
HAL Id: hal-03742767
https://hal.science/hal-03742767

Submitted on 20 Aug 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bypassing Cowling’s Theorem in Axisymmetric Fluid
Dynamos

Christophe Gissinger, Emmanuel Dormy, Stéphan Fauve

To cite this version:
Christophe Gissinger, Emmanuel Dormy, Stéphan Fauve. Bypassing Cowling’s Theorem in Ax-
isymmetric Fluid Dynamos. Physical Review Letters, 2008, 101, pp.144502. �10.1103/Phys-
RevLett.101.144502�. �hal-03742767�

https://hal.science/hal-03742767
https://hal.archives-ouvertes.fr


Bypassing Cowling’s Theorem in Axisymmetric Fluid Dynamos

Christophe Gissinger,1 Emmanuel Dormy,2 and Stephan Fauve1

1Laboratoire de Physique Statistique de l’Ecole Normale Supérieure, CNRS UMR 8550,
24 Rue Lhomond, 75231 Paris Cedex 05, France

2MAG (IPGP/ENS), CNRS UMR 7154, LRA, Ecole Normale Supérieure, 24 Rue Lhomond, 75231 Paris Cedex 05, France
(Received 9 May 2008; published 1 October 2008)

We present a numerical study of the magnetic field generated by an axisymmetrically forced flow in a

spherical domain. We show that, even in the absence of nonaxisymmetric velocity fluctuations, a mean

magnetic field with a dominant axisymmetric dipolar component can be generated via a secondary

bifurcation from an equatorial dipole. We understand the dynamical behaviors that result from the

interaction of equatorial and axial dipolar modes using simple model equations for their amplitudes

derived from symmetry arguments.
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It is strongly believed that magnetic fields of planets and
stars are generated by dynamo action, i.e., self-generation
of a magnetic field by the flow of an electrically conducting
fluid [1]. Planets and stars being rapidly rotating, axisym-
metric flows about the axis of rotation have been consid-
ered in order to work out simple dynamo models [2]. A
major setback of the subject followed the discovery of
Cowling’s theorem, which stated that a purely axisymmet-
ric magnetic field cannot be maintained by dynamo action
[3]. However, it has been shown that magnetic fields with a
dominant axisymmetric mean part can be generated when
nonaxisymmetric helical fluctuations are superimposed to
a mean axisymmetric flow [4]. This has been recently ob-
served: a turbulent swirling von Kármán flow (VKS) driven
by two counterrotating coaxial impellers in a cylindrical
container, self-generated a magnetic field with a dipole
mean component along the axis of rotation [5]. This has
been ascribed to an alpha effect due to the helical nature of
the radially ejected flow along the two impellers [6].

In this Letter, we show that there exists another mecha-
nism for bypassing the constraint imposed by Cowling’s
theorem, without the help of nonaxisymmetric turbulent
fluctuations. The mechanism is as follows: the primary
dynamo bifurcation breaks axisymmetry in agreement
with Cowling’s theorem. Then, the Lorentz force generates
a nonaxisymmetric flow component which can drive an
axisymmetric magnetic field through a secondary bifurca-
tion. We show that direct numerical simulations confirm
this scenario and that the two successive bifurcation thresh-
olds can be very close in some flow configurations. The
existence of two competing instability modes, the axial and
equatorial dipoles, can lead to complex dynamical behav-
iors. Using symmetry arguments, we write equations for
the amplitude of these modes that are coupled through the
nonaxisymmetric velocity component. We show that the
observed bifurcation structure and the resulting dynamics
can be understood in the framework of this simple model.

We first numerically integrate the MHD equations in a
spherical geometry for the solenoidal velocity v and mag-

netic B fields,

@v

@t
þðv �rÞv¼�r�þ��vþfþ 1

�0�
ðB �rÞB; (1)

@B

@t
¼ r� ðv� BÞ þ 1

�0�
�B: (2)

In the above equations, � is the density, � is the kinematic
viscosity, �0 is the magnetic permeability, and � is the
electrical conductivity. The forcing is f ¼ f0F, where
F� ¼ s2 sinð�sbÞ, Fz ¼ " sinð�scÞ, for z > 0, using polar

coordinates (s, �, z) (normalized by the radius of the
sphere a) and opposite for z < 0. F� generates counter-

rotating flows in each hemisphere, while Fz enforces a
strong poloidal circulation. The forcing is only applied in
the region 0:25a < jzj< 0:65a, s < s0. In the simulations
presented here, s0 ¼ 0:4, b�1 ¼ 2s0, and c�1 ¼ s0. This
forcing has previously been introduced to model the me-
chanical forcing due to coaxial rotating impellers used in
the Madison experiment [7]. Although performed in a
spherical geometry, this experiment involves a mean flow
with a similar topology to that of the VKS experiment.
Such flows correspond to s2 þ t2 flows in the Dudley and
James classification [2], i.e., two poloidal eddies with
inward flow in the midplane, together with two counter-
rotating toroidal eddies. We solve the above system of
equations using the PARODY numerical code [8], originally
developed in the context of the geodynamo (spherical
shell). We have modified the code to make it suitable for
a full sphere. The maximum resolution used here is 500
points in the radial direction, and a spherical harmonic
decomposition truncated at l, m< 64. We use the same
dimensionless numbers as in [7], the magnetic Reynolds
number Rm ¼ �0�amaxðjvjÞ, and the magnetic Prandtl
number Pm ¼ ��0�. The kinetic Reynolds number is then
Re ¼ Rm=Pm.
The dynamo threshold Rmc is displayed as a function of

Re in Fig. 1(a). Negative Re corresponds to a flow that is
reversed compared to the VKS configuration, i.e., directed
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from the impellers to the center of the flow volume along
the axis and radially outward in the midplane. This corre-
sponds to reversing the sign of the component Fz of the
forcing term in the simulations. For small enough Re, the
flow is laminar and axisymmetric. A magnetic field with a
dominant equatorial dipole mode m ¼ 1 is generated first
[red (or gray) curve and left inset of Fig. 1(a)]. It breaks
axisymmetry as expected from Cowling’s theorem. This
dynamo mode is similar to that obtained in cylindrical
geometry, as illustrated in Fig. 1(b).

For jRej larger than about 300, the flow becomes turbu-
lent and the equatorial dipole is then replaced by a domi-
nant axisymmetric mode m ¼ 0. Its threshold increases
with jRej in the parameter range of the simulations [blue
(or dark gray) curve and right inset of Fig. 1(a)]. These
results are in agreement with [7]. It is remarkable that the
axial dipole observed in the VKS experiment and ascribed
to nonaxisymmetric fluctuations [6] can also be obtained in
the present simulations even though the level of fluctua-
tions is much smaller (the parameter range realized in the
experiment being, by far, out of reach of present computer
models).

In addition, an axisymmetric magnetic field can also be
generated at very low Re through a secondary bifurcation
from the equatorial dipole when Rm is increased [black

curves and top left inset of Fig. 1(a)]. The bifurcation
diagram of Fig. 2 helps to understand the mechanism by
which this axisymmetric magnetic field is generated. One
can observe that the equatorial dipole first bifurcates super-
critically for Rm ¼ 88 when Re ¼ 122. The backreaction
of the Lorentz force is twofold. First, it inhibits the axi-
symmetric velocity field, which decreases [orange (or light
gray) curve in Fig. 2]. Second, and more importantly, it
drives a nonaxisymmetric m ¼ 2 velocity mode [blue (or
dark gray) curve in Fig. 2]. Once the intensity of this flow
becomes strong enough, it yields a secondary bifurcation
of the axisymmetricm ¼ 0 field mode. This is achieved for
Rm ¼ 205 (black curve in Fig. 2). The amplitude of the
equatorial dipole decreases immediately after this second-
ary bifurcation. We observe that the m ¼ 0 mode vanishes
at higher Rm and then grows again above Rm ¼ 425.
Although the amplitude of the equatorial and axial modes
behave in a complex manner as Rm is increased, we
observe that they are anticorrelated, thus showing that
they inhibit each other through the nonlinear couplings.
For Re< 0, Fig. 1(a) shows that the primary and sec-

ondary bifurcations occur in a much narrower range of Rm.
The equatorial dipole mode is then close to marginal
stability when the axial one bifurcates, and their nonlinear
interactions lead to complex time dependent dynamics
close to threshold as displayed in Fig. 3. The equatorial
mode [red (or gray) curve] is generated first and saturates,
but it drives the axial mode (black curve) through the
nonaxisymmetric part of the velocity field. The axial dipole
then inhibits the equatorial one that decays almost to zero.
As a result, the flow is no longer driven away from axi-
symmetry by the Lorentz force. The axial dipole thus
decays and the process repeats roughly periodically. We
observe that during one part of the cycle, the magnetic field
is almost axisymmetric. It involves a strong azimuthal field
together with a large vertical component near the axis of
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FIG. 1 (color online). (a) Stability curves Rmc ¼ fðReÞ ob-
tained with direct numerical simulations. In red (or gray): onset
of the m ¼ 1 (equatorial dipole) dynamo mode; in black: non-
linear threshold of the m ¼ 0 (axisymmetric) mode; in blue (or
dark gray), the turbulent mode emerging from velocity fluctua-
tions. The corresponding magnetic structures are represented
using magnetic field lines. The top right inset, involving a very
fluctuating magnetic field, has here been averaged over two
magnetic diffusion time. (b) Comparison of the magnetic field
(isovalue of the magnetic energy) generated by an axisymmetric
s2þ t2 flow in a cylinder [11] or a sphere.
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FIG. 2 (color online). Bifurcation diagram of magnetic modes
varying Rm with fixed Re ¼ 122. Error bars indicate the ampli-
tude of oscillations. All other magnetic modes are very small
compared to these.
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rotation, i.e., an axial dipole [see the left inset of Fig. 1(a)].
These relaxation oscillations, present only in the Re< 0
case, occur slightly above the threshold of the secondary
bifurcation of them ¼ 0mode. Their period first decreases
when Rm is increased, but then increases showing a diver-
gence when the relaxation oscillations bifurcate to a sta-
tionary regime, as displayed in Fig. 4. Above this
transition, we observe bistability with the coexistence of
two solutions: a nearly equatorial dipole, with a strong
equatorial component and a weak axial one (labeled M1

in Fig. 4) and a nearly axial dipole (labeled M2).
We will show next that this competition between equa-

torial and axial modes, and the resulting dynamics, can be
understood using a simple model for the amplitudes of the
relevant modes. We thus write

B ðr; tÞ ¼ AðtÞDeqðrÞ þ c:c:þ BðtÞDaxðrÞ þ � � � ; (3)

where DeqðrÞ [respectively, DaxðrÞ] is the eigenmode re-

lated to the equatorial (respectively, axial) dipole. A is a
complex amplitude, its phase describes the angle of the
dipole in the equatorial plane and c.c. stands for the com-
plex conjugate of the previous expression. B is a real
amplitude. As said above, the equatorial dipole (m ¼ 1)
generates a nonaxisymmetric flow through the action of the
Lorentz force. The later depends quadratically on the
magnetic field. This nonaxisymmetric velocity mode of
complex amplitude VðtÞ thus corresponds to m ¼ 2.
Using symmetry arguments, i.e., rotational invariance
about the z axis which implies the invariance of the am-
plitude equations under A ! A expi�, V ! V exp2i�, and
the B ! �B symmetry, we get up to the third order

_A ¼ �A� V �A� �1jAj2A� �2jVj2A� �3B
2A; (4)

_V ¼ ��V þ A2 � 	1jAj2V � 	2jVj2V � 	3B
2V; (5)

_B ¼ �
B� �1jAj2Bþ �2jVj2B� �3B
3: (6)

� is proportional to the distance to the dynamo threshold.
Clearly � > 0, since the flow is axisymmetric below
threshold. The coefficients of the quadratic terms can be
scaled by an appropriate choice of the amplitudes. The
term A2 represents the forcing of the nonaxisymmetric flow
by the Lorentz force related to the equatorial dipole. V �A
means that rotational invariance for the equatorial dipole is
broken as soon as a nonaxisymmetric flow is generated. We
have fixed its sign so that the bifurcation of the equatorial
dipole remains supercritical8�1 � 0. The equations for A
and V (with B ¼ 0) are the normal form of a 1:2 resonance
[9] and have been studied in details in other contexts. In
particular, it is known that this system can undergo a
secondary bifurcation for which the phase of A begins to
drift at constant velocity when � reaches a value such that
jAj2 ¼ 2jVj2. This corresponds here to a dipole, rotating at
constant rate in the equatorial plane. Consider now the
equation for the amplitude B of the axial magnetic field.
Taking 
 > 0 and �3 > 0 ensures that it cannot be gener-
ated alone, in agreement with Cowling’s theorem. The
term jVj2B describes the possible amplification of B
from the nonaxisymmetric velocity field provided that
�2 > 0. Although the system of amplitude Eqs. (4)–(6)
cannot be derived asymptotically from (1) and (2), it
reproduces the phenomenology observed with the direct
simulations for both signs of Re: when � is increased, we
either obtain relaxation oscillations as for Re< 0 (parame-
ters of Fig. 5) or a secondary bifurcation of the axial field as
for Re> 0 (same parameters with �2 ¼ 1). The relaxation
oscillations are displayed in Fig. 5 (left). The model helps
to understand the qualitative features observed in the direct
simulation: for small values of �, it involves a solution
corresponding to an equatorial dipole (A0, V0, B ¼ 0).
When � is increased, the equatorial dipole first undergoes
a pitchfork bifurcation to a mixed mode M ¼ ðA1; V1; B1Þ
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FIG. 4 (color online). Bifurcation diagram of magnetic modes
varying Rm at fixed Re ¼ �76. Error bars indicate the ampli-
tude of oscillations. Dashed lines correspond to the maximum
values of the modes in the relaxation regime. All other magnetic
modes are very weak compared to these ones.
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FIG. 3 (color online). Time recordings of the total energy of
the equatorial and axial dipolar modes, and of them ¼ 2 velocity
mode for Re ¼ �76 and Rm ¼ 170.
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involving a nonzero axial field.M then bifurcates to a limit
cycle that displays a relaxation behavior, slowing down in
the vicinity of M and O, as its amplitude increases (see
Fig. 5).

Let us note that this relaxation behavior extends to a
large domain of the parameter space, in particular, it is very
robust to a modification of the linear coefficients �, �, 
.
However the model does not describe the transition from
the limit cycle to the bistable stationary solutions M1 and
M2 observed at larger values of Rm in the full numerics
(see Fig. 5).

In sodium flows driven by an axisymmetric forcing, such
as the ones used in the VKS [5], Madison and Maryland
experiments [10], one expects a possible competition be-
tween equatorial and axial dynamo modes. Indeed, the
mean flow, if it were acting alone, would generate an
equatorial dipole in agreement with Cowling’s theorem.
Our direct simulations show that a fairly small amount of
nonaxisymmetric fluctuations (compared to the experi-
ments) is enough to drive an axial (m ¼ 0) dipole as
observed in the VKS experiment for the mean magnetic
field. In addition, we show here that even without turbulent
fluctuations, the nonaxisymmetric flow driven by the
Lorentz force related to the equatorial dipole, can generate
the axial one through a secondary bifurcation. The equa-
torial dipole can easily rotate in the equatorial plane, thus
averaging to zero. The axial dipole then becomes the
dominant part of the mean magnetic field.

It is striking that this mechanism that generates an axial
dipole occurs much closer to the dynamo threshold when
we go from the Re> 0 to the Re< 0 flow configuration,
thus when the product of the helicity times the differential
rotation is changed to its opposite value. For Re< 0, the
shear layer in the midplane becomes favorable to an �-!
dynamo as soon as the axisymmetry of the flow is broken.
For Re> 0, the flow near the impellers can play a similar
role but the effect is weaker. This opens interesting per-
spectives for flows that can be used for future dynamo
experiments: an �-! effect driven by the strong vortices

present in the shear layer close to the midplane can be
favored by the Re< 0 configuration. To wit, one can use
either the optimized setup described in [6] or propellers
with the appropriate pitch in the VKS or Madison
experiments.
A competition between the equatorial and axial dipolar

modes could also account for secular variations of Earth’s
magnetic field. It would be interesting to check whether
some features can be described with a low dimensional
model similar to the one used in this study.
Computations were performed at CEMAG and IDRIS.
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