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ABSTRACT

Context. The IAU 2000/2006 precession-nutation models have precision goals measured in microarcseconds. To reach this level of
performance has required series containing terms at over 1300 frequencies and involving several thousand amplitude coefficients.
There are many astronomical applications for which such precision is not required and the associated heavy computations are waste-
ful. This justifies developing smaller models that achieve adequate precision with greatly reduced computing costs.
Aims. We discuss strategies for developing simplified IAU 2000/2006 precession-nutation procedures that offer a range of compro-
mises between accuracy and computing costs.
Methods. The chain of transformations linking celestial and terrestrial coordinates comprises frame bias, precession-nutation, Earth
rotation and polar motion. We address the bias and precession-nutation (NPB) portion of the chain, linking the Geocentric Celestial
Reference System (GCRS) with the Celestial Intermediate Reference System (CIRS), the latter based on the Celestial Intermediate
Pole (CIP) and Celestial Intermediate Origin (CIO). Starting from direct series that deliver the CIP coordinates X,Y and (via the
quantity s + XY/2) the CIO locator s, we look at the opportunities for simplification.
Results. The biggest reductions come from truncating the series, but some additional gains can be made in the areas of the matrix
formulation, the expressions for the nutation arguments and by subsuming long period effects into the bias quantities. Three exam-
ple models are demonstrated that approximate the IAU 2000/2006 CIP to accuracies of 1 mas, 16 mas and 0.4 arcsec throughout
1995−2050 but with computation costs reduced by 1, 2 and 3 orders of magnitude compared with the full model.
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1. Introduction

1.1. The IAU 2000/2006 models for Earth attitude

Many astronomical computations involve knowing the orienta-
tion of the Earth in space, i.e. the time-varying transformation
between the terrestrial and celestial coordinate triads. The meth-
ods currently used to realize this transformation employ specific
a priori models adopted by IAU resolutions in 2000 and 2006
together with time-dependent observed quantities provided by
the International Earth rotation and Reference systems Service
(IERS). The IAU 2000 and 2006 resolutions not only adopted
greatly improved numerical models, but also a new procedural
framework, with associated terminology for the pole, the Earth’s
angle of rotation, the longitude origins and the related reference
systems.

The two triads correspond to the International Terrestrial
Reference System (ITRS, IUGG Resolution 2, Perugia 2007) and
the Geocentric Celestial Reference System (GCRS, IAU 2000
Resolution B1.3). The pole of the nominal rotation axis is the
Celestial Intermediate Pole (CIP, IAU 2000 Resolution B1.7).
The CIP moves within the ITRS because of polar motion,
which is mainly quasi-periodic but essentially unpredictable,
and within the GCRS because of precession-nutation, which

� Appendices A to G are only available in electronic form at
http://www.aanda.org

includes both secular and periodic effects and is largely
predictable.

The CIP’s changing position in the GCRS has three compo-
nents: (i) frame bias, a small fixed offset between the pole of the
GCRS and the CIP at J2000.0; (ii) a precession model that de-
scribes the secular motion of the CIP; and (iii) a nutation model
that describes the quasi-periodic part of the motion. Items (i) and
(iii) are currently taken from the MHB2000 precession-nutation
model (Mathews et al. 2002) that was adopted by IAU 2000
Resolution B1.6 to become IAU 2000A. Item (ii) is the P03
precession model of Capitaine et al. (2003b) that IAU 2006
Resolution B1 adopted as the replacement (from 2009) for the
precession part of IAU 2000A; note that this requires small ad-
justments to the IAU 2000A nutation to restore consistency be-
tween the two components.

The terrestrial and celestial systems in which the CIP is the
common pole are called the Celestial Intermediate Reference
System (CIRS) and the Terrestrial Intermediate Reference
System (TIRS). The diurnal rotation linking the two systems is
expressed through a conventional linear transformation of UT1
called Earth Rotation Angle (ERA, IAU 2000 Resolution B1.8).
ERA is used in conjunction with specific zero points of celes-
tial and terrestrial longitude (i.e. right ascension), the Celestial
Intermediate Origin (CIO, IAU 2000 Resolution B1.8 and IAU
2006 Resolution B2) and Terrestrial Intermediate Origin (TIO,
idem as for CIO) respectively. The CIO is at present very close
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to GCRS longitude zero and almost stationary in longitude. This
contrasts with the former zero point of right ascension, the ver-
nal equinox, which moves at over 50 arcsec per year in GCRS
longitude. Similarly, the TIO is at present close to ITRS longi-
tude zero and again is almost stationary in longitude. ERA can
be thought of as the CIO based equivalent of Greenwich Sidereal
Time (GST). The extremely simple form of the ERA(UT1) rela-
tion (Eq. (2)) is a reflection of the kinematically non-rotating
nature of the CIO (Capitaine et al. 1986).

1.2. Earth orientation parameters

The a priori CIP and rotation models are supplemented by time-
dependent observed quantities, published by the IERS, obtained
from monitoring Earth attitude with respect to distant radio
sources by very long baseline interferometry (VLBI). The quan-
tities, known as Earth orientation parameters (EOPs), supple-
ment the a priori models to achieve final accuracies that approach
100 µas. The IERS tabulations provide (i) Universal Time, UT1,
the continuously changing angle representing the Earth’s diur-
nal rotation; (ii) polar motion; and (iii) small adjustments to
the CIP’s GCRS X, Y coordinates as predicted by the a priori
precession-nutation model, which is limited in the short term by
free core nutation (FCN), which at present cannot be predicted,
and in the long term by the uncertainties in the precession rates.

Few applications take account of the CIP dX, dY corrections,
at present less than 1 mas, and some even neglect polar motion,
which rarely exceeds 0.5 arcsec. However, in even the least de-
manding applications it is essential for the IERS UT1 observa-
tions, i.e. the published UT1−UTC or UT1−TAI values, to form
the basis of the Earth rotation predictions.

1.3. The need for concise formulations

The IAU 2000A nutation model has extremely high precision
goals, measured in microarcseconds. The terms that have to be
evaluated in order to predict the GCRS coordinates of the CIP to
the full precision of the model have been provided in Wallace &
Capitaine (2006, denoted WC06 in the following) Table 1. The
total number of coefficients varies somewhat depending on the
adopted computational scheme, but in all cases is several thou-
sand, with some below 1 µas.

Although in many applications computation time or pro-
gram size are not limiting factors, the large size of the model
is often at best an unnecessary overhead and at worst can
exhaust the available resources. There is consequently a de-
mand for precession-nutation implementations that offer differ-
ent compromises between size and precision. This was under-
stood at the time of the IAU 2000 resolutions, which in addition
to the full IAU 2000A model also recognized a shortened
model called IAU 2000B (published afterwards by McCarthy &
Luzum 2003). IAU 2000B is more than an order of magnitude
smaller than IAU 2000A but achieves 1 mas accuracy throughout
1995−2050. Moreover, the full models can be radically cut back
before the rms performance compared with VLBI observations
starts to degrade noticeably. For example Shirai & Fukushima
(2001) retained only 194 terms (see their Fig. 1).

Examples of applications where concise precession-nutation
formulations are used include:

– Satellite orbit predictions (see Vallado et al. 2006).
– Pulsar timing: the recent TEMPO2 analysis software

(Edwards et al. 2006) uses the IAU 2000B model.

Table 1. Approximate expressions for the elements of the GCRS to
CIRS rotation matrix.

RNPB Method B Method C
(1, 1) 1 − X2/2 1
(1, 2) −s − XY/2 0
(1, 3) −X −X
(2, 1) s − XY/2 0
(2, 2) 1 − Y2/2 1
(2, 3) −Y − sX −Y
(3, 1) X X
(3, 2) Y Y
(3, 3) 1 − (X2 + Y2)/2 1

– The pointing of telescopes and radio dishes, limited by the
mechanical imperfections in the mount and drives (rarely
predictable to better than 1 or 2 arcsec) and also the ability
to predict atmospheric refraction.

– Prediction of occultations, where each 1 mas of precession-
nutation error moves the observer only 31 mm.

Such applications are of course distinct from those involving
precise Earth rotation studies, accurate Doppler predictions for
space telemetry, optical interferometry, VLBI, etc., where use of
the full-accuracy models is necessary. However, in those cases
where the celestial position of the pole must be known with
full accuracy, and hence observed corrections to the model must
be applied, a concise a priori model with matching corrections
would deliver identical results with much improved computing
efficiency. (Such a scheme would of course require an extension
to the existing IERS services.) For example Petrov (2007) makes
use of a very simplified a priori model that retains essentially the
same precession-nutation terms as the concise model CPNd pre-
sented later (Sect. 4.3).

1.4. The celestial to terrestrial transformation

Frame bias, precession-nutation, Earth rotation and polar motion
form a chain of transformations connecting celestial coordinates
(GCRS) to terrestrial coordinates (ITRS). In matrix form:

vITRS = RPM · R3(θ) · RNPB · vGCRS (1)

where:

– vGCRS and vITRS are the same direction with respect to the
two reference systems;

– the matrix RNPB represents the combined effects of frame
bias and precession-nutation and defines the orientation of
the CIP and a longitude origin;

– R3(θ) is Earth rotation, with θ either ERA or GST depending
on whether RNPB is CIO based or equinox based, the result
in either case being with respect to the TIRS; and

– the matrix RPM takes account of polar motion.

The rest of this paper is concerned with formulations for the ma-
trix RNPB in its CIO based form, i.e. where θ is Earth Rotation
Angle:

θ(Tu)=2π (0.7790572732640+1.00273781191135448 Tu), (2)

where Tu = (Julian UT1 date − 2451545.0) (Capitaine et al.
2000). Applications that instead must work with sidereal time
and equinox based right ascension can simply use

αequinox = αCIO − EO (3)
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and

GST = ERA − EO, (4)

where EO is the equation of the origins. See Sect. 2.2 of
Capitaine & Wallace (2006, denoted CW06 in the following).

1.5. Starting point for concise formulations

Various methods of generating the matrix RNPB were provided in
CW06. Any of these methods could in principle form the basis
of a concise formulation, but that described in CW06 Sect. 2.1
is particularly suitable. It starts with the CIP’s GCRS unit-vector
coordinates X, Y and the CIO locator s, the latter being the dif-
ference between the GCRS and CIRS right ascensions of the
intersection of the two equators.

Rigorous expressions for X, Y and s are given in CW06
Eqs. (33), (34), (56) and (57) and are functions of the bias and
classical precession-nutation quantities. The three quantities can
also be calculated as a function of time using series, in the case
of X and Y directly and in the case of s through a series for
s + XY/2. The series comprise polynomial, Fourier and Poisson
terms, and by comparying the series and rigorous forms it is easy
to see where these contributions come from.

The published series reproduce the theoretical values to mi-
croarcsecond accuracy over a century. For applications with re-
duced accuracy requirements, it is straightforward to limit the
development to the appropriate level of approximation, eliminat-
ing smaller terms and thereby producing a concise formulation.
Note that:

– Precession and nutation are combined and can be dealt with
together.

– Each of the three series provides a quantity (namely X, Y or
s) that contributes equally to the final accuracy, allowing the
same cut-off criterion to be chosen in each case: there are
no sin ε factors to consider for example, as is the case for the
classical precession and nutation angles in ecliptic longitude.

– The three quantities can be treated independently from the
other opportunities for economies, namely the expressions
for the fundamental arguments (see 3.5, later) and the matrix
elements (3.4).

In this paper, we take the X, Y, s+XY/2 series method in its full-
precision form and show how it can be reduced so as to achieve
different trade-offs between accuracy and size/speed. Three ex-
amples are described, of 1 mas, 16 mas and 390 mas accuracy
in the time span 1995−2050. The numerical coefficients of the
three formulations are tabulated in Appendices E−G. Note that
our goal is to establish a methodology for abridging the full-
precision method and that our solutions involve neither fitting of
amplitude coefficients nor harmonic analysis. Consequently they
are not necessarily the most compact series possible for a given
accuracy, but they are unlikely to be significantly worse and have
the advantage that all the terms have a clear provenance.

1.6. Relationship to IAU 2000B

The work reported here has obvious parallels with the
IAU 2000B precession-nutation model, but differs in a number
of respects.

In the present paper we set out to deliver a single CIO
based precession-nutation standard (namely IAU 2006/2000A),

Table 2. The concise models compared. See Sect. 4.

Model Coeffs Freqs RMS Worst Speed
reference 4006 1309 – – 1

IAU 2000B 354 77 0.28 0.99 7.6
CPNb 229 90 0.28 0.99 15.3
CPNc 45 18 5.4 16.2 138
CPNd 6 2 160 380 890

mas mas

but offering choice in the compromise between accuracy and
size/speed. The example implementations that we present in
Sect. 4 have no independent canonical claim: each should be re-
garded simply as an approximate method of generating the same
thing, namely the GCRS to CIRS transformation matrix RNPB.
IAU 2000B in contrast provides only a single cost/performance
choice, namely 1 mas between 1995 and 2050, is classical in
form and is IAU-approved.

For historical reasons there are two slightly different inter-
pretations of IAU 2000B in use, one in the IAU Standards Of
Fundamental Astronomy (SOFA) software collection (Wallace
1998) and one in McCarthy & Luzum (2003). The SOFA ver-
sion isolates the nutation part of IAU 2000B and uses it along
with the IAU 2000 frame bias and precession. The published
version provides nutation angles which incorporate corrections
for frame bias and precession, to be combined directly with the
IAU 1976 precession. The SOFA version is, by a small margin,
the more accurate of the two when compared with the SOFA im-
plementation of IAU 2000A, achieving a maximum CIP error of
0.994 mas during 1995−2050, compared with 1.125 mas for the
published version. (See Fig. A.1.)

As well as the question of which version to use, it is nec-
essary to decide what, if any, adjustments are appropriate when
using the IAU 2000B nutation in combination with other pre-
cession models, in particular IAU 2006. But as a pre-existing
concise precession-nutation model, IAU 2000B provides a natu-
ral benchmark to the work described here, and for that reason is
included in Table 2, comparing different formulations.

2. The full accuracy GCRS-to-CIRS matrix

In Sect. 1.5 we showed that the direct series for X, Y and s+XY/2
were a convenient starting point. These are of the form:

q = q0 + q1 t + q2 t2 + q3 t3 + q4 t4 + q5 t5

+
∑

i

3∑

j=0

[(as, j)it
j sin(ARG) + (ac, j)it

j cos(ARG)] + · · · (5)

where q stands for X, Y and s + XY/2 respectively, ARG stands
for various combinations of the fundamental arguments of the
nutation theory, including both luni-solar and planetary terms,
and t is the elapsed time in Julian centuries since J2000 (TDB,
though in practice TT is used). The series are obtained by a semi-
analytical procedure (see CW06, Sect. 3.1), using the software
package GREGOIRE (Chapront 2003). The current series, based
on P03 precession and MHB2000 nutation, comprise a total of
nearly 6000 coefficients of which just over 4000 are non-zero.
For details of where the series can be found, see CW06 p. 982,
footnote 2. Expressions for the fundamental arguments are given
in Capitaine et al. (2003a).
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Once X, Y and s are known, the elements of the RNPB matrix
can be rigorously formulated as follows (CW06 Eq. (25), for
β = s):

RNPB(1, 1) = (1 − aX2) cos s + aXY sin s,

RNPB(1, 2) = −aXY cos s − (1 − aY2) sin s,

RNPB(1, 3) = −X cos s + Y sin s,

RNPB(2, 1) = (1 − aX2) sin s − aXY cos s,

RNPB(2, 2) = −aXY sin s + (1 − aY2) cos s,

RNPB(2, 3) = −X sin s − Y cos s,

RNPB(3, 1) = X,

RNPB(3, 2) = Y,

RNPB(3, 3) = 1 − a(X2 + Y2), (6)

with:

a−1 = 1 + (1 − (X2 + Y2))1/2 � 1 + Z. (7)

The finished matrix expresses the transformation between
GCRS and CIRS coordinates and is consistent with the
IAU 2006/2000A precession-nutation model at microarcsecond
level. This rigorous implementation would be the natural choice
for all high-precision work.

3. Opportunities for approximation

Computing the full-accuracy matrix developed in the previous
Section, using an efficiently-organized algorithm, involves sev-
eral thousand amplitude coefficients and the sines and cosines of
1500 angles, plus hundreds of additional arithmetic operations.
In some applications this is excessive, and we must seek op-
portunities for streamlining. The possibilities include simplified
expressions for the matrix elements and fundamental arguments,
and truncated series for X, Y and s.

3.1. X, Y series

The completeness of the X, Y series is the dominating factor con-
trolling the size and accuracy of the final implementation. Each
of these series is much larger than that for s+XY/2, and together
they dwarf the contribution from the matrix formulation and the
fundamental argument expressions.

There are several options for truncating the series, and which
is the most efficient depends on how the final algorithm is to be
organized. The “purest” approach is to eliminate vector terms
below a given amplitude, where “amplitude” means the root-
sum-square of the sine and cosine coefficients (i.e. the vector
modulus) at the given frequency. However, for terms with a
phase close to nπ/2 – which in fact is the majority – this leaves
considerable numbers of individual coefficients that are well be-
low the cut-off and have been retained only because the other
coefficient of the pair is well above. This means that, at least
for the shorter series, the simple approach of applying the cut
to individual coefficients works well, producing an efficient re-
sult. Figure 1 shows the effect of applying such a cut to the full
X and Y series, the cut-off point ranging from 1 µas (retaining
1382 coefficients out of the original 4006) to 1 arcsec (retaining
only 4 coefficients). The 1995−2050 worst-case CIP error ranges
from just under 50 µas to just over 0.9 arcsec.

Over most of the range, the CIP error grows steadily with in-
creasing cut-off, and a suitable cut-off for any desired CIP accu-
racy can be selected freely. However, the best choices are just be-
fore sudden increases, where the next coefficient to be cut would

Fig. 1. The variation of CIP accuracy with differing cut-offs applied to
the individual coefficients of the X,Y series. The horizontal axis is the
cut-off in arcseconds. The vertical axis is the CIP accuracy, i.e. the dis-
tance between the CIP given by the truncated series and the CIP given
by the full series. The heavy line shows for the indicated series trunca-
tion the maximum error during the interval 1995−2050; the dotted line
is the rms error in the same interval.

Fig. 2. The variation of s accuracy with differing cut-offs applied to the
individual coefficients of the s + XY/2 series. The horizontal axis is the
cut-off in arcseconds. The vertical axis is the error in the CIO locator s
(using full-accuracy X and Y), compared with that predicted by the full
series. The heavy line shows the maximum error during the interval
1995−2050; the dotted line is the rms error in the same interval.

cause a disproportionate worsening. There are even cases where,
for the 1995-2050 test interval, an increased cut-off, and conse-
quent reduction in model size, happens to reduce the CIP error
slightly.

The number of retained coefficients for a given cut-offC arc-
sec is roughly 3.6/100.42 log C, before eliminating any long-period
terms (see Sect. 3.6).

Note that in certain applications in which the time derivative
of the CIP motion is critical it is important to retain the frequen-
cies that give rise to the largest amplitudes in the time derivatives
of X and Y.

3.2. s + XY/2 series

Although the s + XY/2 series is much shorter than those for X
and Y, there are potential savings if coefficients below a cer-
tain amplitude can be eliminated. Figure 2 shows the trade-off
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between cut-off and accuracy in s and hence in the location of
the CIO. It is clear that only a handful of coefficients is needed
in order to achieve accuracies well under 1 mas.

As for the X, Y series but to a greater extent, reducing the
cut-off level and consequently retaining additional coefficients
causes different levels of improvement. Particularly favourable
choices of cut-off are where 3, 7 and 17 coefficients are retained.
The accuracies achieved by the 3- and 7-coefficient series are
shown in Figs. F.3 and E.3 respectively.

It should be borne in mind that Fig. 2 uses full-accuracy X
and Y values to remove the XY/2 component, and that given the
circumstances under which a concise model for s is needed these
will have themselves been calculated using approximate mod-
els. However, the accuracy requirements for X and Y are modest.
Even after 1 century, X and Y will have reached only 2004 arcsec
and 22 arcsec respectively, and so an error in each of 1 arcsec,
for example, would cause an error in s of less than 5 mas, a neg-
ligible additional contribution. When the calculations for Fig. 2
were repeated using an X, Y model consisting of only four coef-
ficients – a t term in X, a t2 term in Y, and the Ω nutations in X
and Y – the additional 1995−2050 error in s was under 2 mas,
compared with the corresponding CIP error of nearly 1 arcsec.

For the most approximate formulations, it is acceptable to
neglect s altogether, which leads to maximum errors of 22 mas
during the test interval. The left-hand point in Fig. 2 shows that
even the simplest approximation, namely s = −XY/2, is good to
6 mas.

3.3. The polynomial terms

The series used in Figs. 1 and 2 contain both polynomial terms
and periodic (Fourier and Poisson) terms. The polynomial terms
are few in number – only six coefficients for each of X, Y and
s + XY/2, including constant terms – but dominate in the long
term, and the choice of cut-off point is highly dependent on the
time span which the concise model is aiming to support.

The X and Y polynomials are due essentially to precession
and around J2000 are dominated by the t and t2 terms respec-
tively. Consequently, the more concise models omit terms from
t2 upwards in X and from t3 upwards in Y (and perhaps the
t term as well). In the case of s+XY/2, the coefficients fall away
abruptly after t3.

Figure B.1 demonstrates the effects of truncating the three
polynomials at the natural places, namely t2, t3 and t4 respec-
tively. It can be seen that in each case the errors are not dis-
tributed symmetrically about J2000. This is merely a chance
phenomenon, but we must expect the concise models to display
similar asymmetries.

Because the polynomial terms are so few, the truncation
level will have little effect on efficiency, and if long-term ac-
curacy is important to the target application it would be reason-
able to apply a less severe cut-off than that used for the periodic
terms. However, the example concise models given later assume
a strict 1995−2050 timespan and disregard the deteriorating per-
formance outside this interval.

3.4. Matrix formulation

Five degrees of approximation of the matrix element expressions
set out in Eqs. (6) were considered in WC06 Table 2; in the
21st century the errors introduced by the approximations range
from 1 nanoarcsecond to 0.1 arcsec. Of the five formulations,

two seem particularly suitable for our purposes, and these are
reproduced as Methods B and C in Table 1 of the present paper.

Without trigonometric functions or square roots, Method B
achieves a 21st-century precision of 8 µas (and better than 1 µas
during the interval 1995−2050), well within the intrinsic accu-
racy of the precession-nutation model itself and therefore a us-
able basis for any shortened implementation.

Despite neglecting the CIO locator s completely, in the pro-
cess removing the need to evaluate an s+XY/2 series, Method C
achieves 25 mas precision throughout 1995−2050, which is
more than adequate for many low-accuracy applications.

However, as the WC06 paper points out, simplifying the ex-
pressions for the matrix elements will not on its own achieve a
significant reduction in the amount of computation: the bulk of
any gains must come from the computation of X, Y and s.

3.5. Fundamental arguments

The fundamental arguments are a set of 14 angles, each an al-
most linear function of time. Five are Delaunay’s nutation argu-
ments, eight are planetary longitudes and the remaining one is
general precession. These angles are used singly and in combi-
nation when evaluating the series for X, Y and s + XY/2.

The set of fundamental-argument expressions in Capitaine
et al. (2003a), Eqs. (B.2) (luni-solar), Table B.1 (planetary) and
Eq. (B.3) (precession) are suitable for use with the latest X, Y
and s+XY/2 series and are close to those used in the IAU 2000A
nutation model. Each angle is modeled as a polynomial in TDB
(in practice TT is used, which has a negligible effect on the cor-
responding amplitudes of nutation). Each Delaunay variable has
five coefficients, up to order t4, while the remaining angles each
require only two coefficients.

The opportunities for savings are not great, and occur mainly
through a given argument not being needed rather than from re-
ducing the order of polynomial. For the most concise and least
accurate formulations, where only the Delaunay variables are re-
quired (and perhaps not all of those), it is enough to retain only
the linear terms (Table C.1). For 1995−2050 this leads to errors
of 32 µas (RMS) and 83 µas (worst case). For more accurate for-
mulations, a possible compromise is to retain also the t2 term,
which during 1995−2050 achieves a worst case 0.042 µas and
even over the four centuries 1800−2200 never contributes more
than 2.7 µas.

3.6. Long period nutation

The IAU 2006/2000A X, Y series contain terms at 1309 frequen-
cies, the periods ranging from 3.5 days to 93.3 millennia. In
the short time span for which a concise version of the series
is expected to operate, the terms of longer period will produce
nearly fixed offsets in X and Y. When constructing IAU 2000B,
McCarthy & Luzum (2003) subsumed these offsets into the
frame bias, to boost efficiency, and we shall do the same. It is of
course possible to go further and to represent the current portion
of the very long period component as a polynomial: see Souchay
et al. (2007).

Deciding where to place the cut-off period depends on the
time span chosen and on the amplitudes of the terms. Given that
the savings are likely to be modest, we can afford to be con-
servative and retain periodic terms below 1000 years period.
Furthermore, by choosing J2000 as the date for computing the
offsets, we need retain only the Fourier coefficients, of which
there are 33 (Table D.1).
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At J2000, this selection of very long period terms contributes
offsets of −634.24 µas in X and +1421.45 µas in Y (cf. the
McCarthy & Luzum empirically determined values, −629.9 µas
and +1633.9 µas). When combined with the frame bias the final
fixed terms are −17 251 µas in X and −5530 µas in Y. Note that
these values can be used with any of the concise series, irrespec-
tive of accuracy goals: they amount to an adjusted frame bias for
use whenever the nutation model neglects terms of greater than
1000 year period. Using the adjusted values will not necessarily
reduce the peak errors – it is a matter of chance – but will in gen-
eral improve the rms. For example in the example 42-coefficient
NPB formulation (Table F.1), the 1995−2050 rms CIP error im-
proved from 5701 µas to 5417 µas, while the peak CIP error
happened to worsen slightly, from 16 046 µas to 16 153 µas. For
any given formulation and time interval it would, of course, be
possible to fit optimized constant terms, but in the concise for-
mulations of the present paper we have retained the theoretical
values.

4. Example concise formulations

There is, of course, no one concise NPB formulation that will
suit all, or even a wide range of, applications. Nor is there,
given a specific accuracy goal, a single optimum formulation.
However, the results reported in Sect. 3 provide a basis for devel-
oping a concise formulation for a given application, containing
a balanced set of optimizations and delivering a suitable com-
promise between computational costs and accuracy. We describe
three such formulations that span a wide range of accuracy goals.

The performance of the three formulations is summarized
in Table 2, with respect to (i) the full accuracy X, Y, s and
(ii) IAU 2000B. Notes:

– The coefficient numbers are for non-zero polynomial and
amplitude coefficients only and omit fundamental argu-
ment expressions (and, in the case of the equinox based
IAU 2000B model, the additional 15 coefficients needed for
the IAU 1976 precession, the precession-rate corrections,
and the obliquity).

– The IAU 2000B comparison is with respect to the
IAU 2000A model, equinox based; the others are with re-
spect to IAU 2006/2000A, CIO based.

– The IAU 2000B and reference implementations are from the
IAU SOFA software.

– The speeds (relative to the full implementation) are a rough
guide to what can be expected without compiler optimiza-
tion and using straightforward implementations. Manual op-
timizations, such as minimizing the computation of trigono-
metrical functions by using angle addition formulas, may
produce additional speed gains.

In all the concise formulations we have rounded the coefficient
values to 1 µas. This is done chiefly for convenience: comput-
ing costs are essentially unaffected. The quoted values can be
truncated without materially affecting the results, should this be
beneficial.

The series for three example formulations, designated CPNb,
CPNc and CPNd , are set out in Tables E.1−E.4, F.1, and G.1. The
successive tabulations are arranged in different ways chosen in
order to make the presentation as clear as possible in each case.

4.1. Concise model CPNb: comparable with IAU 2000B

Similar performance to IAU 2000B can be achieved by a
cut-off at about 50 µas, which leaves an X, Y model of 220

coefficients. A 7-coefficient series for s+XY/2, corresponding to
a cut-off at about 60 µas, is enough to keep the overall accuracy
within the 1 mas goal, making a total of 227 coefficients. The se-
ries includes terms at 90 frequencies, midway between the 106
used by the IAU 1980 nutation series and the 77 of the (SOFA)
IAU 2000B series. At this level, there is little to be gained by
truncating the fundamental-argument polynomials, and the tests
reported here used the full expressions given in Capitaine et al.
(2003a). The series is set out in Tables E.1−E.4, and the result-
ing X, Y and s can be used with the Table 1 Method B formula-
tion for RNPB. The 1800−2200 accuracy of the final algorithm is
plotted in Fig. 3; performance is well maintained before and, to a
lesser extent, after the 1995−2050 test interval. Figures E.1−E.3
show the error contributions from X, Y and s separately, and re-
veal that the worsening performance in the 22nd century comes
mainly from the s component. The effect could be reduced by re-
instating the t4 and t5 terms that the 7-coefficient s+XY/2 model
omits; however, there would be a negligible improvement in the
1995−2050 interval for which the model is designed.

The level of precision that this model achieves is just above
the natural “noise floor” set by FCN.

The 50 µas numerical cut-off of the X, Y portion of the
CPNb model corresponds to analytical developments of the
X, Y quantities at the:

– 4th order in the precession quantity ψA,
– 2nd order in the nutation quantities ∆ψ, ∆ε,
– 1st order in the precession quantities (ωA − ε0), (εA − ε0) and
χA,

– 1st order in the frame bias quantities ξ0, η0 and dα0, and
– 3rd order in the cross terms between the precession

quantity ψA and nutation (i.e. there are terms of the
form ψ2

A×nutation),

as follows:

X = ξ0 + ψA sin ε0 − (ψ3
A/6) sin ε0 + ψA(ωA − ε0) cos ε0

+ ∆ψ sin ε0 + ∆ψ∆ε cos ε0

+(ψA cos ε0 − χA) ∆ε + (εA − ε0) ∆ψ cos ε0

−(ψ2
A/2) ∆ψ sin ε0 (8)

Y = η0 + (ωA − ε0) − (ψ2
A/2) sin ε0 cos ε0

+(ψ4
A/24) sin ε0 cos ε0 + dα0 ψA sin ε0

+ ∆ε − (∆ψ2/2) sin ε0 cos ε0

−(ψA cos ε0 − χA) ∆ψ sin ε0

−(ψ2
A/2) cos ε2

0 ∆ε. (9)

The above expressions contain

– polynomial terms of t (1st line in X and 1st two lines in Y)
up to the 3rd degree for X and 4th degree for Y, which are
due to bias and precession and

– periodic terms.

The periodic terms (from the 2nd and 3rd lines in X and Y,
respectively) are composed of

– the classical nutation terms (i.e. Fourier terms with a few first
degree Poisson terms) and cross nutation terms and

– first and second degree Poisson terms in sine and cosine due
to cross terms between precession and nutation.

Note that the first degree Poisson terms (3rd line in X and 4th line
in Y) with amplitudes larger than 50 µas correspond to nutation
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Fig. 3. The 400-year performance of the concise formulation described
in Sect. 4.1 and designated CPNb: see Tables E.1−E.4. The quantity
plotted is the total rotational error of the CPNb NPB matrix, compared
with that from the full series.

terms with amplitudes larger than 2 mas, while the second degree
Poisson terms (4th line in X and 5th line in Y) larger than 50 µas
correspond to nutation terms with amplitudes larger than 0 ′′.4 and
0 ′′.2 in longitude and obliquity, respectively. Only the cross nuta-
tion term corresponding to the 18.6-yr nutation is larger than the
50 µas limit.

The 60 µas numerical cut-off of the s + XY/2 portion of the
CPNb model corresponds to analytical development of the s +
XY/2 quantity at the:

– 1st order in the largest polynomial development coeffi-
cients (Xi,Yi)i=0,2 of X and Y, and

– 1st order in the coefficients ai, bi of the sine and cosine
Fourier terms of arguments (ωit−φi) in X and Y, respectively,

as follows:

s + XY/2 = [X1Y0 + (1/2)Σi(aibiωi)] t + (1/3) X1Y2t3

+(aibi/4) sin 2(ωit − φi) + (bi/ωi)X1 sin(ωit − φi)

+Y2t2 ai sin(ωit − φi). (10)

This expression contains a polynomial of t up to the 3rd degree
and periodic terms. The Fourier terms are at the nutation fre-
quencies and at twice the frequency of nutation terms with suffi-
cient amplitudes (note that only the 18.6-yr nutation has an am-
plitude sufficient to yield such a term with an amplitude larger
than 60 µas). The second degree Poisson terms larger than 60 µas
correspond to the nutation terms with amplitudes larger than 0 ′′.6
(i.e. the 18.6-yr nutation only).

It should be noted that the CPNb series and the above sim-
plified theoretical expressions are not an exact match because of
the way in which the truncation has been done (see Sect. 3.1),
namely coefficient by coefficient in the series rather than term
by term in the theoretical expressions.

4.2. Concise model CPNc : 16 mas accuracy

A cut-off at 2.5 mas removes from the X, Y series all coefficients
of t2 and above, leaving 42 coefficients. Throughout 1995−2050,
this CIP model delivers worst-case accuracy of 16 mas, well
above the level at which FCN needs to be taken into account
and, relevant to applications like telescope pointing, well be-
low the level set by atmospheric refraction predictions. This is

Fig. 4. The 400-year performance of the very concise formulation
described in Sect. 4.2, set out in Table F.1 and designated CPNc.
Fundamental argument expressions from Table C.1 were used. The
quantity plotted is the total rotational error of the CPNc NPB matrix,
compared with that from the full series.

considerably better than the still widely used (and much larger)
IAU 1976/1980 precession-nutation model, though of course in
the latter case the source of the inaccuracy is the incorrect pre-
cession rates rather than the nutation model. A 3-coefficient se-
ries for s + XY/2 (corresponding to a 2 mas cut-off) is a good
match, and using the fundamental argument expressions from
Table C.1 makes a total of 55 coefficients. The series is set out
in Table F.1, and the resulting X, Y and s can be used with the
Table 1 Method B formulation for RNPB. The 1800−2200 accu-
racy of the final algorithm is plotted in Fig. 4, with the separate
X, Y and s contributions in Figs. F.1−F.3. In this case the diver-
gence after the 1995−2050 interval happens to come from the
Y polynomial and could be remedied by reinstating the t3 and
t4 terms.

At this level of approximation, Eqs. (8)−(10) can be
reduced to:

X = ξ0 + ψA sin ε0 − (ψ3
A/6) sin ε0 + ∆ψ sin ε0

+ψA∆ε cos ε0 + (εA − ε0) ∆ψ cos ε0

Y = η0 + (ωA − ε0) − (ψ2
A/2) sin ε0 cos ε0

+ ∆ε − ψA∆ψ sin ε0 cos ε0

s + XY/2 = (1/2) Σi(aibiωi) t + (1/3) X1Y2t3

+ (bi/ωi) X1 sin(ωit − φi). (11)

One change with respect to the previous case is that the polyno-
mial of t in Y is now reduced to the second degree. There are no
longer any 2nd degree Poisson terms in any of the expressions
for X, Y or s + XY/2, nor the Fourier term with twice the princi-
pal nutation frequency in s + XY/2, nor the cross terms between
bias and precession in Y. Due to the ∼50× larger cut-off than for
the previous model, the 1st order Poisson terms in X and Y re-
sult here from nutation terms with amplitudes larger than 0 ′′.1
(i.e. only two terms).



284 N. Capitaine and P. T. Wallace: Concise precession-nutation formulations

Fig. 5. The 400-year performance of the extremely concise formulation
described in Sect. 4.3. The quantity plotted is the total rotational error
of the CPNd NPB matrix, compared with that from the full series.

4.3. CPNd : an extremely concise formulation

For many applications, even lower accuracy is acceptable in or-
der to achieve maximum savings in model complexity and com-
puting overhead. For example, in pointing control systems for
small telescopes (let alone the prediction of naked-eye phenom-
ena) there is very little to be gained from going below 1 arcsec
performance. Quite apart from the accuracy needs themselves,
it is unlikely the such applications addressed by such a model
would bother to take into account polar motion, which on its
own introduces a contribution at the level of 0.5 arcsec.

Between 1995 and 2050, 1 arcsec worst case accuracy could
be achieved by using an X, Y model of only four coefficients,
namely a t term in X, a t2 term in Y, and the main 18.6 y nutation
term. However, the considerable additional accuracy available if
the next largest nutation term (0.5 y) is included, compared with
the limited improvements conferred by the next several terms,
make a six coefficient model (Table G.1 and Fig. 5) attractive.
This achieves a worst case accuracy of 0.39 arcsec through-
out 1995−2050. At this level, the CIO locator s can be omit-
ted altogether and the elements of the GCRS-to-CIRS matrix
RNPB computed using Table 1 Method C. The arguments Ω and
A ≡ 2F−2D+2Ω each require only two coefficients. In radians:

Ω ≈ 2.182439196616− 33.7570459536t

A ≈ −2.776244621014+ 1256.6639307381t (12)

(n.b. For neatness, the coefficients can, for this application, be
rounded to three decimal places without significant loss of accu-
racy, though this is unlikely to affect computing costs.) We note
that a total of 12 coefficients, which includes the two needed for
the calculation of Earth Rotation Angle, Eq. (2), is enough to
predict Earth orientation to better than 1 arcsec throughout the
1995−2050 test interval, or better than 0.4 arcsec if polar motion
were to be taken into account. Even over 400 years (Fig. 5) the

errors peak at only 3 arcsec. The individual X, Y and s contri-
butions plotted in Figs. G.1−G.3 show that the truncation of the
X polynomial is the post-2050 limitation in this case and that
reinstating the t2 and t3 terms could be considered.

At this level of approximation, Eqs. (8)−(10) can be re-
duced to:

X = ψA sin ε0 + ∆ψ sin ε0

Y = −(1/2) sin ε0 cos ε0ψ
2
A + ∆ε

s = 0. (13)

With such reduced accuracy requirements, the polynomial of t
in X or Y, which comes here from the precession in longitude
alone, includes only a 1st degree t term in X and a 2nd degree
t term in Y, and the periodic part is reduced to the two largest
nutation terms, the first from the nutation in longitude alone and
the second from the nutation in obliquity alone.

5. Summary
In this paper we have discussed strategies for developing simpli-
fied IAU 2000/2006 precession-nutation procedures, using the
CIO based paradigm, that offer a range of compromises between
accuracy and computing costs. We have shown that the biggest
reductions come from truncating the series for X, Y and s+XY/2,
but that some additional gains can be made in the areas of the
matrix formulation, the expressions for the nutation arguments
and by subsuming long period effects into the bias quantities.
We have shown how to calculate efficiently the bias-precession-
nutation matrix for a given accuracy goal. The three example
formulations presented span a three-order-of-magnitude range
of size, speed and accuracy and can be used in a wide variety of
applications where the utmost accuracy is not required.

Appendices E−G contain the numerical tables that define the
three example models discussed.
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Appendix A: IAU 2000B series

For comparison with concise formulation CPNb (Fig. 3),
Fig. A.1 shows the performance of the IAU 2000B abridged nu-
tation between 1800 and 2200, both as implemented by SOFA
and as published. The comparisons are with respect to the SOFA
implementation of IAU 2000A, which treats the frame bias
and precession-rate corrections separately rather than combin-
ing them with the nutation.

It should be borne in mind that the 400-year interval shown
in the graphs extends well outside the 1995−2050 interval for
which the IAU 2000B series was designed. CPNb and the two
IAU 2000B versions all achieve similar performance in this in-
terval. The superior performance of CPNb outside the interval is
mainly due to the inclusion of a handful of planetary terms, the
periodic part of IAU 2000B being purely luni-solar.

n.b. The plots do not reproduce fully the peak errors, which
occur during very narrow time ranges.

Fig. A.1. The 400-year performance of the IAU 2000B series. The ver-
tical axis is the total rotational difference between the IAU 2000A and
IAU 2000B equinox based NPB matrices. The upper graph is the series
as implemented by SOFA; the lower graph is the series as subsequently
published.

Appendix B: Polynomial truncation

Fig. B.1. The inaccuracies in X (upper), Y (middle) and s+XY/2 (lower)
that results from truncating the polynomials after the t, t2 and t3 terms
respectively.
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Appendix C: Fundamental arguments

Table C.1 Shows approximate expressions for the Delaunay variables as linear functions of time t, taken from the series given in
Capitaine et al. (2003a), Table B.1. Neglecting terms of t2 and above in this way leads to errors in the nutation predictions of less
than 0.1 mas during the 1995−2050 test interval.

Table C.1. Linear approximations for the Delaunay variables.

Angle t
l 2.3555557435 +8328.6914257191
l ′ 6.2400601269 +628.3019551714
F 1.6279050815 +8433.4661569164
D 5.1984665887 +7771.3771455937
Ω 2.1824391966 −33.7570459536

radian radian Jcy−1

Appendix D: Long period nutation

Table D.1 shows nutation terms (Fourier) of period longer than 1 Julian millennium. The net value of these terms at J2000, namely
−634.24 µas in X and +1421.45 µas in Y (Sect. 3.6), can be used computationally as ad hoc adjustments to the frame bias.

Table D.1. Very long-period nutation terms. The first five fundamental-argument multipliers are for the Delaunay variables, the next seven the
planetary longitudes (LMe not being required) and the final one general precession.

Period Term Amplitude l l ′ F D Ω LVe LE LMa LJu LSa LUr LNe pA

(years) (µas)
20936.834154 X cos −79.08 0 1 −1 1 −1 0 0 0 0 0 0 0 0
11321.399513 X cos −1.71 0 0 0 0 0 0 8 −16 4 5 0 0 2
14949.752627 X cos −4.65 0 0 0 0 0 0 8 −16 4 5 0 0 −2
2024.979608 X cos −0.28 0 0 0 0 0 0 4 −8 1 5 0 0 −2
3186.025428 X cos +0.20 0 0 0 0 0 0 0 0 0 0 1 −2 −2
1540.710562 X cos +0.24 0 0 0 0 0 0 4 −8 1 5 0 0 2
1911.906755 X cos +3.54 1 0 0 0 0 −10 3 0 0 0 0 0 0
1783.412180 X cos +63.80 0 0 0 0 0 0 4 −8 3 0 0 0 0

10468.417077 X sin −1292.02 0 2 −2 2 −2 0 0 0 0 0 0 0 0
1783.412180 X sin −18.38 0 0 0 0 0 0 4 −8 3 0 0 0 0

14949.752627 X sin −2.23 0 0 0 0 0 0 8 −16 4 5 0 0 −2
1916.001320 X sin −4.53 0 0 1 −1 1 0 3 −8 3 0 0 0 0
2024.979608 X sin −0.12 0 0 0 0 0 0 4 −8 1 5 0 0 −2
1247.830049 X sin −0.12 0 0 0 0 0 5 −6 −4 0 0 0 0 −2

12885.017087 X sin +0.12 0 0 0 0 0 0 0 0 0 0 0 0 2
1824.144335 X sin +0.12 0 0 0 0 0 0 0 0 2 −6 3 0 −2
1667.979832 X sin +0.12 0 0 0 0 0 0 4 −8 3 0 0 0 −1
1916.009383 X sin +0.12 0 0 0 0 0 0 4 −8 3 0 0 0 1
1667.985943 X sin +3.94 0 0 1 −1 1 0 −5 8 −3 0 0 0 0

11321.399513 X sin +4.97 0 0 0 0 0 0 8 −16 4 5 0 0 2
1911.906755 X sin +8.71 1 0 0 0 0 −10 3 0 0 0 0 0 0

93294.184305 X sin +57.28 0 0 0 0 0 0 8 −16 4 5 0 0 0
10468.417077 Y cos −1387.00 0 2 −2 2 −2 0 0 0 0 0 0 0 0
14949.752627 Y cos −4.00 0 0 0 0 0 0 8 −16 4 5 0 0 −2
1667.985943 Y cos −5.30 0 0 1 −1 1 0 −5 8 −3 0 0 0 0

11321.399513 Y cos −5.40 0 0 0 0 0 0 8 −16 4 5 0 0 2
1916.009383 Y cos −0.20 0 0 0 0 0 0 4 −8 3 0 0 0 1
1667.979832 Y cos +0.20 0 0 0 0 0 0 4 −8 3 0 0 0 −1
1916.001320 Y cos +6.10 0 0 1 −1 1 0 3 −8 3 0 0 0 0
1540.710562 Y sin +0.20 0 0 0 0 0 0 4 −8 1 5 0 0 2
2024.979608 Y sin +0.30 0 0 0 0 0 0 4 −8 1 5 0 0 −2

14949.752627 Y sin +4.20 0 0 0 0 0 0 8 −16 4 5 0 0 −2
20936.834154 Y sin +167.90 0 1 −1 1 −1 0 0 0 0 0 0 0 0
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Appendix E: Model CPNb

Tables E.1−E.4 show the series for concise model CPNb. (When implementing the model in software, the coefficients can be
rounded to 10 µas without materially affecting the results.) The model requires a total of 227 coefficients, plus those needed for the
fundamental arguments, and achieves worst-case accuracy 0.99 mas between 1995 and 2050. The 1800−2200 errors are shown in
Figs. 3 and E.1−E.3.

Table E.1. Part 1 of the series for concise model CPNb: polynomial terms in X, Y and s + XY/2.

t t2 t3 t4

X −17251 +2 004 191 898 −429 783 −198 618
Y −5530 −25 896 −22 407 275 +1901 +1113

s + XY/2 +94 +3809 −123 −72 574
µas µas µas µas µas

Table E.2. Part 2 of the series for concise model CPNb: Poisson terms up to order t2, and Fourier terms.

l l ′ F D Ω LVe LE LJu LSa pA sin cos t sin t cos t2 sin t2 cos
X 0 0 0 0 1 0 0 0 0 0 −6 844 318 +1329 −3310 +205 833 +2038 +81

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +1538 +9 205 236 +153 042 +853 +121 −2301
s + XY/2 ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −2641 +744

X 0 0 2 −2 2 0 0 0 0 0 −523 908 −545 +199 +12 814 +156
Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −459 +573 033 +11 714 −291 −143

X 0 0 2 0 2 0 0 0 0 0 −90 552 +111 +2188
Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +137 +97 847 +2025 −51

X 0 0 0 0 2 0 0 0 0 0 +82 169 −2004
Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −89 618 −1837

s + XY/2 ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −64
X 0 1 0 0 0 0 0 0 0 0 +58 707 +470 −180 +164

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −192 +7387 −1312
X 1 0 0 0 0 0 0 0 0 0 +28 288

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −675 −633
X 0 1 2 −2 2 0 0 0 0 0 −20 558 +59 +502

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +22 438 +460 −67
X 0 0 2 0 1 0 0 0 0 0 −15 407 +449

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +20 070 +345
X 1 0 2 0 2 0 0 0 0 0 −11 992 +288

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +12 903 +268
X 0 1 −2 2 −2 0 0 0 0 0 −8585 −215

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −9593 +192
X 0 0 2 −2 1 0 0 0 0 0 +5096 −155

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −6918 −114
X 1 0 0 −2 0 0 0 0 0 0 −6245

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −123 +140
X 1 0 −2 0 −2 0 0 0 0 0 −4911 −119

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −5331 +110
X 1 0 0 0 1 0 0 0 0 0 +2512 −74

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −3324 −56
X 1 0 0 0 −1 0 0 0 0 0 +2308 +70

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +3144 −52
X 1 0 2 0 1 0 0 0 0 0 −2053 +59

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +2636
X 1 0 −2 −2 −2 0 0 0 0 0 +2373 +57

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +2555 −53
X 0 0 0 2 0 0 0 0 0 0 +2521

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −122 −56
X 2 0 −2 0 −1 0 0 0 0 0 −1825 −54

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −2424
µas µas µas
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Table E.3. Part 3 of the series for concise model CPNb: Fourier terms continued.

l l ′ F D Ω LVe LE LJu LSa pA sin cos
X 2 0 0 −2 0 0 0 0 0 0 +1898
X 0 0 2 2 2 0 0 0 0 0 −1534

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +1645
X 2 0 2 0 2 0 0 0 0 0 −1235

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +1324
X 1 0 2 −2 2 0 0 0 0 0 +1137

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −1234
X 2 0 0 0 0 0 0 0 0 0 +1163

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −61
X 1 0 −2 0 −1 0 0 0 0 0 −813

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −1076
X 0 0 2 0 0 0 0 0 0 0 +1030

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −56
X 0 0 2 −2 0 0 0 0 0 0 −866
X 0 1 0 0 1 0 0 0 0 0 −556

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +853
X 1 0 0 −2 −1 0 0 0 0 0 −604

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −800
X 1 0 0 −2 1 0 0 0 0 0 −512

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +696
X 0 2 2 −2 2 0 0 0 0 0 −628

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +685
X 0 2 0 0 0 0 0 0 0 0 +665
X 0 1 0 0 −1 0 0 0 0 0 +507

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +644
X 1 0 −2 −2 −1 0 0 0 0 0 +406

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +522
X 2 0 −2 0 0 0 0 0 0 0 +439
X 0 0 2 2 1 0 0 0 0 0 −264

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +335
X 0 0 0 2 1 0 0 0 0 0 −251

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +327
X 1 0 2 2 2 0 0 0 0 0 −306

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +327
X 0 1 2 0 2 0 0 0 0 0 +301

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −325
X 0 1 −2 0 −2 0 0 0 0 0 +284

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +307
X 1 0 2 −2 1 0 0 0 0 0 +231

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −304
X 2 0 0 −2 −1 0 0 0 0 0 +230

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +304
X 1 1 0 −2 0 0 0 0 0 0 −292
X 2 0 2 −2 2 0 0 0 0 0 +256

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −277
X 0 0 1 −1 1 0 −1 −2 5 0 −123 +204

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +274 +165
X 0 1 −2 2 −1 0 0 0 0 0 +189

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +272
X 0 0 0 2 −1 0 0 0 0 0 +197

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +272
X 2 0 2 0 1 0 0 0 0 0 −213

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +269
X 1 0 0 2 0 0 0 0 0 0 +262
X 2 0 0 −2 1 0 0 0 0 0 +162

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −221
X 0 1 2 −2 1 0 0 0 0 0 +142

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −191
X 1 −1 0 0 0 0 0 0 0 0 +188

µas
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Table E.4. Part 4 of the series for concise model CPNb: Fourier terms continued.

l l ′ F D Ω LVe LE LJu LSa pA sin cos
X 0 1 0 −2 0 0 0 0 0 0 −173
X 0 0 0 1 0 0 0 0 0 0 −168
X 1 0 −2 0 0 0 0 0 0 0 +161
X 1 0 0 −1 0 0 0 0 0 0 −160

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −55
X 1 1 0 0 0 0 0 0 0 0 −135
X 1 0 2 0 0 0 0 0 0 0 +133
X 2 0 −2 0 −2 0 0 0 0 0 +122

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +131
X 1 −1 0 −1 0 0 0 0 0 0 −130
X 0 0 0 0 0 0 0 2 −5 −1 +57 +96

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +129 −77
X 2 0 0 0 −1 0 0 0 0 0 +91

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +127
X 1 −1 2 0 2 0 0 0 0 0 −114
X 3 0 2 0 2 0 0 0 0 0 −115

Y 1 −1 2 0 2 0 0 0 0 0 +123
Y 3 0 2 0 2 0 0 0 0 0 +123

X 1 1 −2 −2 −2 0 0 0 0 0 +112
Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +121

X 2 0 0 0 1 0 0 0 0 0 +87
Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −113

X 0 1 −2 −2 −2 0 0 0 0 0 +105
Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +113

X 1 0 −2 2 −1 0 0 0 0 0 +79
Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +107

X 1 1 2 0 2 0 0 0 0 0 +99
Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −106

X 0 0 0 0 0 3 −5 0 0 −2 +82
Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +90
Y 1 0 −1 0 −1 0 0 0 0 0 +89

X 1 0 0 0 2 0 0 0 0 0 −79
Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +85

X 0 0 2 1 2 0 0 0 0 0 +66
Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −71

X 1 −1 0 −1 −1 0 0 0 0 0 −52
Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −70

X 0 2 −2 2 −1 0 0 0 0 0 +51
Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +67

X 1 0 2 2 1 0 0 0 0 0 −53
Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +66

X 1 0 −2 −4 −2 0 0 0 0 0 +61
Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ +65
Y 0 0 1 −1 1 −8 12 0 0 0 −64

X 3 0 0 0 0 0 0 0 0 0 +63
X 1 0 0 0 −2 0 0 0 0 0 −56

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −61
X 2 0 −2 −2 −2 0 0 0 0 0 −55

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −59
X 0 0 0 0 0 1 −1 0 0 0 +59
X 1 1 2 −2 2 0 0 0 0 0 +51

Y ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ ′′ −56
X 1 0 0 −4 0 0 0 0 0 0 −53

Y 2 0 2 −2 1 0 0 0 0 0 −53
Y 2 0 −2 −4 −2 0 0 0 0 0 +52

X 2 0 0 −4 0 0 0 0 0 0 −51
Y 0 0 0 0 0 0 0 2 0 2 +51

µas



N. Capitaine and P. T. Wallace: Concise precession-nutation formulations, Online Material p 7

Fig. E.1. CIP X errors in concise formulation CPNb, contributing to the
total error shown in Fig. 3.

Fig. E.2. CIP Y errors in concise formulation CPNb, contributing to the
total error shown in Fig. 3.

Fig. E.3. CIO errors in concise formulation CPNb, contributing to the
total error shown in Fig. 3. CPNb uses a 7-coefficient s + XY/2 series
(Sect. 3.2).
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Appendix F: Model CPNc

Table F.1 shows the series for concise model CPNc. (When
implementing the model in software, the coefficients can be
rounded to 100 µas, or even 1 mas, without materially affecting
the results.) The CPNc model requires 45 coefficients, plus a fur-
ther 10 for the Table C.1 fundamental argument expressions, and
achieves worst-case accuracy 16 mas between 1995 and 2050.
The 1800−2200 errors are shown in Figs. 4 and F.1−F.3.

Table F.1. The series for concise model CPNc.

Term Amplitude l l ′ F D Ω
(µas)

X −17 251
X t 2 004 191 898
X t2 −429 783
X t3 −198 618

Y −5530
Y t −25 896
Y t2 −22 407 275

s + XY/2 t 3809
s + XY/2 t3 −72 574

X sin −6 844 318 0 0 0 0 1
X t sin −3310 ′′ ′′ ′′ ′′ ′′
X t cos +205 833 ′′ ′′ ′′ ′′ ′′

Y cos +9 205 236 ′′ ′′ ′′ ′′ ′′
Y t sin +153 042 ′′ ′′ ′′ ′′ ′′

s + XY/2 sin −2641 ′′ ′′ ′′ ′′ ′′
X sin +82 169 0 0 0 0 2

Y cos −89 618 ′′ ′′ ′′ ′′ ′′
X sin +2521 0 0 0 2 0
X sin +5096 0 0 2 −2 1

Y cos −6918 ′′ ′′ ′′ ′′ ′′
X sin −523 908 0 0 2 −2 2
X t cos +12 814 ′′ ′′ ′′ ′′ ′′

Y cos +573 033 ′′ ′′ ′′ ′′ ′′
Y t sin +11 714 ′′ ′′ ′′ ′′ ′′

X sin −15 407 0 0 2 0 1
Y cos +20 070 ′′ ′′ ′′ ′′ ′′

X sin −90 552 0 0 2 0 2
Y cos +97 847 ′′ ′′ ′′ ′′ ′′

X sin −8585 0 1 −2 2 −2
Y cos −9593 ′′ ′′ ′′ ′′ ′′

X sin +58 707 0 1 0 0 0
Y cos +7387 ′′ ′′ ′′ ′′ ′′

X sin −20 558 0 1 2 −2 2
Y cos +22 438 ′′ ′′ ′′ ′′ ′′
Y cos +2555 1 0 −2 −2 −2

X sin −4911 1 0 −2 0 −2
Y cos −5331 ′′ ′′ ′′ ′′ ′′

X sin −6245 1 0 0 −2 0
Y cos +3144 1 0 0 0 −1

X sin +28 288 1 0 0 0 0
X sin +2512 1 0 0 0 1

Y cos −3324 ′′ ′′ ′′ ′′ ′′
Y cos +2636 1 0 2 0 1

X sin −11 992 1 0 2 0 2
Y cos +12 903 ′′ ′′ ′′ ′′ ′′

Fig. F.1. CIP X errors in concise formulation CPNc, contributing to the
total error shown in Fig. 4.

Fig. F.2. CIP Y errors in concise formulation CPNc, contributing to the
total error shown in Fig. 4.

Fig. F.3. CIO errors in concise formulation CPNc, contributing to the
total error shown in Fig. 4. CPNc uses a 3-coefficient s + XY/2 series
(Sect. 3.2).
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Appendix G: Model CPNd

Table G.1 shows the series for concise model CPNd. (When
implementing the model in software, the coefficients can be
rounded to 1 mas, or even 10 mas, without materially affecting
the results.) Despite its extreme brevity (only six coefficients),
CPNd achieves worst-case accuracy 0.39 arcsec between 1995
and 2050. The quantity s is neglected, placing the CIO at the
line of zero GCRS right ascension, the error contribution from
this source being less than 0.1 arcsec throughout the 21st cen-
tury. The 1800−2200 errors are shown in Figs. 5 and G.1−G.3.

Table G.1. The series for concise model CPNd.

Term Amplitude l l ′ F D Ω
(µas)

X t 2004191898
Y t2 −22407275
X sin −6844318 0 0 0 0 1
Y cos +9205236 ′′ ′′ ′′ ′′ ′′
X sin −523908 0 0 2 −2 2
Y cos +573033 ′′ ′′ ′′ ′′ ′′

Fig. G.1. CIP X errors in concise formulation CPNd, contributing to the
total error shown in Fig. 5.

Fig. G.2. CIP Y errors in concise formulation CPNd, contributing to the
total error shown in Fig. 5.

Fig. G.3. CIO errors in concise formulation CPNd, contributing to the
total error shown in Fig. 5. Because CPNd neglects the quantity s, the
plot simply shows −s.


