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Abstract. The effect of the hyperon softening of the equation of state (EOS) of dense matter on the spin evolution of isolated
neutron stars is studied for a broad set of hyperonic EOSs. We use a multidomain 2-D code based on a spectral method, and
show how important the precision of solving the equations of stationary motion is for the stability analysis. For some EOSs, the
hyperon softening leads to spin-up by angular momentum loss, in the form of the back-bending phenomenon, for a rather broad
range of stellar baryon mass. We show that large segments of the evolutionary tracks exhibiting the back-bending behaviour
in the moment-of-inertia – rotation-frequency plane are unstable and therefore not astrophysically relevant. We show also that
during the spin-up – angular-momentum-loss epoch, an isolated neutron star (e.g. a radio pulsar) can lose a sizable part of its
initial angular momentum without significantly changing its rotation period. We propose also simple arguments and criteria
allowing one to connect the presence of a back-bending epoch with the mass-radius relations and the stiffness and/or softness
of the nucleon and hyperon EOSs of the neutron star core.
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1. Introduction

Some theories of dense matter predict a softening of the equa-
tion of state (EOS) at densities exceeding normal nuclear den-
sity ρ0 = 2.7 × 1014 g cm−3, implied by a phase transition to a
new “exotic” phase. Several “exotic” high-density phases were
proposed in the past, e.g., deconfined quark plasma, and pion-
condensed or kaon-condensed hadronic matter. The softening
of the EOS could be due to a transition into a pure “exotic”
phase, or to a mixture of an “exotic” phase with normal phase
of dense matter. It has been suggested that the softening of the
EOS due to a phase transition could lead to characteristic back-
bending phenomenon in the timing of spinning-down pulsars
(Glendenning et al. 1997) or produce characteristic period clus-
tering in spinning-up neutron stars in low-mass X-ray binaries
(Glendenning 2001; Glendenning & Weber 2002). An interest-
ing conclusion of these papers was that both back-bending in
spinning down pulsar and spin clustering in accreting millisec-
ond pulsars stars is evidence of a phase transition taking place
at the center of a spinning-down pulsar or a spinning-up accret-
ing neutron star.

As we show in the present paper, using several EOS of
dense matter and very precise code for the calculation of the
rotating stellar configurations, observation of the back-bending
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in the timing behavior of isolated pulsars, or of the period clus-
tering, is not unambiguous evidence for an “exotic” phase in
dense matter. These phenomena can also be implied by the
presence of hyperons in dense matter, a feature which is in no
way “exotic” and which was predicted more than forty years
ago (Cameron 1959; Salpeter 1960; Ambartsumyan & Saakyan
1960). A possibility of “spin-up by the angular momentum
loss” for a normal sequence (baryon mass smaller than the
maximum baryon mass of static configurations) of spinning-
down neutron stars with hyperonic cores was previously noted
by Balberg et al. (1999). However, as we will demonstrate in
the present paper, a complete study of back-bending requires a
very precise “exact” code for calculating stationary configura-
tions of rotating stars and a simultaneous careful checking of
secular stability of these configurations. Such conditions were
typically not satisfied in previous calculations.

In previous works, the back-bending phenomenon has been
considered as a feature of the I(Ω) dependence, where I is the
moment of inertia of the star and Ω is the angular frequency of
rotation (Glendenning et al. 1997; Cheng et al. 2002; Spyrou &
Stergioulas 2002). In the present paper we clarify some state-
ments about the back-bending for rotating neutron stars, and
we formulate some rules which are useful for searching for
the back-bending in rotational stellar sequences. As we demon-
strate using high-precision evolutionary sequences, the whole
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analysis should be performed using different pair of variables:
total stellar angular momentum J versus Ω instead of I(Ω).
High precision is particularly important because it is needed to
reliably check the secular stability of rotating configurations;
only the stable ones are interesting and observationally rele-
vant.

The paper is organized in the following way. Softening of
the EOS due to the presence of hyperons is discussed in Sect. 2.
The method allowing for a high precision of the 2-D calcu-
lations of the equilibrium configurations of rotating neutron
stars is briefly described in Sect. 3. Different formulations of
the stability criteria for rotating configurations are briefly sum-
marized in Sect. 4. In Sect. 5 we propose a method of check-
ing for the occurrence of the back-bending phenomenon by in-
specting the baryon-mass – equatorial-radius relations at fixed
values of rotation frequencies. We apply this method to sev-
eral EOSs with a hyperon softening. The interplay between the
back-bending and stability is discussed in Sect. 6, where we
study neutron-star evolution tracks in the angular-momentum –
rotation-frequency plane. In Sect. 8 we study the dependence
of the back-bending phenomenon on the EOS of the hyperonic
matter. Section 9 contains discussion of our results, including
their possible observational aspects, and concluding remarks.

2. Equation of state with hyperons

Possible presence of hyperons in dense neutron-star matter is
mainly the consequence of the Pauli principle for neutrons and
electrons, which at a sufficiently high baryon density can make
a replacement of high-energy neutrons and electrons by more
massive but slower hyperons energetically favorable. Hyperon
species H is then present above a certain threshold ρH, which
is determined by a condition involving the change of energy
of dense matter, due to addition of a single hyperon, at a fixed
pressure, µ0

H. The threshold density for H is the lowest density
at which the equality

µ0
H = µn − qHµe, (1)

is satisfied. Here, µn and µe are the chemical potentials of neu-
trons and electrons (which include rest energies), and qH is the
hyperon charge in units of e. The threshold condition given by
Eq. (1) shows that because of the high value of µe, hyperons
with negative charge are strongly preferred over the positively
charged ones. It also explains, why Σ−, and not the lowest mass
hyperon,Λ0, is usually the first hyperon to appear in dense mat-
ter. It should be stressed, however, that the hyperon-nucleon
interactions which contribute significantly to µ0

H, are poorly
known, and this implies uncertainty not only in the values of ρH

but also in the order of the hyperon appearance. Let us notice
that for some models of dense matter hyperons do not appear
in neutron stars at all, because the lowest ρH is larger than the
maximum density in neutron stars (see, e.g., Pandharipande &
Garde 1972).

The hyperon softening is particularly well visualized by the
behavior of the adiabatic index

Γ =
nb

P
dP
dnb
· (2)

Fig. 1. Equations of state of hyperonic matter calculated by Balberg &
Gal (1997); and used in this paper. Our notation is a close analogue
of that introduced by Balberg et al. (1999). Our labels N1, N1H1, and
N1H2 are their EoS1 N, EoS1 NΛΞ, and EoS1 NΛΣΞ, respectively.
Our N2H1 and N2H2 are their EoS2 NΛΞ and EoS2 NΛΣΞ, respec-
tively. For further explanations see the text.

At each threshold density ρ = ρH the function Γ(ρ) suffers a
drop. For some models, typical values of Γ � 2−3 characteris-
tic of the nucleonic matter at ρ ∼ (2−4)ρ0 can drop even down
to Γ ∼ 1 (see, e.g., Balberg et al. 1999). For other models the
drop is not so dramatic but still sizable (see, e.g., Haensel et al.
2002). The softening of the EOS by hyperonization of matter
can be also visualized by comparing the values of the maxi-
mum allowable mass for non-rotating neutron stars, Mmax, for
the EOS without hyperons, referred hereafter as the N EOS,
and those involving nucleons and hyperons (NH). Typically,
allowing for the presence of hyperons lowers the value of Mmax

by (0.3−0.6) M� (see, e.g., Haensel 2003). The presence of
hyperons leads to a very characteristic flattening of the mass-
radius and mass-central density plot for neutron star, with a
knee taking place just after the threshold for the first hyperon
(Glendenning 1985; Balberg et al. 1999). This feature will be
important in the context of the back-bending phenomenon in
rotating neutron stars.

In present paper we use the EOSs calculated by Balberg
& Gal (1997). These EOSs are presented in Fig. 1. They are
based on phenomenological effective baryonic matter energy
functionals, resulting from effective baryon-baryon interactions
whose parameters are adjusted to reproduce the empirical prop-
erties of nuclear matter as well as the basic experimental fea-
tures of the hyperonic interactions. Two models of nucleon
matter, based on an effective nucleon-nucleon (NN) interaction,
constructed by Balberg & Gal (1997) lead to the EOSs N1 and
N2 of dense matter without hyperons (they correspond to their
models EoS1 N and EoS2 N, in the notation of Balberg et al.
1999). The model N1 corresponds to the incompressibility of
nuclear matter at saturation K0 = 240 MeV (i.e., is close to
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the experimental value of this parameter). The model N2 gives
K0 = 320 MeV, and leads to a significantly stiffer EOS than
the N1 one. Balberg & Gal constructed also two models repre-
senting effective nucleon-hyperon (NH) and hyperon-hyperon
(HH) interactions in baryonic matter. We will denote them by
H1 and H2; they correspond to the ΛΞ and ΛΣΞ effective hy-
peron interaction models of Balberg & Gal (1997) in the nota-
tion of Balberg et al. (1999). Model H2 leads to a stronger soft-
ening of the EOS due to the presence of hyperons than the H1
one. The EOS of baryonic matter are obtained by combining
NN, NH, and HH effective interactions. In this way one obtains
four EOSs of baryonic matter with hyperons. We will denote
them by N1H1, N1H2, N2H1, and N2H2; they correspond to
EoS1 NΛΞ, EoS1 NΛΣΞ, EoS2 NΛΞ and EoS2 NΛΣΞ in the
notation of Balberg et al. (1999), respectively. For the sake of
completeness, we considered also five EOSs of Glendenning
(1985); see Sects. 8 and 9.

3. Numerical calculations

The neutron star models have been computed in full
general relativity by solving the Einstein equations for
stationary axi-symmetric spacetime (see e.g. Bonazzola
et al. 1993 or Gourgoulhon et al. 1999 for the com-
plete set of partial differential equations to be integrated).
The numerical computations have been performed via
the Lorene/Codes/Rot star/rotstar code from L
(http://www.lorene.obspm.fr/). This C++ code imple-
ments a multi-domain spectral method introduced in Bonazzola
et al. (1998). A description of the code can be found
Gourgoulhon et al. (1999). For the purpose of the present work,
we have employed two domains to describe the neutron star in-
terior, making use of the adaptive coordinates to set the bound-
ary between the innermost domain and the outer one at the tran-
sition surface to hyperon matter. In this way, the density field
is smooth in each domain and the spectral method results in a
high accuracy. This accuracy has been checked by evaluating
the GRV2 and GRV3 virial error indicators (see Nozawa et al.
1998), which showed a relative error lower than ∼10−5.

The physical parameters resulting from the equation of
state (pressure, energy density, number density) are obtained by
the Hermite interpolation (Swesty 1996; Nozawa et al. 1998).
The important feature of this approach is automatic fulfillment
of the first law of thermodynamics (the Gibbs-Duhem relation)
(see Nozawa et al. 1998).

4. Back-bending phenomenon,
I and J vs. Ω, and stability of rotating
configurations

The term back-bending comes from nuclear physics (see, e.g.,
Ring & Shuck 1980). Nuclei can be excited by a projectile to
a state of a rapid rotation corresponding to a large angular mo-
mentum quantum number J and excitation energy E(J). The
nuclear angular momentum is measured in the units of �. The
eigenvalues of the operator of the square of the angular mo-
mentum are J(J + 1). For J � 1 one can approximate this

eigenvalue by a “classical value” J2. Within the quasiclassi-
cal approximation (in which J can be treated as a continu-
ous quantity) one can phenomenologically define an “angular
frequency” by ω = dE/dJ . The nuclear moment of inertia
I is then found by fitting the rotational E(J) spectra. In the
quasi-classical approach, I is a function of ω, which can be
represented by a curve in the I − ω plane: along this curve, J
increases. In the standard case there is a one to one correspon-
dence between I andω, and both I(ω) andω(I) are increasing
functions of their arguments. However, for some nuclei (e.g.,
158Er see Ring & Schuck 1980) ω reaches a maximum at some
value of J = J1 and then decreases (back bends) to reach
minimum at some larger value of J = J2. At J = J1 and
J = J2 the derivatives dω/dJ and dω/dI vanish, and for
J1 < J < J2 the curve ω(I) is “back-bending” which corre-
sponds to ω which is decreasing with increasing I (see Fig. 3.4
in Ring & Schuck 1980).

Neutron star can be treated as a huge atomic nucleus.
However, such a star is a macroscopic classical object con-
taining some ∼1057 baryons, to be compared with at most
∼200−250 nucleons in rapidly rotating nuclei. In nuclei, all
high–angular-momentum states are the excited ones and there-
fore unstable. In the case of rotating neutron stars unstable
states are not interesting, their lifetime being too short to ob-
serve them. Therefore in the case of neutron star we have to
check whether a given state of stationary rotation is stable, be-
cause instability would make it astrophysically irrelevant. In
this context, we find it convenient to discuss the back-bending
phenomenon by studying the dependence of the total angular
momentum of the star J versus frequency of rotation f = ω/2π.
We differ in this choice from the previous work, in which the
dependence I( f ) was studied. The reason for this choice is the
following: J is a well-defined quantity describing the instanta-
neous state of a rotating relativistic star and the evolution of the
rotating star can be easily calculated under some assumptions
about the change of J. In what follows, we restrict ourselves to
evolutionary tracks of isolated neutron stars for which baryon
mass MB = const.

The moment of inertia I is usually defined as J/Ω (see,
e.g., Stergioulas 2003). This is the definition used in previous
papers on the back-bending phenomenon in rotating neutron
stars. However, such I does not describe the response of the
star to the change of J or Ω and therefore is not useful for
checking the stability of rotating configuration. In order to ob-
tain, e.g., the spin down of a star due to the angular momentum
decrease dJ one should have defined Ĩ ≡ dJ/dΩ. Only in the
slow rotation limit, where only terms linear inΩ are conserved,
both definitions of the moment of inertia coincide. Total stellar
angular momentum J is not only a quantity with a strict physi-
cal meaning in general relativity. It also allows us to study the
stability of rotating configurations with respect to axially sym-
metric perturbations. The point of the change in stability within
a family of rotating configurations (from stable to unstable or
vice versa). corresponds to the extremum of M or MB at fixed
J (Friedman et al. 1988):(
∂M
∂x

)
J=const

= 0,

(
∂MB

∂x

)
J=const

= 0, (3)



1016 J. L. Zdunik et al: Hyperons and back-bending in neutron stars

Fig. 2. The difference between the back-bending curves J( f ) and I( f ).
The spin-evolution track is calculated for MB = 2.15 M� and N2H1
EOS. Upper panel presents the dependence J( f ). The thicker segment
AB represents stable back-bending evolution, while dotted segment
to the right of the minimum at B consists of configurations unstable
with respect to axisymmetric perturbation. The lower panel represents
the I( f ) spin evolution track, considered in the previous work; the
back-bending behavior occurs apparently along the whole AC branch.
Actually, the BC segment of the I( f ) is astrophysically irrelevant, be-
cause configurations to the right of B are unstable.

where x is the first of the two parameters which parametrize
(label) stationary rotating stellar configurations (the second one
being J), for example x = ρc or x = Pc. Equivalently, the onset
of instability can be determined by the condition(
∂J
∂x

)
MB=const

= 0,

(
∂J
∂x

)
M=const

= 0. (4)

The crucial difference between the dependencies J( f ) and I( f )
in the back-bending region is presented in Fig. 2; it will be
discussed in more detail in Sect. 6. The apparently “back-
bending branch” in lower panel, as defined in the previous work
(Glendenning et al. 1997), consists mostly of configurations
unstable with respect to axial perturbations. The BC segment
is astrophysically irrelevant, and the B point correspond to an
unstable termination of the back-bending branch (see Sect. 7).

5. Softening of the EOS
and the baryon-mass–equatorial-radius relation
at fixed rotation frequency

Rotation modifies the relation between the baryon mass (MB)
and the circumferential equatorial radius (Req) for equilibrium
stellar configurations. The baryon mass MB plays a special role,
because it remains constant during the evolution of solitary pul-
sars. In the present section we point out specific features of the
MB(Req) curves, which signal the presence of the back-bending

Fig. 3. Total baryon mass MB vs circumferential equatorial radius
Req for stationary configurations rotating at a fixed frequency, for the
N2H1 EOS. The curves are labeled by the rotational frequency f =
Ω/2π [Hz]. The dotted line corresponds to the onset of instability with
respect to axi-symmetric (quasi-radial) perturbations. All curves ter-
minate on the large-radius side at the mass-shedding (Keplerian) con-
figurations. The maximum baryon mass of non-rotating stars, Mstat

B,max,
is marked by a dash-dotted line.

(BB) phenomenon in rotating neutron stars. Our calculations
were performed for all the equations of state with hyperons
presented in Balberg et al. (1999). However, we present de-
tailed results (figures) only for those EOSs for which the BB
phenomenon is strongly pronounced.

In Fig. 3 we show the MB(Req) curves for stars rotating at
a fixed rotation frequency f = Ω/2π, calculated for the N2H1
EOS. An enlarged view of a particularly interesting rectangular
region of the MB−Req plane is shown in Fig. 4.

5.1. Signature of BB: Minimum of the baryon mass
at fixed frequency

As we will show, the BB phenomenon is strictly connected to
the existence of a local minimum of MB in the MB(Req) plot
at a fixed f . The softening of the EOS due the hyperonization
leads to the flattening of the MB(Req) and MB(ρc) curves (for
the case of non-rotating stars, see Balberg et al. 1999). This
effect of flattening grows with increasing rotational frequency
and for f > f1,infx rotation may even produce a local mini-
mum of MB(Req) and M(Req). The curve MB(Req) [or MB(ρc)]
at f = f1,infx has a very specific property. Namely, for this
curve first and second derivatives of MB with respect to the
central density ρc vanish at some ρc = ρc,infx, i.e., the curve has
there a point of inflexion which corresponds to baryon mass
M(1,infx)

B . Our numerical calculations for the N2H1 and N1H1
EOS give f1,infx � 880 Hz and f1,infx � 860 Hz respectively
(see Figs. 4 and 6). For f > f1,infx the curve MB(Req),
MB(ρc), . . . , exhibit a local minimum. We find that the presence
of this local minimum is an indication that for MB > M(1,infx)

B
the rotational evolution of neutron star with J̇ < 0 exhibits a BB
phenomenon in the vicinity of f � f1,infx. This is clearly seen
in Figs. 4 and 6, where we show an enlargement of the vicinity



J. L. Zdunik et al: Hyperons and back-bending in neutron stars 1017

Fig. 4. The enlarged region of the back-bending phenomenon (corre-
sponding to the box in Fig. 3). For fixed rotational frequency f1,infx �
880 Hz and f2,infx � 1320 Hz the MB(Req) dependence has an in-
flexion point (corresponding to the masses M(1,infx)

B = 1.91 M� and
M(2,infx)

B = 2.17 M�, respectively) resulting in a region where the curve
is nearly flat. For f ∈ [ f1,infx, f2,infx] there exists a local minimum of
MB. Dashed curves correspond to a fixed total angular momentum J.
The configurations close to the local maxima are obviously stable (for
a fixed J, MB is monotonic). The evolution of an isolated star which
is losing its angular momentum is represented by the motion along a
horizontal line from right to the left (decreasing J). The loss of J in
the back-bending regime is associated with a spin up of the star.

of the inflection point, together with J = const. lines. As we
see, in this case there exists a range of MB where the decrease
of J leads to the increase of the angular frequency which is ex-
actly equivalent to back-bending. The fragment of the curve for
which M decreases as a function of ρc does not necessarily cor-
respond to the instability region – the decrease of MB at a fixed
f does not imply the decrease at a fixed J. It is only the latter
condition which indicates the instability with respect to small
axi-symmetric perturbations1.

In Figs. 4 and 6 we draw also three horizontal lines cor-
responding to fixed values of the total baryon number. A ro-
tating star losing its angular momentum moves along horizon-
tal line from the right to the left. The bottom lines correspond
to the mass MB = M(1,infx)

B � 1.91 M� (� 1.81 M�) for the
N2H1 (N1H1) EOS, at which the curves for f = f1,infx �
880 Hz (860 Hz) have a point of inflexion. The top horizon-
tal line corresponds to the different situation in which the curve
MB(Req) has an inflexion point at a higher frequency, namely
at f = 1320 Hz and 1100 Hz, for the N2H1 and N1H1 EOSs,
respectively. For baryon masses larger than the mass at this in-
flexion point, the angular momentum loss does not lead to the
decrease of angular frequency before the onset of instability is
reached, the star is all the time accelerating. The value of this
limiting masses are MB � 2.17 M� and 1.90 M�, respectively.
The intermediate horizontal line corresponds to the maximum

1 It may be shown that the configurations which realize the extrema
of the MB and M at fixed J coincide, see Harrison et al. (1965) for the
static case, and Friedman et al. (1988) for uniformly rotating configu-
rations.

Fig. 5. Same as in Fig. 3 but for the N1H1 EOS.

Fig. 6. The enlarged region of the back-bending phenomenon (corre-
sponding to the box in Fig. 5).

mass of the non-rotating stars MB = Mstat
B,max = 2.05 M� and

1.824 M�.

5.2. Acceleration or slowing down close
to the Keplerian limit

The interesting difference between the cases N2H1 and N1H1
concerns the behavior of the rotating star as it starts losing
J at the Keplerian frequency fK. The question is whether the
star is then slowing down or spinning up. The actual behav-
ior can be easily deduced from the shapes of the MB(Req) [or
MB(ρc)] curves for a fixed frequency close to the Keplerian
limit. If MB is increasing as we move in the MB − Req plane
away from the Keplerian configuration [(dMB/dρc)K > 0], the
star is slowing down as it loses the angular momentum. This ef-
fect results in the S-shape of the J( f ) dependence in the back-
bending case. Otherwise [(dMB/dρc)K < 0] the isolated star
is spinning up when evolving from the Keplerian configura-
tion with J̇ < 0. The limiting case corresponds to the con-
dition (dMB/dρc)K = 0 [or (dMB/dReq)K = 0] and is repre-
sented in Fig. 4 by the curve with f = 970 Hz (the baryon
mass at this point M(K,flat)

B = 2.01 M�). For the N1H1 EOS
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Fig. 7. Angular momentum of the star J versus rotation frequency f ,
for the N2H1 EOS. Each curve corresponds to a fixed MB, whose
value in M� is displayed. Along each curve, the central density in-
creases downwards. The dotted segments correspond to configura-
tions which are unstable with respect to axi-symmetric perturbations
whereas the thick lines correspond to spin-up by angular momentum
loss. An enlarged view of the rectangular region within which the
back-bending occurs is shown in Fig. 8.

such an effect appears for supramassive stars ( f � 1030 Hz,
M(K,flat)

B = 1.96 M�, see Fig. 6)

6. Back-bending and stability: Analysis
in the J− f plane

The search for the BB phenomenon with simultaneous testing
of the stability of rotating configurations can be most conve-
niently carried out by plotting, at a fixed MB, the stellar angu-
lar momentum J versus rotation frequency f . Let us start with
the N2H1 EOS where the BB is the most pronounced. Several
curves J = J( f ) at selected values of MB, calculated for this
EOS, are shown in Fig. 7. These curves represent the evolution
of an isolated pulsar of a given baryon mass MB, as it loses its
angular momentum due to radiation of electromagnetic waves.
Along each curve, the central density ρc increases monotoni-
cally when one moves downward. For stable configurations J is
a monotonic function along this path. Any minimum indicates
the onset of the instability with respect to axi-symmetric per-
turbations. Putting it differently, for stable configurations each
value of J corresponds to one and only one value of f . The
BB manifests itself as a stable segment of the J( f ) curve with
dJ/d f < 0.

There is an important difference between the information
one can get from the analysis of the J( f ) and the usually used
I( f ) curves. Although the I( f ) can have segments with dI/d f <
0 corresponding to a back-bending in a nuclear physics
sense (Glendenning et al. 1997), the I( f ) dependence cannot
tell us whether a seemingly “back-bending branch” contains

Fig. 8. Enlargement of Fig. 7.

Fig. 9. Same as Fig. 7 but for N1H1 EOS. The dash-dotted line is the
J( f ) curve for the N1 EOS (i.e., not allowing for the presence of the
hyperons).

configurations which are stable. One can have a minimum in
J( f ) on a “back-bending” segment of I( f ) (see Fig. 2); such
a possibility was already mentioned by Spyrou & Stergioulas
(2002).

The final fate of the rotating star as its angular momentum
decreases depends on MB. If MB > Mstat

B,max, the star is supra-
massive and eventually collapses into a black hole.

For the N1H1 EOS the BB phenomenon is less pronounced
than for the N2H1 one. The spin-evolution tracks at MB =

const are shown in Figs. 9 [J( f ) curves] and 10 [zoomed
J( f ) curves in the BB region for normal configurations]. The
zoomed fragment in Fig. 10 shows how narrow, compared with
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Fig. 10. Angular momentum of the star as a function of frequency for
the N1H1 EOS, in the region where the back-bending phenomenon
with stable termination (BBst, see the text) occurs. Each curve corre-
sponds to a fixed value of MB (in M�). Along each curve, the central
density increases downwards. Segments along which the angular mo-
mentum loss is associated with a spin up are indicated by a thick solid
line. All configuration on the S-shaped thick segments are stable. The
dash-dotted line describes a J( f ) trajectory for the EOS of matter in
which hyperons are not allowed (N1 EOS, see the text). This curve
illustrates the dramatic effect of the hyperon softening of the EOS on
the pulsar spin-evolution.

the N2H1 case, is the range of baryon masses for normal con-
figurations where BB with stable termination occurs.

Using the method developed in Sect. 5, one can readily for-
mulate the following criterion. If M(1,infx)

B > Mstat
B,max then the

back-bending is possible only for supramassive configurations.
In the opposite case, the back-bending can occur also for rotat-
ing stars with MB < Mstat

B,max.

7. Two types of back-bending

A look at Fig. 7 shows that there are actually two types of BB
for rotating neutron stars. For isolated neutron star J̇ < 0 and
therefore on a stable J( f ) branch J2 < J1 implies t2 = t(J2) >
t1 = t(J1). Assume then that a BB epoch starts at t1 and termi-
nates at t2. For the first type of BB, occurring for the baryon
mass 2.25 M� and 2.2 M� for the N2H1 EOS (Fig. 7), and for
2 M� and 1.95 M� for the N1H1 EOS (Fig. 9), the point at
t2 corresponds to an unstable rotating configuration. Such a BB
with an unstable termination will be denoted as BBut. This type
of BB occurs above some value of MB equal to M(2,infx)

B . An iso-
lated neutron star enters the BB regime but it will not reappear
in the normal spin-down regime with dJ/d f > 0. However, the
situation changes as decreasing MB crosses the value M(2,infx)

B .
Then the BB segment splits into two segments. The segment
with higher J (corresponding to an earlier epoch) terminates at
a stable configuration, and will be denoted by BBst. Then fol-
lows an epoch of normal spin down with dJ/d f > 0, followed

by a BBut terminated by an instability. With decreasing MB,
the BBut epoch becomes shorter and shorter, and becomes in-
finitesimally small as one reaches the maximum mass of non-
rotating configuration Mstat

B,max. For baryon masses larger than

M(1,infx)
B we are dealing with a “BB episode” in an otherwise

normal neutron star rotational evolution.
The case of BBut can be quite easily discussed on the ba-

sis of the MB(Req) dependence (for example Fig. 4). The BBut

phenomenon corresponds to a specific location of the instabil-
ity line (dotted line in Fig. 4) with respect to the maxima of the
functions MB(Req) at fixed f (if they exist). Because these max-
ima are to the right of the instability line (i.e., in the stable re-
gion) BBut always appears. In the other words, a star with fixed
MB, approaching the instability point, has to eventually spin
up. This conclusion follows immediately from a Lemma for-
mulated by Friedman et al. (1988)2. These authors considered
a two-parameter family of uniformly rotating stars with a one-
parameter EOS P = P(ρ). In general, a continuous sequence
of rotating configurations can be labeled by a parameter λ so
that along this sequence all stellar parameters are functions of
λ. In order to avoid confusion with time derivative of a stellar
quantity Q, we will denote a derivative of Q with respect to
λ by Q′ ≡ dQ/dλ. According to Friedman et al. Lemma, the
unstable region corresponds to the part of the sequence J( f )
for which J′ f ′ > 0 (since along these sequences M′B = 0),
or equivalently, dJ/d f > 0, which means that just before the
instability is reached one has dJ/d f < 0, i.e., the spin up by the
angular momentum loss.

Concluding, BBut is a feature of any equation of state.
However the significance of this effect depends on the stiffness
of the matter. In contrast BBst exists only when MB has a local
minimum for fixed rotational frequency.

The impact of the hyperon EOS softening on the character
and significance of the BB phenomenon can be clearly appre-
ciated by comparing Figs. 7 and 9 with Fig. 11 obtained for
the (nucleonic) N1 EOS without hyperons. For the nucleonic
EOS, BB is present only for supramassive configuration and it
is significant only for relatively high masses (although strictly
speaking it is present for all masses larger than Mstat

B,max – for
masses MB < 2.6 M� the BBut region is so narrow that it is
not visible in Fig. 11), see Cook et al. (1994) and Salgado et al.
(1994). In contrast, in the case of the EOS with hyperons, the
BB is present for configurations close to the Keplerian one for
very broad range of masses. The BB epoch for the nucleonic
EOS terminates always by an instability.

8. The EOS-dependence of the back-bending
phenomenon

The specific form of the BB phenomenon depends on the de-
gree of softening of the EOS above the hyperon threshold. We
considered a rather large set of the hyperonic matter, includ-
ing four models of Balberg & Gal (1997) described in Sect. 2,
and the five models of Glendenning (1985). Rapid rotation and

2 We note a misprint in this Lemma text as printed in Friedman et al.
(1988), who use dots to denote a derivative with respect to λ: the dot
over the right bracket in (Ω̇J̇ + µ̇Ṅ )̇ � 0 is missing.
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Fig. 11. Angular momentum of a star with fixed baryon mass MB as a
function of frequency for the N1 EOS. Segments constraining unstable
configurations are dotted, those corresponding to the spin-up by the
angular momentum loss are indicated by a thick solid line.

spin-evolution for the N1H1 and N2H1 EOSs of Balberg & Gal
(1997) and of an EOS of Glendenning (1985), were previously
studied, using different numerical method of solving of the 2-D
equations of hydrostatic equilibrium, by Balberg et al. (1999).

We obtain the most pronounced BB behavior for the N2H1
EOS, which was not studied by Balberg et al. (1999). In this
model the nucleonic EOS is very stiff, and the hyperon soft-
ening is not so strong as for the EOS with the H2 hyperonic
sector. Such features are optimal for getting a strong BB ef-
fect for a large interval of stellar baryon mass. In particular, we
get BBst for a relatively large interval of normal rotating con-
figurations with MB = (1.91−2.05) M�, which extends up to
2.17 M� if supramassive rotating models are also included. At
MB � 2 M� the star which starts its spin evolution at f � fK
accelerates its rotation by ∼50 Hz during the first epoch of its
evolution when nearly half of its initial angular momentum is
lost ! Implications of such a substantial “back-bending with sta-
ble termination” for the pulsar timing interpretation will be dis-
cussed in Sect. 9.

The N1H1 EOS has significantly softer nucleon compo-
nent, and more important flattening of the MB(Req) curve. As
for the N2H1 EOS, the BBst phenomenon occurs not only for
the supramassive configurations but also for the normal ones,
with MB < Mstat

B,max (Fig. 9). However, the range of the baryon
masses of the normal configuration for which the BBst occurs is
very narrow, M(1,infx)

B = 1.81 M� < MB < Mstat
B,max = 1.823 M�.

For such baryon masses BBst takes place at f > f1,infx �
850 Hz. The BBst itself for this EOS is due to the high degree of
flatness of the hyperon section of the MB(Req) plot. However,
due to this flatness the values of M(1,infx)

B and Mstat
B,max are

also very close to each other. All in all, even including the

Fig. 12. Model N2H2. Baryon-mass versus circumferential equatorial
radius for fixed frequency. The minimum for fixed MB appears ap-
proximately at the same frequency at which the decreasing part for
large Req (close to Keplerian configurations) disappears, i.e. this lim-
iting case correspond to the nearly flat curve (MB = const) up to the
Keplerian configuration. There is no maximum for fixed frequency.

Fig. 13. Model N2H2. The enlarged region marked by the rectangular
box in Fig. 12. For f � 920 Hz there exist region where the curve is
nearly flat (MB does not change) up to the Keplerian configurations.
For higher f there exist a minimum of MB. The evolution of the iso-
lated star which is losing its angular momentum is represented by the
motion along horizontal line from right to the left (decreasing J). For
MB > 1.82 M� angular momentum loss leads to spin up. For explana-
tion of the “way features” of most curves see the text.

supramassive configurations, the range of baryon masses for
which the BBst occurs is not large, 1.81 M� < MB < 1.9 M�.

The situation changes if we consider the N2H2 EOS (see
Sect. 2), where the hyperon softening is stronger. Let us repeat
the analysis applied previously to N1H1 EOS in Sect. 5. The
MB(Req) curves at several values of f are shown in Fig. 12. In
contrast to the case of the N1H1 EOS, pictured in Fig. 5 there
is no curve with a visible second (large-radius) maximum. A
zoom of the relevant baryon-mass-equatorial-radius rectangle
is displayed in Fig. 13. A marginal second maximum appears
at f � 920 Hz. However, this second maximum is not a robust
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Table 1. Main parameters relevant for the spin evolution of isolated
neutron stars with hyperons. The labels “infx” mark the configu-
rations for which the curve MB(Req) f has a point of inflexion. For
f1,infx < f < f2,infx (corresponding masses M(1,infx)

B and M(2,infx)
B ) BBst

exists. For MB > Mstat
B,max we have also BBut, which is the only BB

phenomenon for MB > M(2,infx)
B . For f > fK,flat and MB > M(K,flat)

B , a
star which is initially in the mass-shedding (Keplerian) state, spins-up
as it looses angular momentum. The characteristic S-shape of J( f ) is
then impossible.

Parameter N1H1 N2H1 N1H2 N2H2

Mstat
B,max [M�] 1.83 2.05 1.73 1.95

f1,infx [Hz] 860 880 880 910

M(1,infx)
B [M�] 1.808 1.91 1.73 1.81

fK,flat [Hz] 1030 970 1050 930

M(K,flat)
B [M�] 1.96 2.01 1.87 1.82

f2,infx [Hz] 1100 1320 1080 1380

M(2,infx)
B [M�] 1.9 2.17 1.79 2.06

one. It can be detected only if the precision of the calculation is
sufficiently high. This is to be contrasted with the N1H1 case,
where the second maxima on the MB−Req curves are well pro-
nounced, see Fig. 6. Let us notice that N2H2 is the EOS for
which the BB phenomenon for normal configurations was de-
tected by Balberg et al. (1999).

The main features of the dependence of the back-bending
phenomenon on the EOS can be summarized on the basis of the
Table 1 containing relevant parameters for considered EOSs.
Let us start with four characteristic baryon masses M(1,infx)

B ,

M(2,infx)
B , M(K,flat)

B , Mstat
B,max. Within this set, the ordering accord-

ing to the baryon-mass value turns out to depend only on the
pure nucleon EOS. The sequence for N1H1 and N1H2 EOSs
is: M(1,infx)

B < Mstat
B,max < M(2,infx)

B < M(K,flat)
B whereas for the

N2H1 and N2H2 EOSs we have M(1,infx)
B < M(K,flat)

B < Mstat
B,max <

M(2,infx)
B . As can be seen the main difference is a rather low

value of M(K,flat)
B for the N1H1 and N1H2 models. In the case

of the N2 model of the nucleon component, rotation changes
the properties of the star close to the Keplerian frequency much
more effectively than for the N1 one.

The nucleon N2 EOS is stiffer than the N1 one. As a re-
sult, the stars with nucleon envelopes based on the N2 model
are more extended than the N1 ones, having larger radius at
the same mass. On the other hand, the density profiles in the
nucleon envelopes of the N2H (H = H1,H2) stars have smaller
radial gradients, and therefore they play more important role
during rotation. For example, the N2 envelopes have signifi-
cantly larger mass than the N1 ones. Consequently, a smaller
rotational frequency ( fK,flat = 930, 970 Hz for H2, H1 soften-
ing, respectively), than in the case of the N1 model, is needed
to make the effects of rotation so important that the maximum
of M close to Keplerian frequency disappears. This effect can
be easily seen in Table 1 where not only the N1H frequencies
fK,flat are significantly larger than the N2H ones, but also the
mass M(K,flat)

B is significantly larger. Not only it exceeds the
maximum mass for the nonrotating stars, Mstat

B,max, but it is even

larger than M(2,infx)
B . In this case the M(2,infx)

B determines the
mass above which only spin up by angular momentum loss is
possible.

As the N1 EOS is softer than the N2 one, the additional
softening by hyperons leads almost immediately to the maxi-
mum mass of nonrotating configurations; the hyperon segment
beyond the “hyperon knee” is very flat. The back-bending phe-
nomenon BBst is present between the two inflexion points, and
in general is not connected with the maximum mass of nonro-
tating stars.

The MB(Req) curves displayed in Fig. 13 deserve an addi-
tional comment, referring to the precision of the 2-D calcula-
tions. Nearly all curves for f = 850−1100 Hz (except for two
curves for f � 920 Hz) were obtained in numerical calculations
in which the innermost zone boundary is not adjusted to the
surface of the hyperon threshold. Consequently, these curves
exhibit “wavelets” which result from an insufficient precision
of the numerical calculations. In contrast, the two curves for
f � 920 Hz are calculated with the innermost zone bound-
ary at the hyperon-softening threshold, which enables a much
higher precision.

The division of the stellar interior into two zones is particu-
larly effective in the case of a strong change in the EOS P(ρ) at
some density. In our case we have a rather stiff EOS below the
threshold density for the hyperon appearance, and a soft EOS
for dense matter with hyperons. Therefore, we put the inner
zone boundary at the threshold of hyperon appearance, where
the adiabatic index of the EOS suffers a significant drop. This
allows us for very accurate calculation by the spectral method
also in the region close to the hyperon threshold. Although in
our case we do not encounter a density jump at the zone bound-
ary, our method can be also used for an EOS with a density
jump due to a first-order phase transition.

9. Discussion and conclusion
The presence of hyperons in neutron-star cores can strongly
affect the spin evolution of a solitary neutron star (e.g., an iso-
lated pulsar). As we have shown, such a neutron star can live a
long epoch of “spin down by the angular momentum loss”, and
this could occur for a broad range of baryon mass of neutron
star. The epoch with Ṗ < 0 despite J̇ < 0 could terminate by an
instability or by a stable continuous transition to a “standard”
spin-down epoch.

We paid particular attention to the (Ṗ < 0, J̇ < 0,MB =

const) epoch with a stable termination. It is represented by an
S-shaped segment of the spin-evolution track in the J − f and
I − f planes, and was baptized “back-bending phenomenon”
in the previous literature. Various regimes of the spin evolu-
tion were shown to be correlated with the behaviour of the
MB(Req) f curves at fixed f . In particular, we pointed out im-
portance of the location of the inflection points of the MB(Req)
curves for the existence of the back-bending phenomenon. We
were also inclined to leave the name of back-bending only to
the evolution-track segments with a stable termination (BBst in
our terminology).

Epochs with back-bending for normal rotating configura-
tions were found for two of the four EOS of Balberg & Gal
(1997). On the other hand, we found that the back-bending
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phenomenon for normal sequences was absent for five hyper-
onic EOSs of Glendenning (1985). This illustrates the uncer-
tainties in the hyperonic EOS, stemming from a high degree
of ignorance concerning the nucleon-hyperon and particularly
hyperon-hyperon interactions in dense matter.

Throughout this paper we stressed that the back-bending in
the I − f plane, considered up to now in the literature, should
be accompanied by stability analysis; only stable back-bending
configurations are astrophysically relevant. We performed such
a stability analysis, and we found that very often dominant
back-bending segments of the I( f )MB are unstable with respect
to the axisymmetric perturbations, and therefore do not exist in
the Universe.

As it has been mentioned by Spyrou & Stergioulas (2002),
in such kind of calculations it is extremely important to assure
the thermodynamical consistency of the EOS (the first law of
thermodynamics has to be strictly fulfilled). It is well known
that a rough treatment of this condition can lead to an inac-
curate determination of the maximum mass and stability con-
ditions (for example the configurations corresponding to the
maximum of M and MB do not coincide – this is an evidence
for a lack of the thermodynamical consistency in the EOS).

The precision of the code is also very important and in our
case the proper division of the star into two computational do-
mains (at the threshold for appearance of hyperons) allows us
to obtain high precision results without a large increase of the
number of grid points.

An isolated pulsar, born in a SN II explosion, could have
an interesting and nonstandard past due to a hyperon soften-
ing of the EOS. As we showed, such a pulsar could lose some
half of its initial angular momentum without changing much
its rotation period. Therefore, if one observes a rapid pulsar
with a characteristic age τPSR significantly longer than the age
of a supernova remnant where this pulsar is born, τSNR, this
might be due to some back-bending episode, resulting from a
(hyperon? phase-transition?) softening of the EOS of its core.
Such a possibility of explaining a seeming contradiction be-
tween τSNR and τPSR has been already noticed, in the context of
a mixed-phase EOS softening, by Spyrou & Stergioulas (2002).
Clearly, the observational pulsar-timing signatures of the EOS
softening due to the hyperon or phase-transition softening of
the EOS deserve further studies, and we are planning to con-
tinue such studies using our high-precision 2-D code.

Another interesting consequence of the hyperon softening
of the EOS could be a “period clustering” of rotating neutron

stars powered by accretion in the long living low-mass X-ray
binaries. This problem is now being studied.
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