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ABSTRACT
We study the nature of non-axisymmetric dynamical instabilities in differentially rotating stars

with both linear eigenmode analysis and hydrodynamic simulations in Newtonian gravity. We

especially investigate the following three types of instability; the one-armed spiral instability,

the low T /|W | bar instability, and the high T /|W | bar instability, where T is the rotational

kinetic energy and W is the gravitational potential energy. The nature of the dynamical insta-

bilities is clarified by using a canonical angular momentum as a diagnostic. We find that the

one-armed spiral and the low T /|W | bar instabilities occur around the corotation radius, and

they grow through the inflow of canonical angular momentum around the corotation radius.

The result is a clear contrast to that of a classical dynamical bar instability in high T /|W |. We

also discuss the feature of gravitational waves generated from these three types of instability.

Key words: gravitational waves – hydrodynamics – instabilities – stars: evolution – stars:

oscillations – stars: rotation.

1 I N T RO D U C T I O N

Stars in nature are usually rotating and may be subject to

non-axisymmetric rotational instabilities. An analytically exact

treatment of these instabilities in linearized theory exists only

for incompressible equilibrium fluids in Newtonian gravity (e.g.

Chandrasekhar 1969; Tassoul 1978; Shapiro & Teukolsky 1983).

For these configurations, global rotational instabilities may arise

from non-radial toroidal modes eimϕ (where m = ±1, ±2, . . . and ϕ

is the azimuthal angle).

For sufficiently rapid rotation, the m = 2 bar mode becomes ei-

ther secularly or dynamically unstable. The onset of instability can

typically be marked by a critical value of the dimensionless param-

eter β ≡ T /|W |, where T is the rotational kinetic energy and W the

gravitational potential energy. Uniformly rotating, incompressible

stars in Newtonian theory are secularly unstable to bar mode for-

mation when β � β sec � 0.14. This instability can grow only in the

presence of some dissipative mechanism, like viscosity or gravita-

tional radiation, and the associated growth time-scale is the dissi-

pative time-scale, which is usually much longer than the dynamical

time-scale of the system. By contrast, a dynamical instability to bar
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formation sets in when β � β dyn � 0.27. This instability is present

independent of any dissipative mechanism, and the growth time is

the hydrodynamic time-scale.

In addition to the classical dynamical instability mentioned above,

there have been several studies indicating that a dynamical instabil-

ity of the rotating stars occurs at low T /|W |, which is far below the

classical criterion of dynamical instability in Newtonian gravity.

Tohline & Hachisu (1990) find in the self-gravitating ring and tori

that an m = 2 dynamical instability occurs around T /|W | ∼ 0.16

in the lowest case in the centrally condensed configurations. For ro-

tating stellar models, Shibata, Karino & Eriguchi (2002, 2003) find

that m = 2 dynamical instability occurs around T /|W | ∼ O(10−2)

for a high degree (�c/�s ≈ 10) of differential rotation. Note that

�c and �s are the angular velocity at the centre and at the equa-

torial surface, respectively. Centrella et al. (2001) found dynamical

m = 1 instability around T /|W | ∼ 0.09 in the N = 3.33 polytropic

‘toroidal’ star with a high degree (�c/�s = 26) of differential ro-

tation, and Saijo, Baumgarte & Shapiro (2003) extended the results

of dynamical m = 1 instability to the cases with polytropic index

N � 2.5 and �c/�s � 10.

Computation of the onset of the dynamical instability, as well

as the subsequent evolution of an unstable star, performed in a

fully non-linear hydrodynamic simulation in Newtonian gravity,

(e.g. Tohline, Durisen & McCollough 1985; Durisen et al. 1986;

Williams & Tohline 1988; Houser, Centrella & Smith 1994; Smith,

Houser & Centrella 1995; Houser & Centrella 1996; Pickett, Durisen

& Davis 1996; Toman et al. 1998; New, Centrella & Tohline 2000)

have shown that β dyn depends only very weakly on the stiffness of
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the equation of state. Once a bar has developed, the formation of a

two-arm spiral plays an important role in redistributing the angular

momentum and forming a core-halo structure. β dyn are smaller for

stars with high degree of differential rotation (Tohline & Hachisu

1990; Pickett et al. 1996; Shibata et al. 2002, 2003). Simulations in

relativistic gravitation (Shibata, Baumgarte & Shapiro 2000; Saijo

et al. 2001) have shown that β dyn decreases with the compaction

of the star, indicating that relativistic gravitation enhances the bar

mode instability.

Recently, several studies have been focused on the collapse of the

rotating stars leading to non-axisymmetric dynamical instabilities

in three-dimensional hydrodynamics. Duez, Shapiro & Yo (2004)

investigated the collapse of a differentially rotating N = 1 poly-

tropic star in full general relativity by depleting the pressure and

found that the collapsing star forms a torus which fragments into

non-axisymmetric clumps. Shibata & Sekiguchi (2005) investigated

rotational core collapse in full general relativity and found that a

burst type of gravitational waves was emitted. In addition, they ar-

gued that a very limited window for the rotating star satisfies to

exceed the threshold of dynamical instability in the core collapse.

Saijo (2005) studied the spheroidal and toroidal configuration of the

collapsing star in conformally flat gravity, and found that toroidal

configuration has a potential source of gravitational waves due to the

enhancement of the non-axisymmetric dynamical instability. Zink

et al. (2005) presented a fragmentation of an N = 3 toroidal poly-

tropic star to both one-armed spiral and a binary system in full gen-

eral relativity, depending on the type of initial density perturbation.

There the authors confirm that the instabilities found in Newtonian

gravity also appear in general relativistic stars of astrophysical rele-

vance. Ott et al. (2005) performed gravitational collapse of unstable

iron cores at the centre of evolved massive stars in Newtonian grav-

ity. Their simulations contained the evolutions from implosion of

iron core (the computations done in two-dimensional code) up to

the post-bounce phase, in which they found growth of unstable m =
1, 2 oscillations.

One of the remarkable features of these low T /|W | instabilities

is an appearance of the corotation modes. As it is pointed out by

Watts, Andersson & Jones (2005) the low T /|W | unstable oscil-

lation of bar-typed one found by Shibata et al. (2002, 2003) has a

corotation point. Here, corotation means the pattern speed of oscil-

lation in the azimuthal direction coincides with a local rotational

angular velocity of the star. It is well known in the context of stellar

or gaseous disc system that the corotation of oscillation may lead

to instabilities. For instance, there have been several density wave

models proposed to explain spiral pattern in galaxies, in which wave

amplification at the corotation radius of spiral pattern is a key issue

(Shu 1992). Another example of importance of corotation is found

in the theory of thick disc (torus) around black holes. Initiated by a

discovery of a dynamical instability of geometrically thick disc by

Papaloizou & Pringle (1984, 1985, 1987), several authors have stud-

ied these instabilities (Blaes 1985a,b; Drury 1985; Blaes & Glatzel

1986; Goldreich, Goodman & Narayan 1986; Kojima 1986, 1989;

Glatzel 1987a,b; Goodman & Narayan 1988). Instabilities of these

systems are thought not to be unique in their origin and in their

characteristics. Some seem to be related to local shear of flow and

to share a nature with Kelvin–Helmholtz instability. Others may be

related to corotation of oscillation modes with averaged flow on

which the oscillation is present. The mechanisms of instabilities by

corotation, however, seem not unique. As is reminiscent to ‘Landau

amplification’ of plasma wave (Stix 1992), a resonant interaction of

corotating wave with the background flow (in the case of Landau

amplification, background flow is that of charged particles) may

amplify the wave, by direct pumping of energy from background

flow to the oscillation. The other may be an overreflection of waves

at the corotation which may be seen in waves propagating towards

shear layer (Acheson 1976).

The main purpose of this paper, in contrast to the preceding stud-

ies of this issue, is to investigate the nature of low T /|W | dynamical

instabilities, especially to study the qualitative difference of them

from the classical bar instability. As is mentioned above, recent

studies have shown that dynamical instabilities are possible for dif-

ferent region of the parameter space of rotating stars. Observing the

existence of dynamical instabilities whose critical T /|W | value are

well below the classical criterion of bar instability, it is natural to

raise a question on whether these two types, ‘high T /|W |’ and ‘low

T /|W |’, of dynamical instability are categorized in the same type

of dynamical instability or not.

Our study is done with both eigenmode analysis and hydrody-

namical analysis. A non-linear hydrodynamical simulation is indis-

pensable for investigation of evolutionary process and final outcome

of instability, such as bar formation and spiral structure formation.

The nature of instability as a source of gravitational wave, which

interests us most, is only accessible through non-linear hydrody-

namical computations. On the other hand, a linear eigenmode anal-

ysis is in general easier to approach the dynamical instability of a

given equilibrium and it may be helpful to have physical insight on

the mechanism and the origin of the instability. Therefore, a linear

eigenmode analysis and a non-linear simulation are complemen-

tary to each other and they both help us to understand the nature of

dynamical instability.

As a simplified system mimicking the physical nature of the dif-

ferentially rotating fluid, we choose to study self-gravitating cylinder

models. They have been used to study general dynamical nature of

such gaseous masses as stars, accretion discs and of stellar system

as galaxies. Although there is no infinite-length cylinder in the real

world, it is expected to share some qualitative similarities with re-

alistic astrophysical objects (Ostriker 1965; Robe 1979; Balbinski

1985; Ishibashi & Ando 1985; Blaes & Glatzel 1986; Ishibashi

& Ando 1986; Glatzel 1987a,b; Luyten 1988, 1989, 1990; Cook,

Shapiro & Stephans 2003). Especially it has served as a useful model

to investigate secular and dynamical instabilities of rotating masses.

These works took advantage of a simple configuration of a cylinder

compared with a spheroid.

This paper is organized as follows. In Sections 2 and 3, we present

our hydrodynamical and eigenmode analysis results of dynamical

one-armed spiral and dynamical bar instability. We present our di-

agnosis of dynamical m = 1 and 2 instabilities by using a canonical

angular momentum in Section 4, and summarize our findings in

Section 5. Throughout this paper we use gravitational units with

G = 1. Latin indices run over spatial coordinates.

2 H Y D RO DY NA M I C S I M U L AT I O N S I N
D I F F E R E N T I A L LY ROTAT I N G S TA R S

Here, we briefly describe the basic equation of the perfect fluid hy-

drodynamics in Newtonian gravity. We follow Saijo et al. (2003) to

perform our three-dimensional Newtonian hydrodynamics assum-

ing an adiabatic �-law equation of state

P = (� − 1)ρε, (2.1)

where P is the pressure, � the adiabatic index, ρ the mass density

and ε the specific internal energy density. For perfect fluids, the

Newtonian equations of hydrodynamics then consist of the
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continuity equation

∂ρ

∂t
+ ∂(ρvi )

∂xi
= 0, (2.2)

the energy equation

∂e

∂t
+ ∂(ev j )

∂x j
= − 1

�
e−(�−1) Pvis

∂vi

∂xi
(2.3)

and the Euler equation

∂(ρvi )

∂t
+ ∂(ρviv

j )

∂x j
= −∂(P + Pvis)

∂xi
− ρ

∂	

∂xi
. (2.4)

Here vi is the fluid velocity, 	 is the gravitational potential

�	 = 4πρ, (2.5)

and e is defined according to

e = (ρε)1/�. (2.6)

We use the same type of artificial viscosity pressure Pvis in Saijo

et al. (2003). When evolving the above equations we limit the step

size 
t by an appropriately chosen dynamical time.

We construct differentially rotating equilibrium stars based on

Hachisu (1986). We assume a polytropic equation of state only to

construct an equilibrium star as

P = κρ1+1/N , (2.7)

where κ is a constant, N is the polytropic index. We also assume the

‘j-constant’ rotation law, which has an exact meaning in the limit of

d → 0, of the rotating stars:

� = j0
d2 + � 2

, (2.8)

where � is the angular velocity, j0 is a constant parameter with units

of specific angular momentum, and � is the cylindrical radius. The

parameter d determines the length scale over which � changes;

uniform rotation is achieved in the limit d → ∞, with keeping the

ratio j 0/d2 finite. We choose the same data sets as Saijo et al. (2003)

for investigating low T /|W | dynamical instabilities in differentially

rotating stars [models I and II in Table 1 corresponds to tables II and I

of Saijo et al. (2003), respectively]. We also construct an equilibrium

star with weak differential rotation in high T /|W |, which excites the

standard dynamical bar instability (e.g. Chandrasekhar 1969). The

characteristic parameters are summarized in Table 1.

To enhance any m = 1 or m = 2 instability, we disturb the initial

equilibrium mass density ρ eq by a non-axisymmetric perturbation

according to

ρ = ρeq

[
1 + δ(1) x + y

Req

+ δ(2) x2 − y2

R2
eq

]
, (2.9)

where Req is the equatorial radius, with δ(1) = δ(2) ≈ 1.7–2.8 × 10−3

in all our simulations. We also introduce ‘dipole’ D and ‘quadrupole’

Table 1. Three differentially rotating equilibrium stars that trigger dynamical instability.

Model Na d/Req
b Rp/Req

c �c/�s
d ρ c/ρmax

e Rmaxd/Req
f T /|W |g Dominant unstable mode

I 3.33 0.20 0.413 26.0 0.491 0.198 0.146 m = 1

II 1.00 0.20 0.250 26.0 0.160 0.383 0.119 m = 2

III 1.00 1.00 0.250 2.0 0.837 0.388 0.277 m = 2

aN: polytropic index. b Req: equatorial radius. c Rpl: polar radius. d�c: central angular velocity; �s: equatorial surface angular velocity.
eρ c: central mass density; ρmax: maximum mass density. f Rmaxd: radius of maximum density. gT: rotational kinetic energy; W:

gravitational binding energy.

Q diagnostics to monitor the development of m = 1 and m = 2 modes

as

D = 〈
eimϕ

〉
m=1

= 1

M

∫
ρ

x + iy

�
dV (2.10)

and

Q = 〈
eimϕ

〉
m=2

= 1

M

∫
ρ

(x2 − y2) + i(2xy)

� 2
dV , (2.11)

respectively.

We compute approximate gravitational waveforms by using the

quadrupole formula. In the radiation zone, gravitational waves can

be described by a transverse-traceless, perturbed metric hTT
i j with

respect to flat space–time. In the quadrupole formula, hTT
i j is found

from (Misner et al. 1973)

hTT
i j = 2

r

d2

dt2
I TT

i j , (2.12)

where r is the distance to the source, Iij the quadrupole moment of

the mass distribution, and where TT denotes the transverse-traceless

projection. Choosing the direction of the wave propagation to be

along the rotational axis (z-axis), the two polarization modes of

gravitational waves can be determined from

h+ ≡ 1

2

(
hTT

xx − hTT
yy

)
, h× ≡ hTT

xy . (2.13)

For observers along the rotation axis, we thus have

rh+
M

= 1

2M

d2

dt2

(
I TT

xx − I TT
yy

)
, (2.14)

rh×
M

= 1

M

d2

dt2
I TT

xy . (2.15)

The time evolutions of the dipole diagnostic and the quadrupole

diagnostic are plotted in Fig. 1. We determine that the system is sta-

ble to m = 1 (m = 2) mode when the dipole (quadrupole) diagnostic

remains small throughout the evolution, while the system is unstable

when the diagnostic grows exponentially at the early stage of the

evolution. It is clearly seen in Fig. 1 that the star is more unstable to

the one-armed spiral mode for model I, and more unstable to the bar

mode for models II and III. In fact, both diagnostics grow for model

I. The dipole diagnostic, however, grows larger than the quadrupole

diagnostic, indicating that the m = 1 mode is the dominant unstable

mode.

The density contour of the differentially rotating stars are shown

in Fig. 2 for the equatorial plane and in Fig. 3 for the meridional

plane. It is clearly seen in Fig. 2 that one-armed spiral structure is

formed at the intermediate stage of the evolution for model I, and

that bar structure is formed for models II and III once the dynamical

instability sets in.

We show velocity fields in Fig. 4 in the equatorial plane and in

Fig. 5 in the meridional plane during the evolution. Note that shocks
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Figure 1. Diagnostics D and Q as a function of t/P c for three differentially

rotating stars (see Table 1). Solid and dotted lines denote the values of D and

Q, respectively. The Roman numeral in each panel corresponds to the model

of the differentially rotating stars, respectively. Hereafter Pc represents the

central rotation period.

occur during the formation of m = 1 instability. We also find that

the fluid motion of the z-direction does not play a dominant role in

generating the dynamical instabilities.

We also show gravitational waves generated from dynamical one-

armed spiral and bar instabilities in Fig. 6. For m = 1 modes, the

gravitational radiation is emitted not by the primary mode itself, but

by the m = 2 secondary harmonic which is simultaneously excited,

albeit at the lower amplitude. Unlike the case for bar-unstable stars,

the gravitational wave signal does not persist for many periods, but

instead damp fairly rapidly.

3 S TA B I L I T Y A NA LY S I S O F A
D I F F E R E N T I A L LY ROTAT I N G C Y L I N D E R

3.1 Rotating self-gravitating cylinder model

Ostriker (1965) numerically computed physical characters of non-

rotating infinite cylindrical masses. We here follow his treatment

and introduce the normalization of variables.

A cylinder rotates around its axis with a given angular velocity

profile, which is a function of a cylindrical radial coordinate � . An
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Figure 2. Density contours in the equatorial plane for three differentially

rotating stars (see Table 1). Models I, II and III are plotted at the parameter

(t/P c, ρmax/ρ
(0)
max) = (16.2, 3.63), (134, 1.26) and (5.49, 1.20), where ρmax

is the maximum density, ρ
(0)
max is the maximum density at t = 0, and R is

the equatorial radius at t = 0. The contour lines denote densities ρ/ρmax =
10−(16−i)×0.287 (i = 1, . . . , 15) for model I and ρ/ρmax = 6.67 (16 − i) ×
10−2 (i = 1, . . . , 15) for models II and III, respectively.

equilibrium of the cylinder is determined by the balance between

pressure gradient, centrifugal force and self-gravity of the cylin-

der. We also introduce an azimuthal angular coordinate ϕ, and a

z-coordinate set along the axis of the cylinder.
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Figure 3. Density contours in the meridional plane for three differentially

rotating stars (see Table 1). The parameters and the contour levels are the

same as Fig. 2.

For a fluid equation of state, we assume to have a polytropic

relation

ρ = ρcθ̄
N , p = pcθ̄

N+1, (3.1)

where ρ c and pc are the normalization factors for a mass density and

a pressure, which we choose those values on the rotational axis of

the cylinder, N is a polytropic index. A variable with a bar denotes

a normalized one. As shall be seen below, it is possible to construct

a cylinder with a finite cylindrical radius by using large N. A non-

rotating spheroid with N � 5 has an infinite radius, while a cylinder

with N = 25 still has a finite cylindrical radius. This qualitative

difference from the well-known characteristics of spheroid simply

results from the difference of geometry.

We normalize the cylindrical radial coordinate as � = α�̄ ,

where α = √
(N + 1)/4πG, and the rotational angular frequency

as � = �̄
√

4πGρc. Following a similar procedure to obtain Lane–

Emden equation of spherical polytropes, more specifically, with us-

ing �− component of the Euler equation and Poisson equation for

a gravitational potential, we obtain Lane–Emden equation for a dif-

ferentially rotating cylinder as

d2θ̄

d�̄ 2
+ 1

�̄

dθ̄

d�̄
+ θ̄ N = 2�̄

d

d�̄
[�̄ �̄]. (3.2)

The rotational profile of an angular velocity we study here is the same

as the one used in the hydrodynamical simulations (equation 2.8),

�̄ = B

�̄ 2 + A
, (3.3)

where A and B are parameters. This is the same as equation (2.8),

with d = √
A and j 0 = B. For simplicity, we hereafter omit ‘bars’

from all the equations.

A frequently used dimensionless measure of rotation is T /|W |.
The rotational kinetic energy T is defined as

T = 1

2

∫
ρ� 2�2 dV , (3.4)

where integration is done for cylinder of unit length. As to gravita-

tional energy, we follow the definition in Cook et al. (2003) as

W ≡ −
∫

ρni∇i	 dV = −m(� )2

4π
. (3.5)

Here, 	 is the gravitational potential and ni is a unit normal vector of

�= constant surface. The integration is performed for a unit length
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Figure 4. Velocity field (vi/|vi (0)
s |) in the equatorial plane for three differ-

entially rotating stars (see Table 1). The time for each snapshot is the same

as in Fig. 2. Note that the velocity arrows are normalized as indicated in the

upper right-hand corner of each snapshot. |vi (0)
s | denotes the surface absolute

velocity at t = 0.

along the axis. m(� ) is the mass contained inside the cylindrical

radius per unit length.

For a large degree of differential rotation, the density maximum

of the configuration becomes off-centred. An example of the profile

of Lane–Emden function in such a case is plotted in Fig. 7.
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Figure 5. Velocity field (vi/|vi (0)
s |) in the meridional plane for three differ-

ential rotating stars (see Table 1). The time for each snapshot is the same as

in Fig. 2.
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Figure 6. Gravitational waveform for three differentially rotating stars (see

Table 1) as seen by a distant observer located on the rotational axis of the

equilibrium star.

3.2 Linear perturbation of a cylinder

3.2.1 Perturbation equations

To study linearized oscillations of self-gravitating cylinder, we si-

multaneously solve linearized version of (1) equation of continuity;

(2) Euler equation; (3) Poisson equation for a gravitational potential.

 0
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 0  0.2  0.4  0.6  0.8  1

θ

ϖ/ϖs

Figure 7. Equilibrium profile of Lane–Emden function for a polytropic

index N = 25 and parameters of rotation (A, B) = (0.43, 1.6). Note that

T /|W | = 0.452. We find an m = 1 unstable mode in corotation in this case.

The adiabatic index of a perturbed fluid is assumed to coincide with

that of background one, so that no g mode appears in our compu-

tation. We also assume that there is no motion along the rotational

axis of the cylinder, and therefore no dependence of the quantities

on z-coordinate.

Assuming a simple harmonic dependence of Eulerian perturba-

tion of variable f as

δ f (t, �, ϕ) = δ f1(� ) exp(−iσ t + imϕ), (3.6)

we can write down the perturbed equations as follows.

Equation of continuity:

du

d�
+ Ns

θ
q +

(
N

θ

dθ

d�
+ 1

�

)
u − mv

�
= 0. (3.7)

� -component of Euler equation:

su + 2�v = dq

d�
+ dy

d�
. (3.8)

ϕ-component of Euler equation:

s v + κ2

2�
u = m(q + y)

�
, (3.9)

where κ := √
2�(2� + � d�/d� ) is the epicyclic frequency.

Poisson equation for a gravitational potential:

d2 y

d� 2
+ 1

�

dy

d�
− m2

� 2
y = Nθ N−1q. (3.10)

We have here defined Eulerian perturbation quantities as

u = iδv�
1 , v = δv

ϕ

1 , y = δ	1, q = δθ1. (3.11)

We also define the following quantity:

s(� ) = σ − m�(� ). (3.12)

If s = 0 for a certain cylindrical radius, the equations becomes singu-

lar there.1 We call it corotation singularity. In that case, a corotation

radius � crt is defined as this singular point. Corotation radius cor-

responds to a cylindrical surface on which the pattern speed of the

oscillation �[σ/m] is equal to the local angular frequency of the

background flow, �(� crt). Although s = 0 is satisfied only for a

1 Unless the rotational angular frequency is pathological, we expect to have

a regular singularity there.
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purely real eigenfrequency, we here denote that a mode is in corota-

tion when a cylindrical radius satisfies �[σ ] − m� = 0 in the cylin-

der, even if we have a complex eigenfrequency σ . Thus, a corotation

radius is also defined for complex mode where the equation has no

singularity.

To close the eigenvalue problem, we should impose boundary

conditions. One of the two conditions at the surface � = � s where

equilibrium pressure becomes zero is the conventional free boundary

condition. This means no stress is exerted on the cylindrical surface,

which reduces to the condition

sq + dθ

d�
u = 0. (3.13)

The other is the condition on the perturbed gravitational potential.

From equation (3.10), the perturbed potential outside the cylinder

(θ = 0, q = 0) is y ∼ �±m . At the surface of the cylinder we im-

pose the condition that the gravitational potential smoothly matches

to the non-diverging solution at infinity. Therefore, the continuity

condition of the potential requires

dy

d�
+ m

�
y = 0, (3.14)

at the cylindrical surface. On the rotational axis of the cylinder, � =
0, we impose a regularity condition on the variables.

Our numerical method to solve this eigenvalue problem is

straightforward: we use the conventional shooting method to find

eigenmodes. The system of linearized equations are solved both

from the rotational axis and from the surface of the cylinder, with

the boundary conditions being taken into account. At the interme-

diate matching radius, we impose a condition that both solutions

connect smoothly. This procedure picks up the physical solutions

of the eigenvalue problem.

As we are interested in a dynamical instability, we assume the

eigenfrequency takes complex values as well as other perturbed

variables. We focus to the case where s(� ) =σ −�(� ) is non-zero,

which is true except for a real σ at the corotation region, i.e. �(� =
� s) � σ � �(� = 0).2 As a result, our present code can compute

modes without corotation singularity. We also find convergence to

‘modes’ whose frequency is in the corotation region on the real

axis of σ plane. Although the ‘eigenfunction’ of it suggest that we

are picking up one of the singular eigenmodes from continuous

spectrum, we cannot prove it by our present code.

3.2.2 Characters of m = 1 unstable eigenmode

First, we note that we find unstable m = 1 mode only for ex-

tremely soft equation of state. In general, we can construct a

cylinder with a finite cylindrical radius (but an infinite length for

z-direction) for an extremely large polytropic index N than the case

of a spheroid.

From the results of hydrodynamical simulations (Saijo et al.

2003), we find that an m = 1 instability appears in a soft equa-

tion of state (N � 2.5). However in case of a cylinder, N should

satisfy N � 20 to find an m = 1 instability. This is a drawback of

the cylinder to be compared with a result of the spheroid, although

the behaviour of the unstable mode is similar to the spheroid. We

expect that a qualitative nature of these modes are similar even the

polytropic indices are quite different.

2 The pure corotation needs careful treatment around the singular point in

order to pick up solutions as regular as possible. We can use for instance

Frobenius expansion (Ruoff & Kokkotas 2001; Watts et al. 2003) there.

Table 2. Parameters for equilibrium models and eigenfrequency of m = 1

and m = 2 modes. Models (a)–(d) correspond to those in Fig. 9.

Model Mode N �c/�s T /|W | σ/�c
a � crt/� s

b

(a) m = 1 25 13.96 0.4543 0.5126 + 0.01726 i 0.2709

(b) m = 1 25 11.34 0.4597 0.5512 + 0.03153 i 0.2806

(c) m = 1 25 8.218 0.4675 0.6281 + 0.03982 i 0.2864

(d) m = 1 25 6.067 0.4722 0.6910 + 0.01716 i 0.2715

(b)-s1 m = 1 25 11.34 0.4597 −0.245(real) –

(b)-s2 m = 1 25 11.34 0.4597 1.15(real) –

(e) m = 2 1 13.00 0.170 0.3269 + 0.01256 i 0.507

aσ : eigenfrequency of the mode. b� crt: corotation radius; � s: surface

radius.
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Figure 8. Imaginary part of the eigenfrequency σ for a dynamically unstable

m = 1 mode in a cylinder with A = 0.6. Note that a polytropic index N is

25. The parameters of models marked as (a)–(d) are listed in Table 2.

For a fixed polytropic index, we have two parameters A and B
to specify an equilibrium model. We construct a sequence fixing A
with changing B, which roughly corresponds to changing T /|W | in

a fixed degree of differential rotation. We summarize the character-

istics of models studied in this paper in Table 2.

In Fig. 8, we plot an imaginary part of the eigenfrequency of m =
1 mode as a function of T /|W |, fixing A = 0.6 and N = 25. The

mode has a corotation radius inside the cylinder. The unstable mode

appears only in a limited range of T /|W |. This behaviour of the

imaginary part of the eigenfrequency is almost insensitive to the

degree of differential rotation which is parametrized by
√

A.

Interestingly, this is reminiscent to the character of low T /|W |
bar (m = 2) instability which is recently found by Shibata et al.

(2002, 2003) (see fig. 3 in Shibata et al. 2003). For a fixed degree of

differential rotation, T /|W | that permits unstable mode is limited

in a finite range. This may suggest that m = 1 instability and low

T /|W | bar instability may have the same (or similar) generation

mechanism.

We note that a real part of eigenfrequency is monotonically in-

creasing function of T /|W | and of the degree of differential rotation

(see Table 2). The frequency is the order of unity for all cases here.

For each equilibrium model with a sufficiently large degree of differ-

ential rotation and a limited range of T /|W |, we find unstable m = 1

modes in the corotation. Note that we also have exponentially damp-

ing modes, whose eigenfrequency are the complex conjugate of the

dynamically unstable modes. We also find discrete stable modes

outside the corotation region, which have a purely real eigenfre-

quency. For equilibrium models where we found unstable m = 1

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 368, 1429–1442

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/368/3/1429/1026027 by guest on 09 N
ovem

ber 2024



1436 M. Saijo and S. Yoshida

-1

-0.5

 0

 0.5

 1

 0  0.2  0.4  0.6  0.8  1

(d)

-1

-0.5

 0

 0.5

 0  0.2  0.4  0.6  0.8  1

R
e[

q]

ϖ/ϖs

(c)

-1

-0.5

 0

(b)

-1

-0.5

 0

(a)

Figure 9. Eigenfunction of an unstable m = 1 mode in N = 25 cylinder.

We normalize the cylindrical radius � with the surface radius � s . Real part

of Lane–Emden function q = δθ are plotted. Note that the normalization of

the eigenfunction is arbitrarily. The labels (a)–(d) in the figure correspond

to the model in Table 2.
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Figure 10. Perturbed mass density of an unstable m = 1 mode for model (b)

(see Table 2). As it is a solution of linear problem, the scaling is arbitrarily

chosen.

corotating modes, we did not find any dynamically unstable m = 1

mode outside the corotation.

We show the real part of the eigenfunction q of an m = 1 unstable

mode in Fig. 9. In order to compare the m = 1 eigenfunction of

the linear analysis with that of the hydrodynamical simulation, we

plot a perturbed mass density in a cylinder model (Fig. 10) and a

perturbed m = 1 unstable mass density in a differentially rotating

star (Fig. 11). In order to compute the perturbed m = 1 unstable

mass density in a differentially rotating star, we follow

δρ = ρ(t) − ρeq, (3.15)

δρm=1 = 1

2π

∫
δρ e−iϕ dϕ. (3.16)

We have a common feature that the m = 1 unstable mass density

has a single oscillation inside the star and in the cylinder. However,

the behaviour is quite different: for a cylinder the oscillation is con-

centrated inside the corotation radius, while for the differentially

rotating star the oscillation is spread out to the whole equatorial

surface radius.

0 0.25 0.5 0.75 1

ϖ / R
eq

-1

-0.5

0

0.5

1

R
e[

 δ
 ρ

m
=

1]

Figure 11. Amplitude of perturbed mass density of an unstable m = 1

mode for model I (see Table 1). Note that the amplitude is normalized with

its maximum. Solid, dashed and dash–dotted lines represent t = 8.15P c,

9.32 P c and 10.48 P c, respectively. Vertical line represents the corotation

radius of the rotating star.

In order to focus on the comparison of the spiral structure of the

m = 1 unstable mode, we introduce a phase-constant curve of a

perturbed radial velocity. In the linear analysis, complex velocity

δv� is written as (we omit the factor of time dependence e−iσ t since

it is not relevant to a momentary spatial pattern)

δv� = U (� )eiS(� )+imϕ, (3.17)

where U (� ) is a real amplitude and S(� ) is a phase function. An

equation defining phase-constant pattern is therefore,

S(� ) + mϕ = tan−1 
[δv� ]

�[δv� ]
+ mϕ ≡ constant. (3.18)

In a similar way, we also obtain a phase-constant pattern from the

result of non-linear hydrodynamical simulation. First, we expand a

perturbed radial velocity in the equatorial plane in terms of ϕ as

δv� = δv�
m eimϕ =

∥∥δv�
m

∥∥ei(mϕ+Sm ), (3.19)

where

δv�
m = 1

2π

∫
δv� e−imϕ dϕ, (3.20)

∥∥v�
m

∥∥ =
√(�[

δv�
m

])2 + (
[
δv�

m

])2
, (3.21)

Sm = tan−1

[

δv�
m

]
�[

δv�
m

] . (3.22)

Next, we focus on the phase-constant curve mϕ + Sm = C , where

C is a constant. Hereafter we choose C = 0 since it only shifts the

azimuthal angle. The m = 1 phase constant curve of the perturbed

radial velocity in the equatorial plane is

x = � cos ϕ = �∥∥δv�
1

∥∥�[
δv�

1

]
, (3.23)

y = � sin ϕ = − �∥∥δv�
1

∥∥
[
δv�

1

]
. (3.24)

We compare the phase-constant curve of m = 1 unstable mode be-

tween a cylinder (Fig. 12) and a star (Fig. 13). Both figures clearly

have an m = 1 unstable spiral structure. However, the direction of

arms are opposite. Also trailing or leading nature of arms depends

on the radial distance from the centre in both cases. For the cylin-

der model in Fig. 12, the arm changes from leading to trailing if we
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Figure 12. Phase-constant curve of velocity perturbation δv� for model (b)

(see Table 2). The curve is plotted in the plane perpendicular to the rotational

axis. The radius of cylinder is normalized to be unity. The dotted half-circle

marks the corotation radius of the mode. Note that the direction of rotation

of background flow is clockwise.

-1 -0.5 0 0.5 1

x / R
eq

-1

-0.5

0

0.5

1

 y
 /

 R
eq

Figure 13. Phase-constant curve of perturbed radial velocity in the equato-

rial plane of an unstable m = 1 mode for model I (see Table 1). The snapshot

times are the same as that in Fig. 11. Solid circle denotes the corotation

radius of the star. Note that the direction of rotation of background flow is

counterclockwise.

follow it from the centre. For the star in Fig. 13, an arm is leading in-

side while trailing outside. This apparent difference, however, does

not prevent us from comparing these two models. In fact, according

to the result by Robe (1979) leading/trailing nature of spiral arm is

not relevant to stability nature nor classification of eigenmodes. The

same unstable eigenmode can have an arm with trailing, leading or

mixed direction, depending on the equilibrium parameter. Thus the

apparent difference is not significant here. The important point here

is that the two model share one-armed spiral characteristics.

4 C A N O N I C A L A N G U L A R M O M E N T U M TO
D I AG N O S E DY NA M I C A L I N S TA B I L I T Y

4.1 Introduction of canonical angular momentum

In order to diagnose the oscillations in a rotating fluid, we here

introduce the canonical angular momentum following Friedman

& Schutz (1978a). In the theory of adiabatic linear perturbations

of a perfect fluid configuration with some symmetries, it is pos-

sible to introduce canonical conserved quantities associated with

the symmetries. When we introduce Lagrangian displacement vec-

tor ξ i , which is a vector connecting a perturbed fluid element to a

corresponding non-perturbed one, the linearized perturbation equa-

tions are cast into a single second-order differential equation for ξ i

(Friedman & Schutz 1978a):

Ai
j∂

2
t ξ

j + Bi
j∂tξ

j + Ci
jξ

j = 0. (4.1)

Here the operators A and C are Hermitian, B anti-Hermitian, respec-

tively, up to divergence term [see equations 32–34 in Friedman &

Schutz (1978a) for the precise expressions], with respect to an inner

product of displacements ηi and ξ i ,

〈η, ξ〉 ≡
∫

ηi
∗ξ i dV =

∫
ηi ∗ξi dV , (4.2)

where η∗ means Hermite conjugate of η.

The master equation (4.1) is derived from the variational principle

with an action

I =
∫ t2

t1

dt

∫
dV L, (4.3)

where Lagrangian density L is defined by

L := 1

2

[(
∂tξ

∗
i

)
Ai

j

(
∂tξ

j
) + (

∂tξ
∗
i

)
Bi

jξ
j − ξ ∗

i Ci
jξ

j
]
. (4.4)

Applying Nöther’s theorem to this Lagrangian, we obtain canon-

ical conserved quantities (Wald 1984). In particular, if we have an

axisymmetry in the background fluid, the corresponding Killing

vector ∂ϕ produces a conserved current related to the angular mo-

mentum,

J α = ∂α

ϕ
L − ∂L

∂
(
∂αξ j

)£
∂ϕ

ξ j − ∂L
∂
(
∂αξ j∗)£

∂ϕ
ξ j∗, (4.5)

where ∂α
ϕ is α-component of vector ∂ϕ , and £v denotes Lie deriva-

tive along a vector v. Note that our variable ξ i is a complex vector

field. The time component of this current is a canonical angular mo-

mentum density, while space-like components are the flux density.

In the rest of this section, let us follow Friedman & Schutz (1978a)

to derive an explicit form of the canonical angular momentum.

A natural symplectic structure is introduced as an inner product

of a field ξ and its conjugate momentum density,

W (η, ξ ) :=
〈

η, A(∂tξ ) + 1

2
Bξ

〉
−

〈
A(∂tη) + 1

2
Bη, ξ

〉
. (4.6)

It is easy to find that this product is conserved using the master

equation (4.1) and using the symmetric property of operators A, B
and C as

∂t W (η, ξ ) = 0, (4.7)

where both ηi and ξ i are solutions to the master equation (4.1). We

obtain the canonical angular momentum of the system when the

background fluid is axisymmetric (thus A, B, C commute with ∂ϕ),

Jc(ξ ) = −1

2
W (∂ϕξ, ξ ), (4.8)

which is a volume integral of the canonical angular momentum den-

sity defined by equation (4.5). From the definition, these conserved

quantities are quadratic in the Lagrangian displacement vector.

These quantities, however, are ‘gauge dependent’ in general. This

means that we may find ‘trivial displacement’ vector ζ i for any phys-

ical solution of the master equation (4.1). The trivial displacement is
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added to ‘physical’ solution ξ i to produce a different displacement,

which corresponds to the same physical solution (i.e. it does not

change Eulerian perturbation of physical quantities). The trivial de-

fines a class of gauge transformation of the same physical solution,

under which the canonical energy or momentum are generally not

invariant. Thus, a naive use of it to the stability problem of a fluid

may lead to a wrong conclusion. Friedman & Schutz (1978a) showed

that we can find a class of a physical solution to the master equa-

tion (4.1) called ‘canonical displacement’ orthogonal to the trivials,

for which we have no contribution from the trivial displacement to

the canonical quantities. Fortunately, in the case we are interested

in (normal-mode problem with non-zero complex frequency), the

displacements are always orthogonal to the trivials (Friedman &

Schutz 1978b).

Finally, we remark that the canonical energy or angular momen-

tum of the dynamically unstable modes are zero. This is simply

found if we are conscious of the existence of an imaginary part

σ I in the eigenfrequency σ . Then the conservation equation of the

product W is written as

∂t W = 2σI W = 0, (4.9)

and therefore W = 0.

Next, we write down the explicit form of canonical angular mo-

mentum used in the following discussion.

Jc(ξ ) = −1

2
Ŵ (∂ϕξ, ξ )

= −1

2

〈
∂ϕξ, A(∂tξ ) + 1

2
Bξ

〉
+1

2

〈
A∂ϕ∂tξ + 1

2
Bξ, ξ

〉
. (4.10)

Thus,

Jc(ξ ) = −1

2

∫
V

∂ϕξ
∗
i Ai

j∂tξ
j dV − 1

4

∫
V

∂ϕξ
∗
i Bi

j∂tξ
j dV

+1

2

∫
V

Ai
j∂t∂ϕξ

j∗ξi dV + 1

4

∫
V

Bi
j∂ϕξ

j∗ξi dV . (4.11)

Note that since A, B, C are defined in the background fluid

whose physical quantities are purely real, they are ‘real’ quantities

(although B is anti-Hermite as an operator). As we are interested in

a normal mode solution with harmonic dependence in t and ϕ, the

displacement vector can be written as

ξ = ξ0(� )e−iσ t+imϕ, ξ ∗ = ξ ∗
0 (� )eiσ∗t−imϕ. (4.12)

The first and third terms in equation (4.11) are combined to produce

m�[σ ]

∫
V

ρ|ξ |2 dV , (4.13)

while the second and fourth terms are simplified as

im

4

∫
V

[
ρ
(
ξ ∗

i vk∇kξ
i − ξiv

k∇kξ
i∗) + ∇ j

(
ρv jξ ∗

k ξ k
)]

− im

4

∫
V

[
ρ
(
ξiv

k∇kξ
i∗ − ξ ∗

i vk∇kξ
i
) + ∇ j

(
ρv jξ ∗

k ξ k
)]

= − m

∫
V

ρ
 [
ξ ∗

i vk∇kξ
i
]

dV . (4.14)

Note that B is antisymmetric up to a divergence term which appears

in the integral above. We have an exact cancellation to the contribu-

tion of B. As we are interested in the case with a circular flow as a

background whose non-zero component of velocity is vϕ = �(� ),

we can easily find that

ξ ∗
i vk∇kξ

i = im�|ξ |2 − ��ξ�∗ξϕ + ��ξϕ∗ξ� . (4.15)

Finally, we get the simple form of the canonical angular momentum

J c as3

Jc = m

∫
V

(�[σ ] − m�)ρ|ξ |2 dV − 2m

∫
V

ρ��
[ξ� ξϕ∗] dV .

(4.16)

4.2 Application to oscillations of a cylinder

We here present typical distribution of the canonical angular mo-

mentum in the cylinder model. The absolute amplitude of the plotted

function here has no significance, since a linear eigenfunction can

be scaled arbitrarily.

In Fig. 14, we plot the integrand of canonical angular momentum,

defined from equation (4.16) as

� jc(� ) = m(�[σ ] − m�)ρ|ξ |2 − 2mρ��
[ξ� ξϕ∗], (4.17)

for unstable m = 1 mode. Here, jc is the canonical angular mo-

mentum density. Note that an integral in the entire cylinder is zero

for these cases. The features of the canonical angular momentum

distribution for m = 1 unstable modes are,

(i) It changes sign around corotation radius � crt.

(ii) It is positive for � < � crt, while negative for � > � crt.

The feature (i) is remarkable and suggests us that the instability is

related to the corotation. The feature has a clear contrast for a stable

mode (Fig. 15). The canonical angular momentum is either positive

or negative definite, and it does not change its sign. Note that the

former is the case when the pattern speed of mode is faster than

the rotation of cylinder everywhere, while the latter is the opposite.

This feature is expected from the equation (4.16), if the first term is

dominant. In such case, the sign of �[σ ] − m�(� ) determines the

sign of the canonical angular momentum. This simple interpretation,

however, does not hold for the dynamically unstable mode. As it is

shown in the feature (ii) above, we have a positive canonical angular

momentum inside the corotation, which is opposite to the sign of

σ − �(� ) for 0 � � < � crt.

In Fig. 16, we show an example of canonical angular momentum

distribution for m = 2 unstable mode of differentially rotating cylin-

der, which may be compared with the low T /|W | bar instability of

Shibata et al. (2002, 2003). We did not find m = 2 unstable modes

for the same parameters as in the case of m = 1 instability. The

features at the corotation radius, however, are the same as in m = 1

instability.

It is interesting to see how the profile of the canonical angular

momentum changes when we consider the classical bar instability

with uniform rotation. Unfortunately, the bar mode of uniformly

rotating cylinder has a neutral stability point at the breakup limit

(Luyten 1990). We instead looked at m = 2 instability of uniformly

rotating, incompressible Bardeen disc (Bardeen 1975) and the clas-

sical bar instability of Maclaurin spheroid (see Appendix A for these

3 Narayan, Goldreich & Goodman (1987) and Christodoulou & Narayan

(1992) derived the same formula to study the oscillations of the slender

annuli around a point mass gravity source. Watts (private communication)

derived a formula of the canonical energy of eigenmodes in differentially

rotating shell of fluid.
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Figure 14. Distribution of the canonical angular momentum density for

m = 1 unstable mode. Plots are integrand of equation (4.16), � j c(� ).

Models (a)–(d) are the same as in Fig. 9. Vertical dashed lines mark the

corotation radius of the mode.
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Figure 15. Distribution of the canonical angular momentum density for

m = 1 stable modes. Plots are integrand of equation (4.16), � j c(� ). The

parameters of top and bottom panels correspond to (b)-s1 and (b)-s2 in

Table 2. The model (b)-s1 satisfies σ − �(� ) < 0, while the model (b)-s2

satisfies σ − �(� ) > 0 throughout the fluid.
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Figure 16. Distribution of canonical angular momentum density for m = 2

unstable modes (model e in Table 2). Plots are integrand of equation (4.16),

� j c(� ). The vertical dashed line marks the corotation radius.

computations). These are actually more suitable for comparison to

differentially rotating spheroidal model, which we present in the fol-

lowing section. For both of the models we have analytic expressions

of oscillation modes [Schutz & Bowen (1983) for a Bardeen disc and

Chandrasekhar (1969) for Maclaurin spheroid]. It is remarkable that

the canonical angular momentum density is zero everywhere (which

ensures that the total canonical angular momentum vanishes). This

is in a clear contrast with the m = 2 instability in the cylinder with

highly differential rotation.

4.3 Differentially rotating star

We here present the application of the canonical angular momentum

to our hydrodynamics results. Following three assumptions are made

to adopt our hydrodynamic results of dynamical instability (for both

m = 1 and m = 2) to the perturbative approach:

(i) all physical quantities is in coherent oscillation of growing

mode;

(ii) for each model, a growing mode with single m is dominant;

and

(iii) the motion of z-direction does not contribute to the insta-

bility.

From assumption (i) we introduce a complex frequency σ that

represents the same growing mode m. Therefore, all physical quan-

tities f (t) that have a time dependence should satisfy

f (t) = f1 exp(−iσ t), (4.18)

where σ = σ R + iσ I, f 1 is a complex quantity. Note that σ R and

σ I are real quantities.

The assumption (ii) comes from the fact that single m mode has

a dominant contribution to the dynamical instability in the diagnos-

tics (Fig. 1). Therefore, all physical quantity f (� , ϕ) that have a

dependence of azimuthal angle should satisfy

f (�, ϕ) = f (� ) exp(imϕ), (4.19)

where

f (� ) = 1

2π

∫ 2π

0

dϕ f (�, ϕ) exp(−imϕ). (4.20)

From the velocity snapshots in the meridional plane (Fig. 5), the

motion of the fluid along the rotation axis does not have a signif-

icant contribution to the instability. Therefore, we can neglect the

z-dependence in the function (assumption iii) as

f (�, z) = f (� ). (4.21)

From the three assumptions, we determine the frequency from

the dipole and quadrupole diagnostics as

D(t) = 1

M

∫
dvρ(t, �, ϕ, z) exp(iϕ)

= exp(−iσ t)
1

M

∫
dϕ2π�ρ(� ), (4.22)

Q(t) = 1

M

∫
dvρ(t, �, ϕ, z) exp(2iϕ)

= exp(−iσ t)
1

M

∫
dϕ2π�ρ(� ). (4.23)

With the formulae above, we extract the complex frequency by

fitting evolutions of dominant diagnostics for each cases.

Note that we averaged the frequency in the early stage of the

evolution, since the real part of the frequency is almost the same.

Note also that D(0) �= 0 and Q(0) �= 0 since we put m = 1 and m =
2 density perturbation at t = 0 (equation 2.9) to initiate m = 1 or

m = 2 dynamical instability.
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Table 3. Eigenfrequency and the corotation radius of three differentially

rotating stars.

Model σ [�c] � crt [Req]

I 0.590 + 0.0896i 0.167

II 0.284 + 0.0121i 0.492

III 0.757 + 0.200i –

We summarize the corotation radius and the complex frequency

in Table 3 from Fig. 1. Eulerian perturbed velocity is defined as

∂tv
i (t, �, ϕ) = vi (t, �, ϕ) − vi

eq(� ), (4.24)

where vi (t , � , ϕ) is the velocity at t , vi
eq(� ) is the velocity at

equilibrium, respectively. Following assumption (ii), we find,

∂tv
i (t, � ) = 1

2π

∫ 2π

0

dϕ ∂tv
i (t, �, ϕ) exp(−imϕ). (4.25)

The Lagrangian displacement ξ i should satisfy the following dif-

ferential equation:

∂tξ
i = ∂tv

i + ξ k∂kv
i
eq − vk

eq∂kξ
i . (4.26)

Using the three assumptions, � and ϕ component of the Lagrangian

displacement should be written as

ξ� = i∂tv
�

σ − m�eq

, (4.27)

ξϕ = i∂tv
ϕ

σ − m�eq

−
(
∂tv

�
)(

∂� �eq

)
(σ − m�eq)2

, (4.28)

where �eq denotes the angular velocity at equilibrium.

Using the Lagrangian displacement extracted by the formula

above, we compute the canonical angular momentum density de-

fined as an integrand of the canonical angular momentum in equa-

tion (4.16) as

Jc =
∫

dϕ� jc(� ), (4.29)

where

� jc(� ) = m(�[σ ] − m�)ρ|ξ |2 − 2mρ��
[ξ� ξϕ∗]. (4.30)

Note that we have used the assumptions (i)–(iii) to compute the

canonical angular momentum density.

We show the snapshots of canonical angular momentum density in

Fig. 17. Since we determine the corotation radius using the extracted

eigenfrequency and the angular velocity profile at equilibrium, the

radius does not change throughout the evolution. For low T /|W |
dynamical instability, the distribution of the canonical angular mo-

mentum drastically changes its sign around the corotation radius,

and the maximum amount of canonical angular momentum density

increases at the early stage of evolution. This means that the angular

momentum flows inside the corotation radius in the evolution. On

the other hand, for high T /|W | dynamical instability (the bottom

panel of Fig. 17), which may be regarded as a classical bar instability

modified by differential rotation, the distribution of the canonical

angular momentum is smooth and with no particular feature.

Note that the amplitude of � j c is orders of magnitude smaller

than those in the corotating cases in top and middle panels of Fig. 17.

Contrary to the linear perturbation analysis in Section 4.2, the am-

plitude here is not scale free and the relative amplitude has a phys-

ical meaning. Thus, the smallness of it for model III suggest that
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Figure 17. Snapshots of the canonical angular momentum distribution

� j c(� ) in the equatorial plane for three differentially rotating stars (see

Table 1). Solid, dotted, dashed and dash–dotted line represents the time

t/P c = (3.47, 6.93, 10.40, 13.86) for model I, t/P c = (45.68, 56.43, 67.18,

77.97) for model II and t/P c = (1.10, 2.19, 3.29, 4.39) for model III, re-

spectively. Note that vertical line in panels I and II denotes the corotation

radius of the star (model III does not have a corotation radius). We also

enlarged the figure around the corotation radius for panels I and II, which is

presented in the right-hand upper part of each panel. Although our method

of determining the corotation radius is not precise, we clearly find that the

distribution significantly changes around the corotation radius.

it should be exactly zero everywhere in the limit of linearized os-

cillation. The deviation from zero may come from the imperfect

assumption of linearized oscillation, which is made here to extract

oscillation frequency and Lagrangian displacement vector.

From these different behaviours of the distribution of the canon-

ical angular momentum, we find that the mechanisms working in

the low T /|W | instabilities and the classical bar instability may be

quite different, i.e. in the former the corotation resonance of modes

are essential, while the instability is global in the latter case.

5 S U M M A RY A N D D I S C U S S I O N

We have studied the nature of three different types of dynamical

instability in differentially rotating stars both in linear eigenmode
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analysis and in hydrodynamic simulation using canonical angular

momentum distribution.

We have found that the low T /|W | dynamical instability occurs

around the corotation radius of the star by investigating the distri-

bution of the canonical angular momentum. We have also found by

investigating the canonical angular momentum that the instability

grows through the inflow of the angular momentum inside the coro-

tation radius. The feature also holds for the dynamical bar instability

in low T /|W |, which is in clear contrast to that of classical dynamical

bar instability in high T /|W |. Therefore, the existence of corotation

point inside the star plays a significant role of exciting one-armed

spiral mode and bar mode dynamically in low T /|W |. However,

we made our statement from the behaviour of the canonical angular

momentum, the statement holds only in a sense of necessary con-

dition. In order to understand the physical mechanism of the low

T /|W | dynamical instability, we need another tool and it will be the

next step of this study.

The feature of gravitational waves generated from these instabil-

ities are also compared. Quasi-periodic gravitational waves emitted

by stars with m = 1 instabilities have smaller amplitudes than those

emitted by stars unstable to the m = 2 bar mode. For m = 1 modes,

the gravitational radiation is emitted not directly by the primary

mode itself, but by the m = 2 secondary harmonic which is si-

multaneously excited. Possibly this m = 2 oscillation is generated

through a quadratic non-linear self-coupling of m = 1 eigenmode.

Remarkably, the precedent studies (Centrella et al. 2001; Saijo et al.

2003) found that the pattern speed of m = 2 mode is almost the same

as that of m = 1 mode, which suggest the former is the harmonic

of the latter. Unlike the case for bar-unstable stars, the gravitational

wave signal does not persist for many periods, but instead is damped

fairly rapidly. We have not understood this remarkable difference

between m = 1 and m = 2 unstable cases. One of the possibility

may be that the unstable m = 1 eigenmode tends to couple to higher

and higher m modes (which are not necessarily unstable and could

be in the continuous spectrum) and pump its energy to them in a

cascade way. However, we have not found the feature that prevents

m = 2 mode from this cascade dissipation.

Another possibility is that the spiral pattern formed in m = 1

instability redistributes the angular momentum of the original un-

stable flow, so that the flow is quickly stabilized. Inside the coro-

tation radius, the background flow is faster than the pattern, while

it is slower outside. A similar mechanism to Landau damping in

plasma wave which transfer the momentum of wave to background

flow may work at the spiral pattern. The pattern may decelerate the

background flow inside the corotation and accelerate it outside the

corotation, which may change the unstable flow profile to stable

one. As we do not see a spiral pattern forming in the low T /|W | bar

instability, it may eludes this damping process.
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A P P E N D I X A : C A N O N I C A L A N G U L A R
M O M E N T U M O F C L A S S I C A L BA R
I N S TA B I L I T Y

In this appendix, we evaluate the angular momentum density of bar

instability in Bardeen disc and in Maclaurin spheroid. This quantity

is defined in the cylindrical coordinate as

jc(� ) = m�[s]ρ|ξ |2 − 2m�ρ 
[ξ� ξϕ∗] (A1)

= mρ

|s|2
(�[s]|δv|2 + 2� 
 [

δv� δvϕ∗]) , (A2)

where s = σ − m� is the frequency of the mode observed in coro-

tating frame of the fluid. The components of Lagrangian displace-

ment ξ and Eulerian velocity δv are written in the local orthonormal

frame.

A1 Bardeen disc

Bardeen (1975) analytically constructed a self-gravitating ‘warm’

disc with finite thickness by finding corrections to an infinitesimally

thin disc from which he started his approximation. Perturbation of a

Bardeen disc is studied in Schutz & Bowen (1983). Here, we follow

their definitions and notations. Velocity perturbation is written with

two potential functions α and β as

δv = −i∇α − ∇ × (βez), (A3)

where ez is the unit vector in z-direction. Introducing η =√
1 − (�/R)2 in terms of cylindrical radial coordinate � , the gen-

eral perturbation can be expanded by Legendre polynomials as

α =
∞∑

l=0

∞∑
m=−∞

αm
l Pm

2l+m(η)eimϕ. (A4)

Master equations (equations 3.1 and 3.4 in Schutz & Bowen 1983)

for perturbation can be decomposed into those for each l and m. The

bar mode is l = 0, m = 0 case. From equations (3.13) to (3.15) of

Schutz & Bowen (1983), we get a simple eigenvalue equation

s2 − 2�s + 3

2
− 16μ

π
= 0, (A5)

where � is the angular velocity of disc

� =
√

1 − 8μ

π
, (A6)

while s is a mode frequency observed in a corotating frame with disc.

Both of them are normalized by �cld, an angular frequency of cold

disc. μ is called ‘aspect ratio’ parameter (equation 2.18 in Schutz

& Bowen 1983). When this parameter is smaller than π/16, one of

the modes above becomes dynamically unstable. The corresponding

radial eigenfunctions are written as

α2
2 = K

[
1 + 8�

s(s + 2�)

]
P2

2 (η), (A7)

β2
2 = K

[
1 − 8�

s(s + 2�)

]
P2

2 (η), (A8)

where

� = 3

16
− 2μ

π
. (A9)

Using α2
2 and β2

2, Eulerian perturbation of velocity for bar mode is

written as

δv� = −i

(
d

d�
α2

2 + 2

�
β2

2

)
= −6iK�, (A10)

δvϕ = d

d�
β2

2 + 2

�
α2

2 = 6K�, (A11)

where we used the definition of η. With bearing in mind that the real

part of s is �, equation (A2) gives that jc is 0.

A2 Maclaurin spheroid

For the bar mode of Maclaurin spheroid, we have an analytical

expression of Lagrangian displacement,

ξ x = k�e±iϕ, ξ y = k�e±i(ϕ+π/2), ξ z = 0, (A12)

in Cartesian components (Chandrasekhar 1969). Here k is a constant.

It is straightforward to see that the corresponding components in

cylindrical coordinate are

ξ� = k�e±2iϕ, ξϕ = ±ke±2iϕ, ξ z = 0. (A13)

ξϕ is defined with respect to coordinate base vector ∂/∂ϕ. From

equation (A1) with the fact that real part of frequency of unstable

bar mode is �, we easily see that jc vanishes everywhere.
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