27 Skyrme forces recommended by Stone et al. [27]
for neutron star studies. The coefficient α̃np ranges from 0 for
the parametrizations SkT4 and SkT5 [28] down to −10.4168
(in units m−1

p fm−3) for the parametrization SV [29]. Let us also
mention that the Skyrme SLy forces [22–25], which have been
widely employed in neutron star studies, yield coefficients
around α̃np ∼ − 1.5 except for the SLy230a force, for which
α̃np = −0.007360.

Notice that the three forces SkT4, SkT5, and SLy230a are
the only parametrizations for which the isovector effective
mass, relevant to the T = 1 isovector electric dipole sum
rule, was set equal to the bare nucleon mass (see Table VII
of Ref. [27]). However, the isovector electric dipole “giant
resonance” in nuclei consists essentially of relative motion
of protons against neutrons, and the sum rule constraint is
therefore crucial for the entrainment effect in the infinite
neutron-proton mixture. The case α̃np = 0 implies that the
effective masses m

q

� and m
q
� are equal to the bare one, and
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FIG. 7. (Color online) Dimensionless determinant ϒ of the
entrainment matrix (Skyrme SLy4 energy functional).
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therefore there is no entrainment. Reciprocally large negative
values of α̃np are associated with strong entrainment effects.

In the present paper, we considered only spin-unpolarized
nuclear matter. We therefore did not discuss spin and spin-
isospin instabilities that plague many Skyrme forces at
supranuclear densities [30,31]. However, notice that for the
SLy4 used in our calculations, the ferromagnetic instability
appears above the baryon density of 0.5 fm−3, which is beyond
the upper limit in our figures.

VII. CONCLUSION

Analytical expressions for the entrainment matrix and
related effective masses of a neutron-proton superfluid mixture
at zero temperature have been obtained within the nonrela-
tivistic energy density functional theory. In contrast to recent
investigations within relativistic mean field models [4], the
entrainment parameters have been found to be expressible by
very simple formulas which could be easily implemented in
dynamical simulations of neutron star cores. We have also
clarified the link between the various definitions of effective
masses that have been introduced in the literature.

We have applied these formulas for Skyrme forces in order
to evaluate the entrainment matrix in the standard model of the
liquid core of neutron stars, composed of a mixture of neutrons,
protons, electrons, and possibly muons in β equilibrium. In
comparing the results with different Skyrme forces, we have
found that the entrainment parameters are quite sensitive to the
adopted parametrization. The observations of the entrainment
effects in neutron stars could therefore provide new constraints
on the construction of phenomenological nucleon-nucleon
interactions and shed light on the properties of strongly
asymmetric nuclear matter.
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APPENDIX: SKYRME ENERGY DENSITY
FUNCTIONAL COEFFICIENTS

The energy functional deduced from the Skyrme effective
interaction in the Hartree-Fock approximation has a form
similar to Eq. (19). The coefficients in the energy functional
(19) can thus be expressed in terms of the parameters of the
Skyrme interaction as follows. As a result of the local phase
invariance of the Skyrme forces [32], the coefficients C

j

T and
Cτ

T are related by

C
j

T = −Cτ
T . (A1)

In terms of the parameters of the Skyrme interaction, the
coefficients of the energy functional are given by [10]

Cn
0 (nb) = 3

8 t0 + 3
48 t3n

γ

b , (A2)

Cn
1 (nb) = − 1

4 t0
(

1
2 + x0

) − 1
24 t3

(
1
2 + x3

)
n

γ

b , (A3)

Cτ
0 = 3

16 t1 + 1
4 t2

(
5
4 + x2

)
, (A4)

Cτ
1 = − 1

8 t1
(

1
2 + x1

) + 1
8 t2

(
1
2 + x2

)
. (A5)
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