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The electric field computed by numerically solving the one-dimensional Vlasov-Poisson system is used to
calculate Lagrangian trajectories of particles in the wave-particle resonance region. The analysis of these
trajectories shows that, when the initial amplitude of the electric field is above some threshold, two populations
of particles are present: a first one located near the separatrix, which performs flights in the phase space and
whose trajectories become ergodic and chaotic, and a second population of trapped particles, which displays a
nonergodic dynamics. The complex, nonlinear interaction between these populations determines the oscillating
long-time behavior of solutions.
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The Landau conjecturiel] that wave-particle interactions In 1996 Isichenkd4] reconsidered the long-time evolu-
in a plasma can give rise to wave damping also when collition of generic initial perturbations in a Vlasov plasma and
sions are absent represents a milestone in physics not only Isyiggested that an algebraic asymptotic damping for one-
its impact on laboratory and space plasma, but also as dimensional(1D) plasma should occur, in spite of the non-
paradigm for processes that occur in different systgZhdn  linear interaction effects. These conclusions are based on the
unmagnetized plasmas, Landau damping is described, in thdea that the motion of the resonant particles is not simply
framework of the kinetic theory, by the one-dimensionaloscillatory, but there are a significant number of them that
nonlinear Vlasov-Poisson system of equations escape from the potential well; so the energy balance be-
tween wave and particles is not kept. The Isichenko theory
requires then particles which, afteolliding with the wave,
perform long flights in the space.

At variance with Isichenko’s theory, numerical simula-
- tions [5] show that when starting with a sufficiently large
JE = amel n _f f do 2) initial wave amplitude, in the final asymptotic state the wave

0 ’ energy displays an oscillatory behavior and wave damping is
stopped. The results of numerical simulations have also been
where f is the electron distribution functiofthe ions are substantiated by Lancellotti and Dorni§], who showed
considered as a motionless back-ground of neutralizing posthat there exists a critical threshold value of the initial elec-
tive charge with densityy) andE is the self-consistent lon- tric field amplitude above which the Landau damping is as-
gitudinal electric field. ymptotically stopped, and by Danielsa&t al. [7], who ex-

In the linear theory1], the damping is produced by the perimentally observed asymptotic oscillation in the electric
interaction between a wave with phase velocifyand par-  field amplitude.
ticles with velocityv =v 4. The physical content of the linear ~ We have faced the Landau damping problem from a dif-
interaction is conceptually quite simple: particles whose veferent point of view: we have followed and analyzed La-
locity is just below the wave phase velocity in th&ail-on grangian trajectories of resonant particles in a self-consistent
collision with the wave gain some energy, while particlesway. Our analysis is bas€d on the integration of the equa-
whose velocity is just above lose fhead-on collisions  tions of motion in the phase space
When the former particles are more numerous than the latter
the wave exhibits exponential damping. dx _ dv e

The nonlinear regime of the plasma oscillations was first at v gt EE(X’U’ )
studied by O'Neil [3], who found that after a timer,
=.m/(eEK (k is the wave vectqr particles have time to where E is the self-consistent electric field, calculated by
make both tail-on and head-on collisions with the wave scsolving numerically the Vlasov-Poisson systéin and (2),
that the net energy exchange between wave and particlesd (ii) on the calculation of the Lyapunov exponents asso-
when averaged in time is null. O’NefiB] predicted then a ciated with the phase space trajectories for a large number
damping rate that, after oscillating with a period of the order(about 4000 of initial conditions corresponding to particles
of 7,, becomes asymptotically zero through a phase mixingvhich, in the wave reference, are trapped in the wave poten-
process, thus stopping the wave dissipation. tial well. The numerical integration of the Vlasov equation

of odf eEdf
Savs =T, M
at JdxX madv
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Solving (3) coupled to(1) and(2), two different kinds of
motion have been observed as shown in Fig. 1. The trajecto-
ries are described in the wave reference frame, in which each

i o i sign change of the velocity represents a wave-particle inter-
has been performed using the splitting method in the electrosetion, At the top in the figure, a trapped trajectory is shown:

static approximatiof8], coupled with a finite difference up- the characteristic length of the particle oscillation is of the
wind scheme[9]. In the physical space we have imposedgrder of the wavelength of the initial sinusoidal perturbation
periodic boundary conditions. In solving Eqd) and (2),  (\=15.5. In the trajectory at the bottom the resonant par-
time is normalized to the inverse of the electron plasma freicje intially trapped in the potential well, performs a long
quency wye and velocity to the initial equilibrium thermal fight in the phase space, before being retrapped by the wave
velocity vy, consequentlyE is normalized tomwyep/e potential well. The length of this flight is larger than 6—7
wheree is the electron charge. Finally, the distribution func- wavelengths.

tion f is normalized to the equilibrium particle density. In Fig. 2, we show Poincaré sections that have been ob-

The initial distribution function is a Maxwellian in the (5ined by following a small number of initial conditioren
velocity space, over which a modulation in the physicalyticles, uniformly distributed in a domain somewhat larger
space with amplitudé and wave vectok is superposed:  han the resonant region. Points on #he phase space have
been plotted separated by a time interval equal 19 a2,
wherew is the oscillation frequency of the wave, which has
been accurately determined by performing a time Fourier
spectral analysis on the electric field signal. Only points cor-

The simulation domain in the phase space is giverbby responding to times larger than 450 have been plotted.
=[0,L ] X [=Umax Umax)s WhereL,=2m/k and vy5=6. Out- In the asymptotic regime, i.e., foE 450, the electric field
side the velocity simulation interval the distribution function envelope displays more or less regular oscillations in time,
is put equal to zero. Typically a simulation is performed us-which we have reported in Fig. 3 by previously separating
ing N,=512 grid points in the physical space aNg=1600 the contribution due to the two counterpropagating waves,
grid points in the velocity space. The time steft that are present in our simulation. As a consequence, the
=0.005-0.001 has been chosen in such a way that thseparatrix in phase space, defined in terms of the single par-
Courant-Friedrichs-Lewy conditiofsee, for example, Ref.
[12]) is satisfied. An energy conservation equation has been
used to control numerical accuracy. The total energy varia-
tions remain always 18 times smaller with respect to typi-
cal electric and kinetic energy fluctuations, throughout the
simulation.

We have performed numerical simulations, with a wave
numberk=0.4 (L,=A=15.9, which corresponds to a phase E ] 2
velocity of the wavev ,=3.162, and the asymptotic evolu- T 04005
tion of the resonant particle trajectories has been investigated
for a set of initial perturbation amplitudes larger than the
threshold value\” predicted in6]. The time evolution of the FIG. 3. Time evolution of the electric field amplitu¢solid line)
electric field has been followed up te=1200 and the pre- and of the difference between head-on and tail-on collisions for unit
viously observed5] phenomenology has been correctly re-time (dashed ling

FIG. 1. Trapped particle phase space trajectatythe top; es-
caped particle phase space traject@t/the bottom

f(x,v,t=0) = i—e"vz’z[l +Acogkx)]. (4)
N2

5.0 1 L 1 L L L 1l 1 L 1 L

g

d(N*-N)/dt
Electric field amplitude
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FIG. 4. Contour plot of the electron distribution function in the
phase space fdr=1200.

ticle Hamiltonian, also oscillates in time. In Fig. 2, we then
reported the position of the separatrix corresponding to the
maximum and the minimum values of the electric field en-
velope. It is worth noting that the behavior of the particles
remains nonergodic outside the exterior dashed lines and in-
side the interior ones, but, in the region in between the tra- £, 6. x-flights histogram(at the top and t-flights histogram
jectories diffuse, displaying an ergodic behavior. The maingt the bottom

differences between the domain delimited by the dashed

lines and the region where trajectories display an ergodigjzes of the resonant region, display an ergodic and chaotic
behavior are localized around thepoint of the separatrix. gynamics, the contrary occurring for particles which remain
Actually, in a time dependent Hamiltonian particle energy IStrapped all the time.

not conserved, so that the boundary between trapped and \yi then studied the statistics of phase space fligats
untrapped trajectories is only approximately represented bﬁight is defined as the portion of trajectory between two

the separatrix. Looking at the electron distribution functiong,,ccessive sign changes of the velocity in the wave reference
(Fig. 4, it can be seen that in this figure thepoint is split  ¢ame 0 Fig. 6, the probability distributions of flights as a
into two branches which appear superposed. The form of thg,tion of length in space and in time are shown. In both
ergodicity region near th& point seems then to reproduce pisiograms two clearly separated populations can be identi-

the form of the electron distribution function level curves. fied: the first one that performs flights smaller than one
In Fig. 5 we have represented in the phase space the \4yelength(\=L,=15.5 in space and with time duration

contour plot of the Lyapunov exponent distribution, which isbetween 30 and 150 and a second one whose flights are
a measure of the chaoticity of trajectories. The maximun]arger than a wavelength and last more than 150 in time.
values of the Lyapunov exponents appear in a critical zone The first population is formed by particles which remains
around the separatrix between the trapping hole and the fr ways trapped in the potential well, in the second one we
motion region10]. As for the Poincaré sections, the position find those particles which, after per;‘orming a tail-on colli-

of the separatrix corresponding to the maximum and the;,, are aple to escape from the potential well but are almost

minimum values of the electric field envelope are indicated, | d. th t probable flight being & hil
in the figure by dashed lines. Once again these lines de”mUer;/efre?/\??I?gﬁts Zr??etsrgg:()thzn; '9 eing farge, while

rather well the zone where we find the maximum values of "' o compare the O'Neil scenario with simulation re-

the Lyapunov exponents. In conclusion, particles moving iny, s. the oscillating energy exchange between wave and par-
the phase space between the maximum and the minimMuil)e s able to stop the Landau damping effect, as predicted
by O’Neil, but according to the O’'Neil point of view, the
characteristic time of the wave-particle energy exchange is of
the order of the trapping time,, which for the initial value
of the wave amplitudé\=0.05 is 7,=4.5. Moreover in the
O’Neil scenario the assumed ergodic behavior of resonant
particles produces a phase mixing, stopping the wave energy
dissipation but also stopping oscillations in the growth rate.
From our simulation, the electric field envelope in the
asymptotic limit oscillates with a period of the order of 120,
which is strongly different with respect tg, but whose half
valuet” =60 (see Fig. & represents the averagmost prob-
able value of the flight duration for particles trapped inside
FIG. 5. Asymptotic Lyapunov exponent distribution in the phasethe potential well. It is also worth noting that both the oscil-
space. lation period and the average value of the flight duration
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scale with the oscillation amplitude in the same way: i.e., a®scillation amplitude, even if at some time the phases of
A2 This means that the energy exchange mechanism in th@ose particles were uniformly distributed, later on their dis-
asymptotic state is totally different from that predicted bytribution could display a larger number of particles at some
Isichenko, but is also somewhat more complicated with reparticular phase. This situation can switch on, for example, a
spect to the O'Neil view. L decreasing in the potential barrier if the largest number of

The difference from Isichenko’s view is related to the faCtparticles occurs in correspondence with tail-on collisions.

that in[4] a pure ballistic motion is assumed for detrapped . .
particles, these particles being subject only to integrablérhe decreasing level of the barrier then causes the escape of

fields. The possibility of Lagrangian chaos and subsequerfther particles in the chaotic zone which in turn produces a
diffusion-induced retrapping was ruled out. On the contraryfurther reduction of the energy barrier, and so on. The situa-
the set of self-consistent Lagrangian equati(ﬁ)g's in gen- tion can be inverted when the peak in the distribution of the
eral nonintegrable[11], and, as we have shown, displays aphase of trapped particles in the wave potential well arrives
chaotic behavior in the region around the separatrix. In thisn correspondence to head-on collisions. This phenomenon is
region particles are subject to Lagrangian chaos and cannefearly visible in Fig. 3 where the electric field envelope
follow simply ballistic trajectories at constant velocity. Dif- amplitude grows when the number of head-on collisions per
fusion in the phase space leads to a retrapping of those pginit time is larger than that of tail-on collisions and decreases
ticles escaped from the potential well. Correlations present ify, the opposite situation. The characteristic time of this phe-

the electric field might induce also very long flights in the 004 is clearly related to the average oscillation period
diffusive motion before the particle is retrapped, but infinite . L : .
of particles trapped inside the potential well, which, as seen

flights are not observe@hey would require a physically un- = ; . I .
realistic electric field, able to produce an infinite variance ini" F19- 6. is of the order of 2, i.e., the oscillation time for
the electric field envelope.

particle velocity fluctuations so the damping must necessar- ) - ] )
ily saturate. The mechanism outlined above furnishes a physical ex-

The main difference from the O’Neil view, is represented p_Ianatiqn for asymptotic solutions obtained in _ng_merical
by the presence of a population of trapped particles whosgimulations. Clearly it does not rule out the possibility that,
behavior remains all the time nonergodic and which are thefPr times longer than those numerically investigated, all the
subject to more or less regular oscillations in the potentiaresonant region becomes chaotic and ergodic, giving rise to
well (their flights correspond to one-half oscillatjorSince  the phase mixing predicted by O’Neil and thus stopping the
the oscillation period in a sinusoidal well depends on theoscillation in the wave amplitude.

[1] L. D. Landau, J. PhysMoscow) 10, 25 (1946. [8] C. Z. Cheng and Georg Knorr, J. Comput. Phy2, 330
[2] S. H. Strogatz, R. E. Mirollo, and P. C. Matthews, Phys. Rev. (1976.
Lett. 68, 2730(1992; P. Stubbe and A. I. Sukhorukov, Phys. [9] A. Mangeney, F. Califano, C. Cavazzoni, and P. Travnicek, J.

Plasmas6, 2976(1999. Comput. Phys.179, 495(2002.

[3] T. O'Neil, Phys. Fluids8, 2255(1965. [10] M. Colonna and A. Bonasera, Phys. Rev.6B, 444 (1999;

[4] M. B. Isichenko, Phys. Rev. Letfr8, 2369(1996. M.-C. Firpo, F. Doveil, Y. Elskens, P. Bertrand, M. Poleni, and

[5] G. Manfredi, Phys. Rev. Let{r9, 2815(1997; M. Brunetti, F. D. Guyomarc'h,ibid. 64, 026407(2001); M.-C. Firpo and F.
Califano, and F. Pegoraro, Phys. Rev6g, 4109(2000. Doveil, ibid. 65, 016411(2002).

[6] C. Lancellotti and J. J. Dorning, Phys. Rev. Le8l, 5137  [11] E. Ott, Chaos in Dynamical Systeni€ambridge University
(1998. Press, Cambridge, U.K., 1997

[7]1J. R. Danielson, F. Anderegg, and C. F. Driscoll, Phys. Rev[12] R. Peyret and T. D. TayloiComputational Methods for Fluid
Lett. 92, 245003(2004. Flow (Springer-Verlag, New York, 1986

017402-4



