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Abstract. The analysis of the far wings of resonance lines of alkali elements in brown dwarf spectra requires their accurate
determination. A unified theory of collisional line profiles has been applied for the evaluation of absorption profiles of alkalis
perturbed by helium and molecular hydrogen. The study of the dependence on temperature of the far wings of Li–He and Li–H2

collisional profiles is reported.
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1. Introduction

Alkali metals are the last optical opacity source to condense
out to dust grains in cool substellar atmospheres. Their reso-
nance lines provide a pseudo-continuum that shapes the emit-
ted spectrum from the UV to the Near-Infrared spectral range.
Model atmosphere, synthetic spectra and color predictions rely
therefore on an adequate treatment of the far wings of alkali
resonance lines in the presence of high densities of H2 and He
perturbers.

This paper is a continuation of Allard et al. (2003) where
we presented the first brown dwarf atmosphere models based
on absorption profiles of sodium and potassium perturbed by
He and H2 calculated in a unified line shape semi-classical
theory (Allard et al. 1999) using molecular potentials of
Pascale (1983) to describe the alkali-He interaction and those
of Rossi & Pascale (1985) for the alkali-H2 interaction. This
work has been extended here to the case of lithium line pro-
files.

At sufficiently low densities of the perturbing gas, two dif-
ferent approximations are often used, depending on whether
one is interested in the core of the spectral line or in its wing.
In dealing with the core of the line, the impact approximation is
generally used and leads to a Lorentzian profile which becomes
totally unrealistic in the wing. On the other hand, the wings of
the line are usually described by the one-perturber approxima-
tion, that is, the intensity distribution obtained if only one per-
turbing atom is interacting with the radiating atom. Although
the intensity of the wings calculated with the one-perturber

distribution is proportional to the pressure, the shape in this
approximation is independent of pressure. This contradicts ex-
perimental observations on the satellite bands of alkali metals
perturbed by rare gas (Allard & Kielkopf 1982). As pointed out
in Allard et al. (2003) the low density limit is acceptable if the
density of perturbers at the depth of formation of the wings is
less than 1019 cm−3 for Na and K perturbed by He or H2, but is
not correct for higher densities where multiple collision effects
have to be included. This cannot be taken into account in the
uniform approximation of the Franck-Condon theory (Szudy &
Baylis 1975, 1996) used by Burrows & Volobuyev (2003).

The Li-He/H2 profiles presented here are calculated within
a unified theory which takes into account multiple collision
effects (Allard et al. 1999).

After we recall the approximations used in our theoretical
treatment of the collision to justify the use of a molecular rep-
resentation, we focus our study on theoretical Li line profiles
perturbed by He and H2 and their dependence on temperature.

2. Theory

A unified theory of spectral line broadening has been devel-
oped to calculate neutral atom spectra given the interaction and
radiative transition moments for relevant states of the radiat-
ing atom with other atoms, the perturbers, in its environment.
Complete details and the derivation of the theory are given by
Allard et al. (1999). Our approach is based on the quantum the-
ory of spectral line shapes of Baranger (1958a,b) developed in
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an adiabatic representation to include the degeneracy of atomic
levels (Royer 1974, 1980; Allard et al. 1994).

2.1. General expression for the spectrum
in an adiabatic representation

The spectrum I(ω) can be written as the Fourier transform of
the dipole autocorrelation function Φ(s),

I(ω) =
1
π

Re
∫ +∞

0
Φ(s)e−iωsds. (1)

Here,

Φ(s) = Tr ρD†e
isH
� De

−isH
� (2)

= 〈D†(0)D(s)〉 (3)

is the autocorrelation function of the dipole moment D in the
Heisenberg representation (Allard & Kielkopf 1982),

D(s) ≡ e
isH
� De

−isH
� . (4)

We use the notation

〈( )〉 ≡ Tr ρ( ) (5)

where Tr denotes the trace operation, ρ is the density matrix,

ρ ≡ e−βH

Tr e−βH
, (6)

where β is the inverse temperature (1/kT ). We will devote
the next section to the study of H, the total Hamiltonian, for
the specific case of alkalis perturbed by noble gas atoms or
H2 molecules.

For an isolated line, we have shown (Allard et al. 1999)
that the normalized line shape Jα(∆ω), in the uncorrelated per-
turbers approximation, is given by

Jα(∆ω) = FT
[
enpgα(s)

]
(7)

where α = (i, f ) denotes a transition from initial state i to
final state f and, np is the perturber density. We use the semi-
classical treatment for the collision problem, in which the nu-
clear motion is associated with a rectilinear trajectory at a
single mean velocity v̄,

v̄ = (8kT/πµ)1/2, (8)

where µ is the reduced mass of the atoms.
We have from Allard et al. (1994, 1999) that gα(s) can be

written as

gα(s) =
1∑

e,e′
(α) |dee′ |2

∑
e,e′

(α)

×
∫ +∞

0
2πρdρ

∫ +∞
−∞

dx d̃ee′[ R(0) ]

×
[

e
i
�

∫ s

0
dt Ve′e[ R(t) ] d̃∗ee′ [ R(s) ] − d̃ee′[ R(0) ]

]
. (9)

The separation of the radiator and perturber is
R(t) = [ ρ2 + (x + v̄t)2 ]1/2 with ρ the impact parameter

of the perturber trajectory and x the position of the perturber
along its trajectory at time t = 0 (Fig. 1). Since atomic states
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Fig. 1. The two coordinate systems. OZ is the internuclear axis be-
tween the alkali and the perturber. Oxyz is the fixed frame and OXYZ
is the rotating frame. Y and z are directed out of the collision plane.

are usually degenerate, there are in general several different
energy surfaces which tend to the same asymptotic energy
as R→ ∞ . The sum

∑(α)
e,e′ is over all pairs (e, e′) such that

ωe′,e(R)→ ωα as R→ ∞. The transition frequency

ωe′e(R) ≡ (Ee′(R) − Ee(R))/� , e ∈ εi , e′ ∈ ε f (10)

tends to the isolated radiator frequency

ωα ≡ ω f i ≡ (E∞f − E∞i )/� (11)

as the perturbers get sufficiently far from the radiator:

ωe′e(R)→ ω f i as R→ ∞ , e ∈ εi , e′ ∈ ε f . (12)

The total line strength of the transition is
∑

e,e′
(α) |dee′ |2. The

potential energy for a state e is

Ve[R(t)] = Ee[R(t)] − E∞e ; (13)

the difference potential is

∆V(R) ≡ Ve′e[R(t)] = Ve′[R(t)] − Ve[R(t)] ; (14)

and we defined a modulated dipole (Allard et al. 1999) with

d̃ee′[R(t)] = dee′[R(t)]e−
β
2 Ve[R(t)]. (15)

In the above, we neglected the influence of the potentials Ve(r)
and Ve′(r) on the perturber trajectories, which remain straight
lines. Although we should drop the Boltzmann factor e−βVe(R)

for consistency with our straight trajectory approximation, by
keeping it we improve the result in the wings.

2.2. Electronic Hamiltonian

In this section we consider the resonance lines of alkalis broad-
ened by He or H2 collisions. Owing to the large energy differ-
ence between the ground state and the first excited states, and
the low temperatures (between 500 to 3000 K) involved in the
calculations of atmosphere models of extra-solar planets and
brown dwarfs, the noble gas atom (or H2 molecule) is assumed
to remain in its ground state, while the ground state and first
excited states of the alkali are collisionally decoupled. For the
transitions considered here, the lower level of the alkali atom is
a 2S 1

2
state. The noble gas atom is without spin it and remains
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(a) VΣΠ(R). (b) ∆V(R).

Fig. 2. The fine structure splitting �ω compared to the variation of VΣΠ(R), the splitting between the |Σ〉 and |Π〉 states, and ∆V(R) for the
A2Σ − X2Σ transition as a function of the internuclear distance R. The potential energies are tabulated by Pascale (1983).

in its ground 1S0 state. The interaction for the lower state of the
system is then spherically symmetric about the alkali. We con-
sider the system to be composed of a radiating alkali atom A in
collision with an atom or molecule B, separated from A by the
distance R. In the case of an alkali-H2 collision, B is situated at
the center of mass of H2.

To describe the collision, we introduce two reference
frames with common origin at the center of mass of atom A,
as illustrated in Fig. 1. A fixed-frame Oxyz is for atomic rep-
resentation with the quantization axis Oz perpendicular to the
collision plane. A rotating frame OXYZ is for molecular repre-
sentation, the internuclear axis being the quantization axis. The
passage from the fixed to the rotating frame is described by the
Euler angles (φ, π2 ,

π
2 ).

We adopt the physical model of Nikitin (1965), in which
we consider an alkali atom composed of a core and an ex-
cited p electron. The presence of the perturber at a distance R is
equivalent to an induced electric dipole at distance R. The prob-
lem reduces to a one-electron problem in which the radiator
Hamiltonian is divided into HA, the electrostatic Hamiltonian,
and HSO, the spin-orbit coupling of the alkali. The total elec-
tronic Hamiltonian can be written

H = HA + HB + V + HSO· (16)

HA and HB are the electrostatic Hamiltonians of the separated
systems A and B. V is the electrostatic interaction of A and B.

In the semi-classical treatment, the problem reduces to the
solution of the time-dependent Schrödinger equation:

HΨ(t) = i�
∂Ψ(t)
∂t
· (17)

The spin-orbit Hamiltonian HSO is diagonal in the |J,m〉 or
|J,M〉 representation, while V, symmetric about the internu-
clear axis, is diagonal in a molecular basis |ΛML〉 where Λ =
|ML|. Taking into account the symmetry in a reflection through
any plane containing the internuclear axis, we may be expand
|ΛML〉 as

|ΛML;±〉 =
∑

i

aΛi
(
|Li ML〉(±)(−1)ML |Li − ML〉

)
. (18)

Although it is impossible to diagonalize the total Hamiltonian
in either the atomic or the molecular basis, it is possible to use
a basis which minimizes the off-diagonal elements and drop
them. The system may then be described by a Hund’s case
(Nikitin 1965; Masnou-Seeuws & McCarroll 1974).

2.3. Case of alkalis with small fine structure

We will now restrict our study to the case of the light alkalis
which present a small fine structure: Li, Na, and K.

For large R, HSO 
 V, and the orbital angular momentum
L of the electron is coupled with its spin S . The Hamiltonian is
diagonal in the |J,M〉 representation. We may define the fine-
structure splitting �ω by the relation

�ω =
〈

2P 3
2
|HSO |2P 3

2

〉
−
〈

2P 1
2
|HSO|2P 1

2

〉
. (19)

Values of �ω corresponding to Li, Na, K, are respectively equal
to 0.334, 17.19, and 57.7 cm−1. When R is small, V 
 HSO,
and L is coupled with the electric field along the internuclear
axis. The eigenstates are then the molecular |Σ〉 and |Π〉 states.
Denoting by VΣΠ the difference between the eigenvalues of V
for the same asymptotic excited atomic state, we have

VΣΠ = 〈Σ|V|Σ〉 − 〈Π|V|Π〉. (20)

Figure 2a displays VΣΠ(R), the variation of the splitting be-
tween |Σ〉 and |Π〉 states as a function of the internuclear dis-
tance R compared to the fine structure splitting considered to
be independent of R. Here we show the cases of Li, Na, K per-
turbed by He. Similar results are obtained for these alkalis per-
turbed by H2.

The shape of the line wing is sensitive to ∆V(R), the differ-
ence between the ground and excited state interaction potential.
When ∆V(R) for a given transition goes through an extremum,
a relatively wider range of interatomic distances contribute to
the same spectral frequency, resulting in an enhancement, or
satellite, in the line wing (Allard 1978).

Figure 2b shows the B2Σ − X2Σ potential energy differ-
ences which exhibit a maximum and may lead to the formation
of satellites on the resonance lines. The maxima in ∆V(R) in
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Table 1. Validity conditions of the Hund’s cases.

Validity condition Hund’s case Representation

VΣΠ 
 �ω 
 �φ̇ a |ΛML〉|S MS 〉 or |ΛML;±〉|S mS ,±〉

VΣΠ 
 �φ̇ 
 �ω b |ΛML;±〉|S mS 〉

�ω
 VΣΠ 
 �φ̇ c |JM〉 or |JM±〉

�φ̇ 
 VΣΠ 
 �ω d |LmL〉|S mS M〉

�ω
 �φ̇ 
 VΣΠ e

|Jm〉
�φ̇ 
 �ω 
 VΣΠ f

these cases occur at small internuclear distances (R∼ 2–3 Å). A
change of coupling from an atomic representation to a molec-
ular representation occurs around the the internuclear distance
for which VΣΠ ∼ �ω. Figure 2 shows that for the cases con-
sidered here, this change of coupling takes place in the region
outside where ∆V(R) goes through a maximum.

As the line wing intensities are most sensitive to the val-
ues of the difference potential at short internuclear distances
we will use a molecular representation. In that case the axis of
quantization is the rotating internuclear axis. We then introduce
two possible molecular bases: |ΛML〉|S MS 〉 and |ΛML〉|S ms〉.
In this last choice the system is represented by molecular states,
for which the orbital angular momentum L is quantized along
the molecular axis (OZ) whereas the spin S is quantized along
the (Oz) axis and remains fixed in space. However, when a
rotating axis is used as the axis of quantization, off-diagonal
elements in the Hamiltonian will appear due to the time de-
pendence of the basis (Masnou-Seeuws & McCarroll 1974).
Consider, for example, the expansion of a state in terms of the
basis states |ΛML〉|S ms〉 in the rotating frame,

Ψ =
∑

Λ,ML,S ,ms

bi|ΛML〉|S ms〉. (21)

These states have rotated an angle φ from the state at the initi-
ation of the collision for which t = −∞. The state Ψ has a time
derivative

Ψ̇ =
∑

Λ,ML,S ,ms

ḃi|ΛML〉|S ms〉 − iφ̇LY |ΛML〉|S ms〉 (22)

and Eq. (17) becomes

i�
∂Ψ(t)
∂t
= (H − �φ̇LY )Ψ(t). (23)

The rotation of the basis states can be simulated by using an
effective Hamiltonian which depends on the basis chosen. The
order of magnitude of the rotational coupling is �φ̇. Thus we
have

(i) H′ = H − �φ̇JY

for the |ΛML〉|S Ms〉 or |JM〉 basis, and

(ii) H′ = H − �φ̇LY

in the |ΛML〉|S ms〉 basis.
Since H′ contains operators that do not commute, the

eigenfunctions of H′ have no particular symmetry property and
Eq. (17) leads to a set of coupled equations. If one of the op-
erators dominates, it is simplest to choose a representation in
which this operator is diagonal. If the non-diagonal elements
of H′ can be considered negligible in this representation, the
system may be described by a Hund’s case.

In the molecular region the system is represented either by
Hund’s case a if the rotation is slow, or by Hund’s case b if
the rotation is rapid. For large R, in the atomic region, the sys-
tem may be represented by Hund’s case c. The total angular
momentum J of the alkali atom may be assumed to follow the
rotation of the internuclear axis. The different Hund’s cases are
summarized in Table 1.

Figure 3 displays the relative positions of VΣΠ, �ω, and �φ̇
in the case of Na–He and K–He collisions for temperature vary-
ing from 500 to 3000 K. At small values of R, VΣΠ 
 �φ̇
 �ω,
and it is appropriate to use the Hund’s case b. Figure 3b shows
that for T ∼ 1000 K, �φ̇ ∼ �ω in the region of the maxi-
mum of the corresponding∆V(R), and the fine structure should
be included. This has been done for the calculations of the
K–H2 collision profile considering the fine structure as a con-
stant. This last contribution is small compared to the maximum
of ∆V(R), and its inclusion does not affect the position of the
K–H2 line satellite (Allard 2005). A large uncertainty is ex-
pected in the calculation of the potentials at small internuclear
distance. More accurate calculations of the molecular poten-
tials including fine structure have to be achieved for a better
determination of the intensity of the wings in that region of the
spectrum.

In summary, as the line wing intensities are most sensitive
to the values of the difference potential at relatively short in-
ternuclear distances, we will use Hund’s case b to calculate the
wings and Hund’s case c for the center of the D1 and D2 lines
mostly sensitive to large distances.
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(a) NaHe. (b) KHe.

Fig. 3. Variation of �φ̇ and the splitting VΣΠ between the |Σ〉 and |Π〉 states as a function of the internuclear distance R compared to the fine
structure splitting �ω.

3. Theoretical spectra of Li perturbed by He/H2

In this section we consider the absorption spectrum of the
Li (2s–2p) resonance transition in the presence of helium or
molecular hydrogen at high density. Hund’s case b is valid
in the molecular region because of the very small fine struc-
ture (�ω = 0.334 cm−1). Line wing intensities are functions of
the excited and ground state interaction interatomic potentials.
Knowledge of the potential energies is of great importance to
achieve accurate evaluations of the line profiles. Molecular-
structure calculations which neglect the spin-orbit interaction
have been performed by Pascale (1983) to obtain the adiabatic
potentials of alkali-He systems, and by Rossi & Pascale (1985)
for alkali-H2 systems for the C2v and C∞ symmetries. For the
symmetry C2v the H2 orientation is perpendicular to the H2-
alkali line, whereas for the C∞ symmetry all atoms are colinear.

In Figs. 4 and 6 we show the energies of the 2s–2p states
of the LiHe and LiH2 system. Figures 5a and 7 show that the
B − X difference potentials for Li–He and Li–H2 go through a
maximum at small internuclear distances (R ∼ 1.5–2 Å). In the
theoretical spectra a maximum in ∆V(R) may lead to a satellite
on the “blue” side, far from the line center. An extended red
wing with no satellites can be predicted from the Li–He and
Li–H2 A − X difference potentials.

Another important factor for the presence of spectral line
satellites is the variation of the electric dipole transition mo-
ment during the collision, modulated by the Boltzmann factor
e−βVe(R). Here Ve is the ground state potential when we consider
absorption profiles, or an excited state for the calculation of a
profile in emission. The modulated dipole transition moments
are shown in Figs. 5a, 7a, and 7b for the light alkalis. Dipole
transition moments have been provided by Pascale (2003) for
Li–He. Because of the lack of knowledge of the variation of
the electric dipole moment with the internuclear distance for
the Li–H2 system we had to assume that it remains constant all
along the collision and equal to its asymptotic value, but mod-
ulated by the Boltzmann factor.

Figure 8 shows the theoretical Li line profiles perturbed by
He and by H2, and their dependence on temperature. We note
the presence of a far blue satellite about 0.5 µm and 0.48 µm

Fig. 4. Energies of the lowest states of the Li–He system. The
B 2Σ − X 2Σ transition is responsible for the satellite at 0.5 µm, as
shown in Fig. 5b.

in respectively the Li–He and Li–H2 resonance line wing. The
appearance of the satellite is very sensitive to temperature due
to the fast variation of the modulated transition dipole moment
with temperature in the region of the maximum of ∆V(R) where
the satellites are formed. No line satellite appears for the sym-
metry C∞ because the modulated transition dipole moment is
too weak.

Emission spectra of hot dense gases in a ballistic compres-
sor were measured by Lalos & Hammond (1962) in a range of
temperature from 3600 to 6200 K. They report an unidentified
possibly Li-He “violet” band at about 0.53 µm which would
agree with our calculation. The fluorescence emission spectrum
of the Li(2s–2p) resonance transition in presence of helium at
lower pressure and temperature (670 K) has been obtained by
Scheps et al. (1975). They observed that the red wing consists
of a broad plateau which extends to 0.9 µm. A calculation of an
emission profile for this temperature is shown for comparison
in Fig. 5b. In general, more of the red wing is seen in emission
experiments and more of the blue wing in absorption.
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(a) Li–He modulated dipole, and the B2Σ−X2Σ difference
potential.

(b) Li–He profile for a density of perturbers nHe = 1019

cm−3.

Fig. 5. Variation with temperatures of the Li–He modulated dipole and of the corresponding Li–He absorption profiles at 3000, 2000, 1000 and
500 K (top to bottom), an emission profile at 670 K is plotted for comparison.

(a) Symmetry C2v. (b) Symmetry C∞.

Fig. 6. Energies of the 2s–2p states of the LiH2 system.

(a) Symmetry C2v. (b) Symmetry C∞.

Fig. 7. Variation with temperatures of the Li–H2 modulated dipole at 3000, 2000, 1000 and 500 K (top to bottom), and the difference B2Σ−X2Σ

of upper and lower state potentials for the resonance lines.
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(a) Symmetry C2v. (b) Symmetry C∞.

Fig. 8. Variation of the line profiles of Li perturbed by H2 with temperature. The density of perturbers is nH2 = 1020 cm−3. The temperatures
(top to bottom) are 3000, 2000, 1000 and 500 K.

4. Conclusions

Our calculations of unified theory line profiles using molecular
potentials to describe the interaction of alkalis perturbed by He
and H2 have been shown to improve the comparison of syn-
thetic spectra of brown dwarfs to observations. Nevertheless
more accurate determinations of the potentials at short internu-
clear distance are necessary to rely on the theoretical position
of the line satellites. No experimental data are presently avail-
able for comparison. The dependence of the position of the line
satellite on orientation angle requires us also to know the po-
tentials for more possible orientations of the H2 molecule. The
fine structure also needs to be included to consider the cases
of heavier alkalis like rubidium and cesium in order to have a
fully consistent set of alkali spectral line profiles.
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