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We discuss the linearized, gravitational self-interaction of a brane of arbitrary codimension in a
spacetime of arbitrary dimension. We find that in the codimension two case the gravitational self-force
is exactly zero for a Nambu-Goto equation of state, generalizing a previous result for a string in four
dimensions. For the case of a 3-brane, this picks out the case of a six-dimensional brane-world model as
having special properties that we discuss. In particular, we see that bare tension on the brane has no
effect locally, suppressing the cosmological constant problem.
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The divergent self-force of a charged point particle,
such as the electron, coupled to electromagnetism has
been understood for many years. Its resolution via the
inclusion of an ultraviolet (UV) cutoff, due to the finite
radius of the particle, leads to a renormalization of the
particle’s mass and a suppression of the pole singularity at
short distances (see, for example, [1]).

This problem is not unique, and, in fact, similar prob-
lems exist for any distributional source coupled to any
kind of field in any spacetime dimension. An interesting
case is that of a Nambu-Goto string coupled to linearized
gravity. It has been shown [2-4] that the self-force,
regularized in the UV by the core width of the string,
€, and in the infrared (IR) by the interstring separation,
A, is exactly zero due to the fact that the induced
linearized metric perturbation is orthogonal to the
string world sheet. This result can be shown to be true
at all orders in perturbation theory, in the case of a static
string [5].

A similar result can be deduced when the string in four
dimensions is coupled to an axion field, represented by a
2-form, and a dilaton, as well as linearized gravity [6].
For a special choice of couplings, which was predicted [7]
in the context of N = 1, D = 10 supergravity, one can
show that the combined self-interaction is zero; the dila-
ton contribution is negative, which cancels the positive
contribution from the axion field.

It should be noted that the UV regularization of the
self-field is not necessary in the codimension one case,
the hypersurface, where the behavior at the brane can
be dealt with using junction conditions. The case of
gravity can be dealt with exactly, at all orders, using the
conditions often attributed to Israel [8] (although see
Ref. [9]). Similar lines of argument lead to the junction
conditions at a surface in Maxwell’s theory of electro-
magnetism [1].

The extension of these ideas to higher dimensions has
become more relevant recently with the interest that has
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arisen in brane-world models. In these models, the
matter of the standard model of particle physics is con-
fined to a four-dimensional subspace, or brame, of a
higher-dimensional spacetime, often called the bulk. Two
types of model have received particular attention: six-
dimensional models with flat, compact extra dimensions,
such as the Arkani-Hamed-Dimopoulos—Dvali model
[10], and five-dimensional models with warped extra
dimensions, such as the Randall-Sundrum (RS) models
[11]. These ideas were originally motivated by the notion
of D-branes in M theory, and the desire to alleviate the
weak hierarchy problem of UV quantum field theory
(QFT). However, much subsequent work has focused on
their gravitational properties.

Both models can be extended to higher dimensions. As
we have discussed, the five-dimensional case has no UV
divergence, so it does not need to be regularized. When
the extra dimensions are compact, the volume of the extra
dimensions gives an effective IR cutoff scale. In the
warped case, the curvature length scale of the bulk space-
time fulfills a similar role. In more general cases it is clear
that some physical phenomena must provide either a UV
cutoff (usually the thickness of the brane) or one in the IR
(usually the distance between branes or the background
curvature length scale). In the codimension two case, one
requires both since the self-field is proportional to 1/r
and the divergence of the self-energy is logarithmic.

One intriguing aspect of brane worlds with two extra
dimensions [12] is that the bare tension of the brane,
which represents vacuum energy, does not appear to
gravitate from the point of view of an observer on the
brane, its effects being felt only in the bulk as a modifi-
cation to the conical deficit angle. This can be thought of
as a self-tuning model, suppressing the cosmological con-
stant problem since the large variations in the vacuum
energy expected due to, for example, cosmological phase
transitions would not be experienced gravitationally by
observers on the brane.
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As we have described, the study of self-interactions
finds applications in a wide range of research areas, from
cosmic defects to superstring and M theory. In this Letter
we discuss systematically the regularization of the gravi-
tational self-force for extended objects with any codi-
mension more than one, albeit at linearized order. Our
results are also relevant to the codimension one case, but,
as we have already noted, they are not completely neces-
sary there. We find that, in the case of a Nambu-Goto
brane, the self-force takes a simple form and can be
interpreted as a renormalization of the tension. In the
codimension two case, this renormalization is exactly
zero, extending the result for cosmic strings [2—4] to
hyperstrings in arbitrary spacetime dimension. Our
analysis allows for a general configuration of the brane
and for background curvature on a scale greater than the
effective width of the brane. It is, therefore, an extension
of the self-tuning cosmological constant idea, in that
previous work [12] has considered only symmetric, exact
solutions in specific background spacetimes. We consider
the analogue of Refs. [6], which includes the effect of a
dilaton and an antisymmetric form field, in a more de-
tailed forthcoming paper.

We consider a p-brane, with a (p + 1)-dimensional
world sheet, in an n-dimensional spacetime. The position
of the brane is given in terms of the spacetime coordi-
nates x* by x* = X#{o“}, where o are internal world
sheet coordinates. The induced metric on the brane is
then given by v, = §,,9,X"9,X", and the background
energy-momentum tensor, 7#”, due to that supported on
the world sheet, T#”, is

Furf = \/L__g f Tor 80y — X{o =y d"*'o. (1)

The first fundamental tensor of the brane and its or-
thogonal complement can then be defined as n*” =
y*?9,X*9,X" and L,,=g,, — M, respectively.
These act as the projection operators tangential and or-
thogonal to the world sheet. The second fundamental
tensor of the world sheet and the extrinsic curvature
vector are defined as K, = nuo‘n,,ﬁvanﬁp and K¥ =
g"”K,,”. This formulation in terms of background ten-
sorial quantities has the advantage of avoiding the com-
plications of the internal indices, 0. In the case of a
codimension one brane, Ll,,=n,n,, K,, =K,,’n,,
and K? = Kn” where n, is the unit normal covector to
the brane, and K,,, K are the more familiar extrinsic
curvature pseudotensor and scalar, respectively. Note that
we use the sign conventions of [13], whereas some authors
define the extrinsic curvature with the opposite sign.

We perform our regularization calculation in a flat
background spacetime, but it is also valid in the case
where the background is curved as long as the associated
curvature scale is larger than the brane thickness. In the
case of an anti—de Sitter (AdS) background this requires
that the AdS length scale [ >> €. Moreover, we also de-
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mand that the curvature scale of the brane be much larger
than the brane thickness, ie., \/K?K, > €. This condi-
tion does not hold, for example, at a cusp in the brane
world sheet.

We consider a perturbation of the metric g, — g,, +
h,, with |h,,| <1, which, in an n-dimensional
Minkowski spacetime, satisfies the linearized Einstein
equation

o T8
Oh,, = —2(n —2)Ql 21G<TW - _"2 > (2)

where [J = V,V” is the wave operator defined by the
unperturbed metric, G = M?™" is the gravitational cou-
pling constant appropriate to the background spacetime,
and Q"] is the area of a unit n sphere.

In order to perform the regularization, we make the
split of the metric perturbation £, = ﬁ;w + ﬁ,“,, where
h wv 18 the singular contribution from the string and h uv 18
the (finite) remainder due to radiation backreaction and
external effects. Defining the standard Green’s function
G{x, X(c)} for the wave operator in Minkowski space,
we find that

ot = 8 [ (T = 7222 VGt X0 =7 a0 1o,
3)

where B = —2(n — 2)Q"~21G/Ql*~1 Using the stan-
dard form for the Green’s function, this solution can be
regularized, both in the UV and in the IR, to give

- — T
hMV = 2G<TMV - n _Mz )F{A,E}’ 4

where we have defined a regularization factor

Qn=210lr1 ra
f sPT2mnds, 5)

Q1]

to describe the dependence on the IR and UV cutoffs. At
its simplest level this represents a hard cutoff in source
density for s < € and s > A, but the cutoffs could easily
be thought of as effective, representing the envelope of a
solution. The factor Fy, o encapsulates all of the depen-
dence on the internal structure of the string and the effect
of spacetime compactification or curvature on h,,. The
regularization can be justified by a more rigorous calcu-
lation as described in [14].

The effective UV cutoff scale, €, is governed by the
internal structure of the brane. Except in the codimension
one case, the infinitely thin limit leads to a divergence,
meaning that the profile of the brane is always important.
The profile of the brane removes the divergence associ-
ated with an infinitely thin source, thus generating an
effective thickness, which we assume is the same at every
point on the world sheet. For the domain wall case, such
as the RS models [11], there is no UV divergence and the
infinitely thin limit can be used.

Fiag =

€
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The IR cutoff scale, A, is necessary when considering
branes of codimension one or two (domain walls and
hyperstrings). The IR divergence can be removed in sev-
eral ways, each of which generates an effective value of A.
One such way is the usual Kaluza-Klein approach where
one compactifies the extra dimensions on a circle or torus,
the radius or volume of the internal space giving the
effective cutoff scale. Another possibility is to consider
an AdS bulk, as in the RS model, where the different form
of the Green’s function means that the corresponding
integral does not have an IR divergence. The AdS length
scale, I, then gives an effective cutoff, A ~ [, allowing us
to use the solution (4). Another possibility is to consider a
network of branes where the interbrane separation gives
an IR cutoff scale, as is usually assumed to be the case for
p =1, n =4, ie., cosmic strings.

One can determine the force acting on the brane by
considering the variation of the brane component to the
matter action

S = ff,/—‘y dartlo. (6)

Under the perturbation g,, — g,, + h,,, the first order

change in the Lagrangian is given by

uv?

Los =L +1h,,T0°, (7

an extra factor of 1/2 being the adjustment required to
make sure the contributions are counted only once.
Varying the action [2] shows us that the force on the brane
is given by

fr= %TVPV/‘th —V,(T""hiy + E“”P"hw), (8)
where the hyper-Cauchy tensor is defined by
1 0
VT 08uv

which is a relativistic version of the Cauchy elasticity
tensor.

In order the evaluate the regularized force from (8), we
need to compute the regularized version of the gradient
V,h,,. We do this using the formula derived in Ref. [14]
for scalar field ¢,

V,b=n5V,¢ + 1K, (10)

which are applied to each of the components of 4, since
we are considering linearized interactions. This formula
applies when p > 0 and when the codimension is greater
than one. The factor of 1/2 in the second term should be
replaced by (p — 1)/2p in the codimension one case. The
first term in this formula is just the derivative tangent to
the brane, which is all one would have in the case of a
straight brane. The effect of the curvature is in the second
term, which accounts for the change in orientation of
the planes normal to the brane when it is curved within
the bulk.
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C 1vpo =

=Y T"), ()]

For a Nambu-Goto—type brane, the Lagrangian,
energy-momentum tensor, and hyper-Cauchy tensor are
givenby L = —A = —mP™! TFY = —An#” and

CHrvpo = A(nM(P',’U)V — %T]'U“V')']pa'), (1 1)

where m is a fixed mass scale and A is the tension of the
brane. The singular part of the metric perturbation is
given by

N <p+3—n p+1

h oy = 2AGF(y g e/ L ) (12)
which, in the codimension two case where p = n — 3, is
purely orthogonal to the world sheet.

If one regularizes the force (8), using the relation (10)
for the regularized gradient and the solution (12), one can
deduce that the linearized, gravitational self-force is
given by

(p+Dp+3—n)
2(n —2)

for a brane of codimension greater than one. In the
codimension one case, there is an additional factor of
(p + 1)/p. The force is in the direction of the extrinsic
curvature vector, K”, which is normal to the brane world
sheet. This can be interpreted as a renormalization of the
tension of the brane

)\efle_(P+1)(P+3—")
A 2(n —2)

fr= A2Fip oK, (13)

AGFy o). (14)

This renormalization represents a correction to the
Lagrangian £ of the matter supported on the brane,
providing a term that looks like an effective cosmological
constant on the brane. It is obvious that this force, and
hence the renormalization, vanishes when p =n — 3,
generalizing the result previously derived for cosmic
strings in four dimensions [3,4].

One can see this in much simpler terms, if one con-
siders the action renormalization, that is, if one substi-
tutes (12) into (7); Eq. (14) can be rederived very easily
by using the fact that n,,7*” = p + 1, and one can then
see directly that if h,, =1, , as is the case when p =
n — 3, then not only is the self-force zero, but so is the
action renormalization.

For a brane world, p = 3, and this special case requires
n = 6. These phenomena have been pointed out recently
by several authors [12] who have studied explicit solutions
for specific formulations of six-dimensional brane worlds.
Here, we have generalized this result to arbitrary, non-
static configurations at linearized order. One can see that
for a general surface energy-momentum tensor T#”, the
action renormalization is given by

1 S — | R
Leff = .E + EGF{A,E}<T#VT/LV - mT2> (15)

Some of these authors have suggested that this could
have implications for the observed gravitational effects of
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vacuum energy in these models since the vacuum energy
can be thought of as being the origin of the bare tension of
the brane world. Effective QFTs predict that the energy
scale associated with the vacuum could be as large as the
Planck mass, M, making it discrepant by a factor of the
order 10'?° with the upper bounds from observation. If
n =6 and p = 3 then our calculation has a simple, but
elegant resolution to this problem; the bare tension gravi-
tates only in the direction orthogonal to the brane world,
that is, h,, <1, , the gravitational self-force is zero,
and the renormalized action has no constant contribution.
Hence, the effective cosmological constant as experi-
enced by observers on the brane would be zero, providing
a self-tuning mechanism for the cosmological constant.
This establishes a link between the self-tuning phenom-
ena at work here and the self-force.

We note that there are some obvious problems associ-
ated with this self-tuning mechanism, not least the fact
that there is evidence to suggest that the cosmological
constant is nonzero [15]. Moreover, observations of the
angular power spectrum of anisotropies in the cosmic
microwave background [16] suggest that inflation is their
ultimate origin. Both of these require cosmic accelera-
tion, albeit from a scalar field in the case of inflation,
which could not be due to any kind of brane-based effect
in this scenario since al/l vacuum energy can do is modify
the bulk solution with no observable effect on the brane.

One resolution of this would be to generate accelerated
expansion from bulk effects. A bulk cosmological con-
stant will gravitate and give an effective cosmological
constant as seen by a brane-based observer. Similarly,
accelerated expansion could be driven by a bulk scalar
field. Of course, one still has a cosmological constant
problem in the bulk: how to determine what mechanism
fixes this to be small. Furthermore, reheating after bulk-
induced inflation could be problematic if the inflaton is
not formed from brane-based matter.

To summarize: the main result of this Letter is the
generalization of the nondivergence of the self-force of a
Nambu-Goto cosmic string to a corresponding hyper-
string in arbitrary dimensions under the assumption
that the solution is regularized by some physical phenom-
ena in the UV and the IR. In fact, we have derived a
general formula for the linearized gravitational self-force
in arbitrary codimension and the corresponding renor-
malization of the bare tension. We have pointed out the
links with recent work on attempts to self-tune the cos-
mological constant in 6D brane-world models. An analy-
sis using a method similar to this but considering the
gravitational interaction of observable matter supported
on the brane, in the usual brane-world limit where it is
small compared to the bare tension, would give a much
firmer foundation to these ideas. There have been some
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studies of 6D brane worlds with matter [17], and these
point to some potential problems: in those models con-
sidered it is possible to have only very specific matter
distributions supported on the brane. We hope to inves-
tigate this in future work.
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