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Astronomie et Systèmes Dynamiques, IMCCE-CNRS UMR 8028, 77 Av. Denfert-Rochereau, 75014 Paris, France

Received 19 November 2003 / Accepted 26 November 2003

Abstract. In a recent paper, Edvardsson et al. (2002) propose a new solution for the spin evolution of the Earth and Mars. Their
results differ significantly with respect to previous studies, as they found a large contribution on the precession of the planet
axis from the tidal effects of Phobos and Deimos. In fact, this probably results from the omission by the authors of the torques
exerted on the satellites orbits by the planet’s equatorial bulge, as otherwise the average torque exerted by the satellites on the
planet is null.
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1. Introduction

In a recent paper, Edvardsson et al. (2002) propose a new solu-
tion for the spin evolution of the Earth and Mars. Considering
the absence of a precise evaluation of the errors due to the in-
tegrator and the absence of relativity in the model, one could
discuss the use of the word “accurate” in the title of the paper,
but unfortunately there are some more important flaws in this
paper. In their integration of the spin of Mars, the authors found
that the integration of the spin changes in a large amount when
Phobos and Deimos are taken into account (see their Fig. 12).
They also notice that their “curve without the moons is very
similar to the curve given by Bouquillon & Souchay (1999)”,
who included the moons. In fact, the authors have since real-
ized that their paper is in error on this point.

2. Precession due to a distant satellite

Let us consider a planetPwith momentum of inertia A = B<C
orbiting the Sun on a fixed ellipse (we will not consider here the
planetary perturbations or the perturbations due to the satellite
presence), and a satellite S of mass m orbiting the planet. Let
(i, j, k) be a basis linked to P with k associated to the axis of
maximum inertia C. Let (I, J, K) be a fixed reference frame,
with origin in the direction of I, and K normal to the orbital
plane of P (Fig. 1). a and e are the semi-major axis and ec-
centricity of S, i and Ω the inclination and longitude of the
ascending node of the satellite orbit over the orbital plane of
the planet (I, J), while v is the true longitude, and ω the argu-
ment of perihelion. If r is the radius vector from the planet’s
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Fig. 1. The orbital plane is defined by the inclination i and longitude of
node Ω with respect to a fixed reference frame (I, J, K), while (i, j, k)
are the axis of inertia of the planet.

to the satellite’s center of mass, with modulus r and unit vector
u = r/r, the torque exerted by S on P is

Γ =
3Gm

r3
u ∧ Iu (1)

where G is the gravitational constant and I the matrix of in-
ertia (I = diag(A, A,C)). Noting that I = diag(A, A, A) +
diag(0, 0,C−A), (1) can also be expressed as (see Murray 1983)

Γ = −3Gm

r3
(C − A)k ∧ (uuτ)k (2)

where uτ denotes the transposed of u (uτk is thus the dot product
of u and k). We will average Γ over the fastest angle of this
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problem, that is over the mean anomaly M of the satellite (the
rotational angle θ is removed after the assumption A = B). As
k does not depend on M, the only expression to average in (2)
is γ = uuτ/r3. In the (I, J , K) frame, the coordinates of u are

u = R3(Ω)R1(i)




cos(v + ω)
sin(v + ω)

0


 with (3)

R1(α) =




1 0 0
0 cosα − sinα
0 sinα cosα


 ;

R3(α) =




cosα − sinα 0
sinα cosα 0

0 0 1


 .

(4)

As r2 dv = a2
√

1 − e2dM, after averaging over M, we obtain

< γ >M =
1

2a3(1 − e2)3/2
[Id −M] (5)

whereM is expressed in (I, J , K) as the 3 × 3 matrix

M = R3(Ω)R1(i)




0 0 0
0 0 0
0 0 1


R1(−i)R3(−Ω) . (6)

When the precession of the node is rapid with respect to the
precession of the spin axis of the planet (as for the Moon
around the Earth), one can also average over Ω. We have thus
in the basis (I, J , K)

<M >Ω = sin2 i
2

Id +


1 −

3 sin2 i

2







0 0 0
0 0 0
0 0 1


 . (7)

Finally, as the parts involving the identity Id cancel, we are left
with

< Γ >M,Ω =
3Gm(C − A)

2a3(1 − e2)3/2


1 −

3 sin2 i

2


 k ∧ KKτk

=
3Gm(C − A)

2a3(1 − e2)3/2


1 −

3 sin2 i

2


 cos ε k ∧ K

(8)

which leads to the classical contribution ps of the precession
of spin axis k around the normal to the orbital plane K, when
the rotational rate ν is large with respect to the precession fre-
quency p.

ps = −
3Gm

2ν a3(1 − e2)3/2

C − A

C


1 −

3 sin2 i

2


 cos ε. (9)

3. Precession due to a close satellite

The previous study is in fact valid uniquely in the case of a
satellite sufficiently far from the planet, so that the precession
of its orbit is mostly driven by the solar perturbations, and not

by the torque exerted by the equatorial bulge of the planet. In
the case of a close satellite, it was shown (Goldreich 1965;
Kinoshita 1993) that instead of precessing around the normal K
to the orbital plane (I, J), with a roughly constant inclination i
with respect to (I, J), the satellite will precess with respect to k
with a nearly constant inclination i′ with respect to the equator
plane (i, j). In this case, all the previous study is still valid, but
the orbit of the satellite is now referred to the equatorial ref-
erence frame (i, j, k), and the second averaging is made with
respect to the longitude of the node, Ω′, of the satellite orbit
with respect to the equatorial plane (i, j). The average expres-
sion (6), (7) is still valid, when replacing Ω and i by Ω′ and i′.
The average <M >Ω′ will then be given by (8), after changing
i with i′, but this expression is now obtained in the reference
frame of the planet (i, j, k). As k ∧ kkτk = k ∧ k = 0, we have
now for the averaged torque

< Γ >M,Ω′ = 0. (10)

4. Discussion

Thus, contrarily to what is found by Edvardsson et al. (2002),
the averaged torque exerted by Phobos and Deimos on Mars
should be null (at first order). The origin of the authors’ error
can be traced by looking to their Figs. 1 and 2. The inclina-
tion of the satellites with respect to the equator starts with a
value close to zero at the origin, and then increases up to about
50 degrees and then back to zero with a period of about 6000
and 1500 years for Phobos and Deimos, while a back on the en-
velope calculation gives respectively 5400 and 1400 years for
the precession of the node of these satellites submitted uniquely
to Solar perturbation. The issue is then clear. By neglecting the
torque exerted on the satellites orbits by the equatorial bulge of
Mars, the authors found that instead of remaining close to the
equatorial plane of Mars, as demonstrated by Goldreich (1965),
the satellites were precessing along the orbital plane. Instead of
finding a zero value for the mean precession torque (11), they
obtain an effect following Eq. (10) which gives a contribution
of about 0.5′′/year to the precession of Mars axis, in agreement
with the difference observed by the authors in Fig. 12. The au-
thors should have wonder how Phobos and Deimos could both
be at present with an inclination of less than 2 degrees with
respect to the equator if they were precessing along the orbit.
Goldreich indeed realized that this “would amount to an unbe-
lievable coincidence”.
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