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Abstract. In three previous papers (Pelat 1997, MNRAS, 284, 365; Pelat 1998, MNRAS, 299, 877; Moultaka & Pelat 2000,
MNRAS, 314, 409), we set out an inverse stellar population synthesis method that uses a database of stellar spectra. Unlike other
methods, this one provides full knowledge of all possible solutions as well as a good estimation of their stability; moreover, it
provides the unique approximate solution, when the problem is overdetermined, using a rigorous minimization procedure. In
Boisson et al. (2000, A&A, 357, 850), this method was applied to 10 active and 2 normal galaxies. In this paper we analyse
the results of the method after constraining the solutions. Adding a priori physical conditions to the solutions constitutes a
good way to regularize the synthesis problem. As an illustration we introduce physical constraints on the relative number of
stars taking into account our present knowledge of the initial mass function in galaxies. To avoid biases on the solutions due
to such constraints, we use constraints involving only inequalities between the number of stars, after dividing the H-R diagram
into various groups of stellar masses. We discuss the results for a well-known globular cluster of the galaxy M 31 and discuss
some of the galaxies studied in Boisson et al. (2000, A&A, 357, 850). We find that, given the spectral resolution and the
spectral domain, the method is very stable according to such constraints (i.e. the constrained solutions are almost the same as
the unconstrained one). However, additional information can be derived about the evolutionary stage of the last burst of star
formation, but the precise age of this particular burst seems to be questionable.
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1. Introduction

The search of the stellar populations inside unresolved galax-
ies has been the aim of several studies since the 1960s. Two
different approaches have been adopted for this purpose: the
direct approach of which methods are usually called “the evolu-
tive synthesis methods” (e.g. Tinsley 1972; Charlot & Bruzual
1991; Bruzual & Charlot 1993; Leitherer et al. 1999; Fioc &
Rocca-Volmerange 1997; Vazdekis 1999; Bruzual & Charlot
2003) and the inverse ones called “the synthesis methods” (e.g.
Faber 1972; Joly 1974; O’Connell 1976; Bica 1988; Schmidt
et al. 1989; Silva 1991; Pelat 1997, 1998; Moultaka & Pelat
2000).

In the first approach, one decides an a priori model for the
history of the star formation occuring inside the studied galaxy,
and by means of theoretical stellar evolutionary tracks and of a
stellar database derives quantities that are directly compared to
the observed ones. From different input models, one retains the
model that best fits the observed quantities.
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In the inverse approach, usually, no a priori model is neces-
sary to derive the stellar populations and one uses exclusively
the observables to deduce the stellar spectral types and lumi-
nosity classes by means of a minimization procedure. This min-
imization task is not a very simple one since the absolute mini-
mum is usually difficult to find because the “objective function”
(which is the function that one has to minimize) can rarely be
minimized analytically.

Whatever the approach, the problem of stellar population
synthesis often suffers from the lack of true solutions or, on the
contrary, from their degeneracy (i.e. multiple solutions) and/or
from their instability (i.e. small errors around the observations
can induce discontinuities in the solutions). These three incon-
veniences have been controlled in the inverse method described
in Pelat (1997, 1998, hereafter Papers I and II) where all the
solutions are well identified and the minimization procedure
is rigorously treated, as well as in Moultaka & Pelat (2000)
where the stability of the various solutions is analysed (here-
after Paper III).

In this paper, we study the influence on the differ-
ent solutions of astrophysical constraints included a priori
when searching for a solution. The concept of constraining
the solutions in the inverse methods has been adopted by
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O’connell (1976), Pickles (1985) and Silva (1991) but no es-
timation of the induced bias has been given by these authors to
our knowledge.

In the next section, we recall briefly the inverse method
and its error analysis; in the third section, we describe con-
strained models. In Sect. 4, we show and discuss constrained
versus unconstrained results for the globular cluster G170 lo-
cated in M 31, the LINER NGC 4278, the starburst NGC 3310
and the Seyfert 2 galaxy NGC 2110. In the last section we
give a general description of the behaviour of constrained solu-
tions in the 27 central regions of the twelve galaxies studied in
Boisson et al. (2000), hereafter Paper IV.

2. Description of the inverse method

As described in Pelat (1997, 1998), the present inverse method
uses the equivalent widths of galactic spectra absorption lines
as observables to be fitted by a combination of the continuum
fluxes and equivalent widths of a stellar line database. The basic
equation providing the synthetic equivalent widths is:

Wsyn j =

∑n�
i=1 kλ0iW jiI ji∑n�

i=1 kλ0i I ji
for j = 1, ..., nλ (1)

where Wsyn j is the synthetic equivalent width of a line at wave-
length λ j, W ji and I ji are respectively, the equivalent widths and
continuum fluxes (normalized at a reference wavelength λ0) of
the same lines measured in stars of class i; ki is the contribution
of star class i to luminosity at the reference wavelength λ0; n�
and nλ are the total number of stars considered in the database
and the total number of lines measured in the spectra.

To this equation, we add two physical conditions, that all
the stellar contributions to luminosity ki are positive and their
sum equals one:

k ≥ 0 (2)

n�∑
i=1

ki = 1. (3)

Thus, having the observed set of galactic equivalent
widths Wobs j, one searchs for the stellar contributions ki satis-
fying the previous physical conditions and minimizing the fol-
lowing objective function which is the square of what is called
the synthetic distance D. The synthetic distance represents a
kind of χ2 considering the Wobs j as data. In fact D2 would be
exactly a χ2 if P−1

j were chosen as the Wobs j variances (i.e.

P j = σ
−2
Wobs j

, see Sect. 5 of Paper I for a discussion on the
σWobs j value):

D2 =

nλ∑
j=1

(Wobs j −Wsyn j)2P j, P j ≥ 0. (4)

In this definition, P j is a weight characterizing the quality of the
equivalent width measurements. One can eliminate this weight
by applying the change of variables W j ↔ W j

√
P j. In the fol-

lowing, we will consider this change of variables as already
made. As stated, the problem can either be overdetermined (i.e.
there are more equations than unknowns) or underdetermined

(i.e. there are more unknowns than equations). In the first case,
one finds at most a unique solution and, because of observa-
tional errors, there is usually not an exact solution; then the
adopted solution is the approximate one which minimizes the
synthetic distance. In Paper I, it is shown that this minimum
is unique and near the true one; in addition, it is demonstrated
that when the signal to noise ratio goes to infinity, the unique
minimum is exactly the true one (see Paper I).

In the underdetermined case, one gets an infinite number of
solutions that are convex combinations of particular solutions
called the extreme solutions (see Paper II).

The search of the error regions around the solutions was
made in Paper III, giving thus the relevance of the solutions and
a criterium to sort the various solutions in the underdetermined
case by order of merit. An “ideal” database (i.e. a database with
an infinite spectral resolution, the largest wavelength domain
and adapted for the velocity dispersion observed in the studied
galaxy) is not degenerate. Then the analysis made in Paper III
gives equivalently a condition to the database (depending on
the quality of the observations) allowing one to get a well-
defined solution. Depending on the quality of the observations
(i.e. on the size of the galactic error region), the stellar database
may become degenerate. As the S/N ratios of the stellar spectra
are usually higher than those of the galaxy, more than one star
may lie inside the galactic error region in the equivalent width
vector space. This situation leads to very poorly determined so-
lutions, because the different stars cannot all be distinguished
in this case. One has to eliminate such correlated stars from the
database to obtain a well-defined solution. In the Appendix, the
computation of the standard deviation around the synthetic dis-
tance is described.

3. The constraints model

3.1. The stellar database

The database used comes from three different stellar libraries:
Serote Roos et al. (1996), Silva & Cornell (1992) and Fluks
et al. (1994). The spectral resolution of the resulting stellar
database is 11 Å and the spectral domain goes from 5000 Å
to 8800 Å. Given the galaxy velocity dispersion, the velocity
broadening of the lines is equivalent to the spectral resolution
of the stellar database. Thus no correction for velocity disper-
sion has to be applied. In this domain and at this spectral res-
olution, we have selected 47 line features and measured their
equivalent widths (see Paper IV); some wavelength intervals
have not been included in the database because of atmospheric
absorption bands not corrected in the Silva & Cornell library.
The table of the line intervals is shown in Boisson et al. (2000).
Stars included in the database have been chosen so that the
H-R diagram is best represented in spectral types and luminos-
ity classes for two metallicities (solar and about twice solar).

3.2. The model

In general, the synthesis problem is what is called in mathemat-
ical terms an “Ill-posed” problem. This means that the problem
may have no solution or a large number of solutions and/or
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that the solution is not stable against small deviations around
the observation. The usual way to overcome this difficulty is
to regularize the problem. This can be done by searching the
solution of maximal entropy for example or using any other
reasonable criterium. We suggest here to regularize the prob-
lem using physical criteria to obtain a unique and stable solu-
tion. This regularization procedure has already been adopted in
previous papers when the positivity conditions (ki ≥ 0) were
considered. In the present paper, we introduce more physical
conditions to constrain the solution.

Technically, constraining the solutions of an inverse prob-
lem reduces the volume of the simplex of solutions or the syn-
thetic surface as defined in Paper I (which is the set of ex-
act solutions). The problem with such a procedure is that the
solution may be biased by the constraints model while, ac-
cording to the philosophy of the inverse approach, it should
not be altered by any a priori overconstrained model (other-
wise it will reflect the model itself and will not provide ad-
ditional information on the real stellar population). This in-
convenience can be verified if the solutions are found to be
on the border of the simplex (where this one has been re-
duced), because in this case, it would mean that the solution
has been strongly constrained to enter in the reduced simplex
(otherwise, it would lie inside or on the other borders of the
simplex).

We can summarize the search for a solution as:
having the data (the spectra), one uses a model to derive the
stellar contributions to luminosity ki; this is the inverse ap-
proach. This process could, as shown in Paper II, provide an in-
finite number of exact solutions (in the underdetermined case)
or an approximate solution obtained by a minimization proce-
dure (in the overdetermined case). The obtained solutions are
“mathematical” solutions which solve rigourously the math-
ematical problem. They could be stable or unstable to small
deviations around the observation. To reduce the number of
solutions and to ensure that the solutions satisfy the physical
conditions of the studied object, it is necessary to constrain the
problem.

Thus, the synthesis problem may be stated as minimizing
the synthetic distance of Eq. (4) also written in the follow-
ing form:

D2 =

nλ∑
j=1


∑n�

i=1(Wobs j −W ji)I jiki∑n�
i=1 I jiki


2

(5)

(where the change of variable W j ↔ W j

√
P j has been applied).

The set of stellar contributions k = (k1, k2, ...kn�) is submitted
to the conditions:

l ≤
{

k
Ck

}
≤ u. (6)

In the previous inequalities, l and u are the lower and upper
constant limits and the first inequality takes into account that all
contributions are positive and less than one because of condi-
tion (3), therefore the first n� components of vectors l and u are
equal to zero and one. C is the constraint matrix of n� columns
in which the first line is a vector of components equal to one to

express constraint number (3). The component number n� + 1
of vectors l and u is equal to one.

Since the expression of the synthetic distance of Eq. (5)
is not linear in k, we decided to minimize instead the linear
function ‖Ak‖2 submitted to the above constraints (where
A is a matrix defined in Paper I of whose components are
A ji = (Wobs j − W ji)I ji). This function happens to be the
“principal synthetic distance” defined in Paper I as:

D2
prin =

nλ∑
j=1

(Wobs j −Wsyn j)2I2
syn j, Isyn j =

n�∑
i=1

I jiki. (7)

As it is stated in Paper I, the problem then possesses a unique
solution. Thus, using the constrained least square method, we
can derive the unique set of stellar contributions minimizing
the principal synthetic distance and satisfying the model con-
straints (6). Once the principal solution is at hand, we can find
the “principal geometrical” one which is the nearest solution
to the constrained principal solution and minimizes the initial
synthetic distance of Eq. (5). For this purpose, we use the same
iterative method as in Paper I where the iteration is made on
the synthetic surface. At each step of iteration (m + 1) and
using the constrained least square method, we search for the
new solution k(m+1) that minimises the following function:

‖ X(m+1) k(m+1) − b ‖2 (8)

submitted to the constraints of Eq. (6) and where b is defined
by the relation b =Wobs −Wsyn + Xk(m).
The solution of the constrained least square method is obtained
using procedures from the NAG library.

3.3. The constraints

As the spectral resolution and the wavelength range are lim-
ited, the number of uncorrelated stars is also limited. This
leads to inherent incompleteness of the database which together
with different photometric accuracy between galactic and stel-
lar spectra can lead to non-physical solutions. So, one may have
to constrain the solutions, in particular in such a way that the
Initial Mass function of stars (IMF) satisfies the known shape
of this function derived from observations of resolved objects.

We first define groups of main sequence (MS) stars follow-
ing their range of lifetimes. This translates into stellar mass
intervals. In each of these groups, we include the evolved stars
of the same initial mass. Tables 1 and 2 show the sorting of
the stellar database in “mass groups” for two different mass
resolutions. The mass interval associated with each star of the
database was determined using Schmidt-Kaler tables (1982).
When necessary, we interpolated the available masses in the
tables. Concerning the evolved stars, we used the evolutionary
tracks of the Padova and Geneva groups to associate an interval
of initial masses for the stars. Each star thus represents an evo-
lutionary stage in a given mass group. We aim not to privilege
one of the classical IMFs (as the functions of Salpeter 1955;
Scalo 1986; Kroupa et al. 1993).
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Table 1. The mass groups sorting of the stellar database in the case of the “Standard mode”.

Mass group Mass interval Stars
1 17 M�−30 M� O7-B0V

M2Ia
2 3 M�−17 M� B3-4V

G0Iab, K4Iab, rG2Iab, rK0II, rK3Iab
3 1.6 M�−3 M� A1-3V
4 0.8 M�−1.6 M� F2V, F8-9V, G4V, rG0IV, rG5IV

G0-4III, wG8III, G9III, K4III, M0.5III, M4III, M5III, rG9III, rK3III, rK3III(bis), rK5III
5 ≤0.8 M� G9-K0V, K5V, M2V, rK0V, rK3V, rM1V

Table 2. The mass groups sorting of the stellar database in the case of the “Decreasing IMF mode”.

Mass group Mass interval Stars
1 17 M�−30 M� O7-B0V

M2Ia
2 3 M�−17 M� B3-4V

G0Iab, K4Iab, rG2Iab, rK0II, rK3Iab
3 1.6 M�−3 M� A1-3V
4 1.4 M�−1.6 M� F2V

M4III, M5III
5 1.1 M�−1.4 M� F8-9V, rG0IV, rG5IV

G0-4III, wG8III, G9III, K4III, M 0.5III, rG9III, rK3III, rK3III(bis), rK5III
6 0.8 M�−1.1 M� G4V
7 0.7 M�−0.8 M� G9-K0V, rK0V, rK3V
8 0.5 M�−0.7 M� K5V
9 ≤0.5 M� M2V, rM1V

We will discuss here two different modes of constraints
corresponding to the two different samplings in mass of the
H-R diagram shown in Tables 1 and 2:

The “Standard mode”

In this mode, we impose a general constraint on the number
of born stars of the different mass groups:

Ni ≤ Nj (9)

where Ni and Nj are respectively the numbers of born stars with
masses located in the mass intervals ]Mia, Mib[ and ]M ja, M jb[
and where M jb ≤ Mia. Even though a galaxy is not described
by a single burst of star formation, Eq. (9) is valid as well for
all the Main Sequence (MS) stars produced by a continuous
star formation scenario or by multiple bursts of star formation.
As stars of higher masses evolve faster than the ones of smaller
masses, Eq. (9) is also valid for all stars (MS and evolved) be-
longing to the same mass groups.

This translates into the following constraint set:

NMS i ≤ NMS j (10)

NT i ≤ NT j (11)

where NMS i and NT i are the number of MS stars and the total
number of stars (MS and evolved stars) in a given mass interval.
In Table 1, the mass intervals are chosen to be the narrowest
possible such that Eqs. (10) and (11) are satisfied in the case of
the classical IMFs.

A consequence of introducing such constraints is that the
resulting solutions will present higher synthetic distances than

in the unconstrained solution, and therefore the fit will be
less good.

The “Decreasing IMF mode”

The second mode of constraints called “the Decreasing
IMF mode” states that all initial mass functions are decreas-
ing functions. Consequently, for a burst of star formation, the
total number of born stars NTi of a given mass group (NTi =

NMS i + Nevolved i) of a given group of stars corresponding to a
mass interval ]Mia, Mib[ with a mean mass Mi (Mi =

Mia+Mib
2 )

is such that:

NTi ≤ ∆log Mi ∗ NT j

∆log M j
(12)

where M j < Mi.
∆log Mi and ∆log M j are respectively the logarithmic

lengths of each mass interval. The difference with respect to
Eq. (8) is that the number of stars in each group is weighted by
the mass.

As in the “Standard mode”, Eq. (12) is valid for the number
of MS stars on the one hand and the total number (MS and
evolved) stars on the other hand. Then, one can write:

NMS i ≤ ∆log Mi ∗ NMS j

∆log M j
(13)

NT i ≤ ∆log Mi ∗ NT j

∆log M j
(14)

where the notations are the same as for the “Standard mode”.
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As Eq. (12) depends on the mass intervals, the result-
ing mass sorting is more refined for the low mass stars (see
Table 2). Because of the better resolution of the mass sorting
in this case, the number of constraints is increased compared to
the “Standard mode”. Consequently, the synthetic distance in
this mode of constraints will be higher.

The previous description of the adopted constraints shows
that these take the form of large inequalities between the
numbers of stars or equivalently, in the optical domain,
between the stellar contributions to luminosity at the reference
wavelength kλ0i . The relation between the number of stars of
class i and their contribution to luminosity is:

ni =
kλ0i Lλ0gal

lλ0i

(15)

where Lλ0gal is the galactic (or the cluster) luminosity at the
reference wavelength λ0 and lλ0i is the luminosity of a star of
class i at the same wavelength.

As the constraints have the form of large inequalities (i.e.
equalities are allowed) one may obtain solutions on the border
of the domain of constraints (i.e. if the constraints are satisfied
with equalities), the solution is probably over-constrained. In
such a case, one has to conclude that the constraint set is not
“appropriate” for the data.

4. Results

The effect of adding constraints to the inverse method was
tested on the globular cluster G170 located in M 31 and three
central regions of galaxies corresponding to three types of
galaxy activity considered in Paper IV.

As the aim of the present paper is to study the effects of con-
straining the solutions, we will only concentrate on a descrip-
tion and on the comparison of the different solutions. Therefore
no complete physical discussion (especially in the case of the
galaxies) will be made in the following sections.

In Tables 3 to 6 we list the stars present in the database
(Col. 1), the unconstrained solution (only statisfying the posi-
tivity condition (2) and Eq. (3)) in Col. 2. In the two following
columns, we show the mass intervals corresponding to the mass
sorting for the “Decreasing IMF mode” and the constrained so-
lutions of this mode. Columns 5 and 6 exhibit the mass inter-
vals and the constrained solutions in the case of the “Standard
mode”. Finally, in some examples, we show particular solu-
tions where we imposed a fixed value to one or more stellar
contributions.

The solutions list the stellar contributions, ki, to luminosity
at the reference wavelength λ0 = 5450 Å.

4.1. The stellar cluster G170

To validate our method, we compare the constrained and un-
constrained solutions obtained for a single stellar population
system, namely, the well-studied globular cluster G170 located
in the galaxy M 31. The globular cluster spectrum is taken from
Jablonka et al. (1992).

The unconstrained solution (see Table 3) shows that this
cluster has a solar metallicity. The turnoff in G4V suggests an
age of about 1010 years and the contribution of dwarf stars to

the luminosity of 57% shows that the luminosity in the optical
is dominated by the MS stars. The metallicity is clearly solar
(the contribution of stars of solar metallicity is about ∼92%).
The measured internal reddening E(B − V) is of ∼0.05. This
value of the reddening is determined as the correction to be
applied to the observed spectrum to match the synthetic one.
In this process the Galactic law is parametrized as in Howarth
(1983).

These results agree well with those found by Jablonka et al.
(1992); the authors concluded, using measurements of equiv-
alent widths of absorption lines, that this cluster has a solar
metallicity as well as an age of 2 × 1010 years.

The “Decreasing IMF mode” presents a solution with ac-
ceptable synthetic distance in the sense that its value is at ∼1σ
from the synthetic distance value of the unconstrained solution,
but the contributions are slightly different: only ∼38% of the
optical luminosity is due to MS stars and ∼20% of it is due to
metallic stars.

The constrained solution of the “Standard mode” is equal
to the unconstrained one. This result shows that the latter is
physically acceptable.

The difference between the two solutions, “Decreasing IMF
mode” and “Standard” or unconstrained mode is illustrated
in Fig. 1.

4.2. The nucleus of the LINER NGC 4278

As shown in Table 4 Col. 2, the unconstrained model suggests
that the optical spectrum of this region is dominated by dwarf
stars as well as a metal-rich population. An internal reddening
E(B − V) of ∼0.02 is detected.

The solution of the “Decreasing IMF mode” presents a
much larger synthetic distance (with values exceeding that of
the unconstrained solution by more than 5σ). This shows that
this mode is very constraining for the galactic region, a fact
that is confirmed through the large discrepancy between the
observed and the synthetic spectrum in Fig. 2.

The “Standard mode” provides a solution equivalent to the
unconstrained one. It shows a small contribution of G4V stars
badly determined suggesting an earlier location of the turnoff.
This led us to impose a value on the contribution of this spectral
class and to obtain an acceptable solution (shown in the last
column of Table 4) presenting an earlier turnoff and satisfying
the constraints of this mode.

4.3. The nucleus of the starburst galaxy NGC 3310

According to the unconstrained solution, the MS stars and the
metallic stars contribute, respectively, to ∼94% and ∼68% of
the luminosity in the nucleus of NGC 3310 (Table 5), imply-
ing a stellar population dominated by MS and metallic stars.
The best defined turnoff is situated in A1-3V but a turnoff in
O7-B0V is possible as well since a small contribution of these
stars is present but badly determined. The reddening is very
high, in agreement with the location of the turnoff that indi-
cates an important event of star formation and consequently
the presence of a large amount of dust in the region.
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Table 3. Results of the spectral synthesis of the globular cluster G170. Each column displays the stellar contributions to luminosity at λ0 =

5450 Å with their standard deviations for the various solutions (with different modes and types of constraints) as well as for the unconstrained
solution. The over-abundant and under-abundant stars are respectively designated by an “r” and a “w” preceding the spectral type and luminosity
class. D2 is the synthetic distance (or the “mean” residual EW) with its standard deviation computed in the appendix and E(B − V) is the
reddening that can be deduced as described in the text.

Unconstrained Mass interval Dec. IMF Mass interval Standard

Star solution Dec. IMF mode mode Standard mode mode

O7-BOV 0 17 M�−30 M� 0 17 M� − 30 M� 0

B3-4V 0 3 M�−17 M� 0.01 ± 2 3 M�−17 M� 0

A1-3V 0 1.6 M�−3 M� 0 1.6 M�−3 M� 0

F2V 0 0.8 M�−1.6 M� 0 1.4 M�−1.6 M� 0

F8-9V 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0

G4V 22 ± 11 0.8 M�−1.6 M� 7 ± 12 0.8 M�−1.1 M� 22 ± 11

G9-K0V 0 ≤0.8 M� 0 0.7 M�−0.8 M� 0

K5V 27 ± 7 ≤0.8 M� 11 ± 5 0.5 M�−0.7 M� 27 ± 7

M2V 0 ≤0.8 M� 2 ± 1 ≤0.5 M� 0

rG0IV 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0

rG5IV 0 0.8 M�−1.6 M� 0 1.1 M� − 1.4 M� 0

rK0V 8 ± 6 ≤0.8 M� 18 ± 5.5 0.7 M�−0.8 M� 8 ± 6

rK3V 0 ≤0.8 M� 0 0.7 M�−0.8 M� 0

rM1V 0 ≤0.8 M� 0 ≤0.5 M� 0

G0-4III 31 ± 13 0.8 M�−1.6 M� 50 ± 7 1.1 M�−1.4 M� 31 ± 13

wG8III 0 0.8 M�−1.6 M� 0.01 ± 6 1.1 M�−1.4 M� 0

G9III 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0

K4III 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0

M0.5III 11 ± 1 0.8 M�−1.6 M� 8 ± 1 1.1 M�−1.4 M� 11 ± 1

M4III 0 0.8 M�−1.6 M� 0 1.4 M�−1.6 M� 0

M5III 1 ± 0.1 0.8 M�−1.6 M� 1 ± 0.1 1.4 M�−1.6 M� 1 ± 0.1

rG9III 0 0.8 M�−1.6 M� 0 1. 1M�−1.4 M� 0

rK3III 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0

rK3IIIbis 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0

rK5III 0 0.8 M�−1.6 M� 2 ± 2 1.1 M�−1.4 M� 0

G0Iab 0 3 M�−17 M� 0 3 M�−17 M� 0

K4Iab 0 3 M�−17 M� 0 3 M�−17 M� 0

M2Ia 0 17 M�−30 M� 1 ± 1 17 M�−30 M� 0

rG2Iab 0 3 M�−17 M� 0 3 M�−17 M� 0

rK0II 0 3 M�−17 M� 0 3 M�−17 M� 0

rK3Iab 0 3 M�−17 M� 0 3 M�−17 M� 0

D2 or χ2 7.6 ± 0.4 8.0 ± 0.35 7.6 ± 0.4

E(B − V) 0.05 0.08 0.05

The solution of the “Decreasing IMF” mode presents a syn-
thetic distance a little more than ∼1σ higher than that of the
unconstrained solution. It may therefore be acceptable (see also
Fig. 3). This solution distributes the non zero contributions to a
larger number of dwarfs and confirms the high contribution to
luminosity of dwarfs and metallic stars (resp.∼95% and∼49%)
as well as the location of the turnoff situated in A1-3 V (cor-
responding to an age of 200 million years for the last burst of

star formation). In this solution, the constraint involving the
O7-B0V stars is satisfied on the border of the domain of con-
straints (i.e. with equalities). This suggests that the “Decreasing
IMF mode” is very restrictive in this object; the absence of the
hot O7-B0V stars might therefore not be real. This conclusion
is supported by the presence of emission lines in the spectrum
of the starburst galaxy which suggests ongoing star formation
in the nucleus of this galaxy.



J. Moultaka et al.: Constraining the solutions of a stellar population synthesis method 465

Fig. 1. NGC G170: Synthetic and observed spectra respectively in dark and light lines for different solutions.

The same scenario occurs in the “Standard mode” where
the solution provides an acceptable synthetic distance. The best
defined turnoff is situated in G5IV but small non-zero contri-
butions (not well defined) show that a turnoff at earlier types
is possible. We show in the last column of Table 5 the exam-
ple of such a situation where we impose the contributions of a
B2-3V star in addition to the “Standard mode” constraints. In
this solution, the synthetic distance is acceptable which leads
us to the same conclusion as previously.

4.4. The nucleus of the Seyfert 2 galaxy NGC 2110

The population in the unconstrained solution is dominated by
dwarf stars and is moderately metallic (∼68% of the optical lu-
minosity is due to MS stars and ∼52% is due to overabundant
stars, see Table 6 and Fig. 5). The best defined turnoff is situ-
ated in K0V but according to the previous discussion, an earlier
turnoff is possible as well.

The solution of the “Decreasing IMF” mode is acceptable
since its synthetic distance is slightly higher than that of the un-
constrained solution and lies at less than 1σ from this one. In
this mode, the contribution of dwarf stars is enhanced (∼78%)
while overabundant stars contribute less to the visible luminos-
ity (only ∼38%). The best defined turnoff is situated in K3V
but a turnoff in F2V is also possible, a fact that is confirmed
in the particular solution where we imposed a contribution of
∼3% to the star class F2V (see also Fig. 5).

In the “Standard mode”, the solution presents a synthetic
distance equal to that of the unconstrained solution. The solu-
tion is very similar to the unconstrained one.

5. Conclusion

The ideal case for a spectral synthesis giving a synthetic dis-
tance equal to zero would be where the signal to noise ratio
of the galactic and stellar spectra goes to infinity and where
the stellar database is complete. In such a case, all stars with
spectral types later than the spectral type at the turnoff position
would have non zero contributions to luminosity. But in prac-
tice all unconstrained solutions show many zero contributions;
this is due to the finite signal to noise ratio of our spectra and
to the limitation of the stellar database which itself is due to the
finite spectral resolution.

Therefore, constraining the stellar population would
a priori reduce the number of zero contributions because of the
additive information introduced in this process. But as can be
seen in the previous results, no large improvement in eliminat-
ing the zero contribution has appeared. This is probably due to
the incomplete set of observational data used for the synthesis.
Actually as the constraints are expressed by large inequalities
(i.e. equalities are allowed) optima are usually located on the
border of the domain in which solutions are constrained.

The stellar synthesis method with constraints presented in
this paper has been applied to the 27 regions of galaxies studied
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in Paper IV. In general, all 27 regions present “Standard mode”
solutions equal or very similar to the unconstrained solution.
Moreover, all zero contributions in the unconstrained solutions
remain null in the “Standard mode” or have small ill-defined
values and all well- and ill-determined contributions remain
as such. This result shows that “Standard mode” solutions are
generally included inside the error bars of the unconstrained
solution and when they are not, their synthetic distances are at
several σ from that of the unconstrained solution.

In the “Decreasing IMF mode”, the number of star classes
contributing to the synthesis is often larger than that of the un-
constrained solution and of the “Standard mode”. This fact af-
fects especially dwarf stars and is due to the sharper distribution
of stars in the mass groups of the H-R diagram in this mode.
For the same reason and because the number of constraints is
larger, the synthetic distances here are in general larger than
those of the previous mode and of the unconstrained solution.

In both modes (“Standard” and “Decreasing IMF”) some
solutions satisfy their constraints on the border of the domain.
This shows that in such cases constraints are too strong and in-
duce bias. However, these solutions provide some indications,
thanks to the error bars, allowing one to find acceptable solu-
tions that satisfy the desired conditions inside the domain of
constraints (see previous examples).

The solution of the least square problem is the one that min-
imizes the synthetic distance; this happens often on the border
of the domain of constraints but the goal is not to find the op-
timal mathematical solution, but rather a “realistic” or physical
one next to the minimum.

All previous results are confirmed in the case of the globu-
lar cluster G170. This is a very important point since this object
experiences a single burst of star formation; consequently, any
deviation of the behaviour of the resulting stellar population
due to the inclusion of astrophysical constraints can clearly be
detected.

This study has shown that the inverse method described
here and in Papers I–III is very stable against the inclusion
of additional astrophysical constraints, and is, therefore, very
reliable.

However, constraining the solutions and using the informa-
tion provided by the error analysis allows one to find similar
solutions with younger bursts of star formation. Thus, it is cru-
cial to perform tests such as in the previous section and to dis-
cuss the results, especially the different possible locations of
the turnoffs, i.e. the age of the last burst of star formation.
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Appendix A: Calculus of the standard deviation
on the synthetic distance

In this appendix, we compute the standard deviations on the
synthetic distance due to observational errors around the stud-
ied object. This calculation is complementary to the error anal-
ysis made in Paper III where only the standard deviations
around the stellar contributions and the variance-covariance
matrices were computed. As the synthetic distance is a scalar,
its variance-covariance matrix is reduced to its variance.

Thus, here we search for the deviations d(D2) around the
square of the obtained synthetic distance D2

0 due to devia-
tions dWobs around the observation Wobs 0. We recall that this
computation is only valuable in the overdetermined case (in the
underdetermined case, this distance is equal to zero).

If we make a change of variables on the equivalent widths
as W′j = P1/2

j W j, the square of the synthetic distance will be
written as follows:

D2 = (W′
syn −W′

obs)T (W′
syn −W′

obs). (A.1)

Then a differenciation around D2
0 gives:

dD2 = 2(dW′syn − dW′
obs)

T (W′
syn 0 −W′

obs 0). (A.2)

Now, if we replace dW′
syn by HdW′

obs, where H is the orthogonal
projector on the synthetic surface (see Paper III), then we get:

dD2 = 2((H − Id)dW′obs)
T (W′

syn 0 −W′
obs 0)

= 2dW′T
obs(H

T − Id)(W′
syn 0 −W′

obs 0).
(A.3)

where Id is the identity matrix.
Let us write, on the one hand, the definition of the variance

of the quantity dD2:

var
(
dD2
)
=
〈
dD2dD2T

〉
−
〈
dD2
〉2

(A.4)

on the other hand, we have 〈dD2〉 = 2D0〈dD〉. Then if we
translate the origin of the vector space in W′

syn0, we can con-
sider the subspace of dimension 1 of which the generator vec-
tor is W′

obs 0 −W′
syn 0. In this subspace the synthetic distance

is described by the same vector D0 = W′
obs 0 −W′

syn 0 and the
deviation to this distance is vector dD = D − D0. Thus, if we

call u the unit vector of this subspace (u = W′
obs 0−W′

syn 0

‖W′
obs 0−W′

syn 0‖
), we

can construct the orthogonal projector over it as P = uuT ; then
we get dD = PdW′

obs and 〈dD〉 = 〈dD〉 = P〈dW′
syn〉 = 0. This

implies that 〈dD2〉 = 0 and var(dD2) = var(D2).
Back to Eq. (A.4), we have:

var(dD2) = var(D2)

=
〈
dD2dD2

〉
= 4∆W′T (H − Id)

〈
dW′

obsdW′T
obs

〉
×(HT − Id)∆W′ (A.5)

where ∆W′ =W′
obs 0 −W′

syn 0. Then

σD2 = 2
√
∆W′T (H − Id)V’obs(H

T − Id)∆W′. (A.6)

In addition, as 〈dD〉 = 〈dD2〉 = 0, we set the simple equation

σD =
σD2

2D0
· (A.7)
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Unconstrained solution

Particular solution

Decreasing IMF mode

Fig. 2. NGC 4278: same as Fig. 1.
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Unconstrained solution

Decreasing IMF mode

Particular solution

Fig. 3. NGC 3310: same as Fig. 1.
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Unconstrained solution

Standard mode

Decreasing IMF mode

Fig. 4. NGC 2110: same as Fig. 1.
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Particular solution

Fig. 5. NGC 2110: particular solution. Same as Fig. 1.



J. Moultaka et al.: Constraining the solutions of a stellar population synthesis method, Online Material p 7

Table 4. The different synthesis solutions for the nucleus of NGC 4278. Same notation as in Table 3. The underlined contribution in the
particular solution is imposed. In the reddening row, R means that the synthetic spectrum is redder than the observed spectrum.

Unconstrained Mass interval Dec. IMF Mass interval Standard Particular

Star solution Dec. IMF mode mode Standard mode mode solution

O7-BOV 0 17 M�−30 M� 0 17 M�−30 M� 0 0

B3-4V 0 3 M�−17 M� 0 3 M�−17 M� 0 0

A1-3V 0 1.6 M�−3 M� 0 1.6 M�−3 M� 0 0

F2V 0 0.8 M�−1.6 M� 0 1.4 M�−1.6 M� 0 0

F8-9V 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

G4V 0 0.8 M�−1.6 M� 1 ± 2 0.8 M�−1.1 M� 0.2 ± 1 7

G9-K0V 0 ≤0.8 M� 0 0.7 M�−0.8 M� 0 0

K5V 0 ≤0.8 M� 42 ± 4 0.5 M�−0.7 M� 0 0

M2V 0 ≤0.8 M� 4 ± 2 ≤0.5 M� 0 0

rG0IV 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

rG5IV 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

rK0V 38 ± 14 ≤0.8 M� 0 0.7 M�−0.8 M� 37 ± 15 26 ± 15

rK3V 38 ± 8 ≤0.8 M� 35 ± 3 0.7 M�−0.8 M� 38 ± 8 40 ± 5

rM1V 2 ± 2 ≤0.8 M� 5 ± 4 ≤0.5 M� 2.5 ± 2 3 ± 2

G0-4III 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

wG8III 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

G9III 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

K4III 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

M0.5III 5 ± 2 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 5 ± 2 4 ± 1

M4III 3.5 ± 0.1 0.8 M�−1.6 M� 3 ± 0.2 1.4 M�−1.6 M� 3.5 ± 0.1 3 ± 0.3

M5III 0 0.8 M�−1.6 M� 0 1.4 M�−1.6 M� 0 0

rG9III 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

rK3III 3 ± 6 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 3 ± 7 4 ± 6

rK3IIIbis 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

rK5III 10 ± 4 0.8 M�−1.6 M� 10 ± 2 1.1 M�−1.4 M� 10 ± 4 11 ± 4

G0Iab 0 3 M�−17 M� 0 3 M�−17 M� 0 0

K4Iab 0 3 M�−17 M� 0 3 M�−17 M� 0 0

M2Ia 0 17 M�−30 M� 0 17 M�−30 M� 0 0

rG2Iab 0 3 M�−17 M� 0 3 M�−17 M� 0 0

rK0II 0 3 M�−17 M� 0 3 M�−17 M� 0 0

rK3Iab 0 3 M�−17 M� 0 3 M�−17 M� 0 0

D2 or χ2 12.3 ± 0.95 17.1 ± 1.6 12.3 ± 0.9 13.0 ± 1.2

E(B − V) 0.02 0.00 R 0.02 0.00
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Table 5. Results of the spectral synthesis of NGC 3310 nucleus. Same notation as in Tables 3 and 4.

Unconstrained Mass interval Dec. IMF Mass interval Standard Particular

Star solution Dec. IMF mode mode Standard mode mode solution

O7-BOV 4 ± 5 17 M�−30 M� 0 17 M�−30 M� 4 ± 33 0

B3-4V 0 3 M�−17 M� 0 3 M�−17 M� 0.1 ± 44.5 10

A1-3V 21 ± 9 1.6 M�−3 M� 30 ± 12.5 1.6 M�−3 M� 22 ± 26 15 ± 9

F2V 0 0.8 M�−1.6 M� 1 ± 17 1.4 M�−1.6 M� 0 0

F8-9V 6 ± 6 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 6 ± 9 6.5 ± 6

G4V 0 0.8 M�−1.6 M� 6 ± 11 0.8 M�−1.1 M� 0 0

G9-K0V 0 ≤0.8 M� 0 0.7 M�−0.8 M� 0 0

K5V 0 ≤0.8 M� 11 ± 4 0.5 M�−0.7 M� 0 0

M2V 0 ≤0.8 M� 2 ± 1 ≤0.5 M� 0 0

rG0IV 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

rG5IV 30 ± 10.5 0.8 M�−1.6 M� 27 ± 9 1.1 M�−1.4 M� 30 ± 10 29 ± 10

rK0V 33 ± 5.5 ≤0.8 M� 18 ± 7 0.7 M�−0.8 M� 33 ± 4.5 34 ± 5

rK3V 0 ≤0.8 M� 0 0.7 M�−0.8 M� 0 0

rM1V 0 ≤0.8 M� 0 ≤0.5 M� 0 0

G0-4III 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

wG8III 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

G9III 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

K4III 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

M0.5III 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

M4III 1 ± 0.2 0.8 M�−1.6 M� 1 ± 0.2 1.4 M�−1.6 M� 1 ± 0.2 1 ± 0.2

M5III 0 0.8 M�−1.6 M� 0 1.4 M�−1.6 M� 0 0

rG9III 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

rK3III 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

rK3IIIbis 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

rK5III 5 ± 2 0.8 M�−1.6 M� 4 ± 2 1.1 M�−1.4 M� 5 ± 2 5 ± 2

G0Iab 0 3 M�−17 M� 0 3 M�−17 M� 0 0

K4Iab 0 3 M�−17 M� 0 3 M�−17 M� 0 0

M2Ia 0 17 M�−30 M� 0 17 M�−30 M� 0 0

rG2Iab 0 3 M�−17 M� 0 3 M�−17 M� 0 0

rK0II 0 3 M�−17 M� 0 3 M�−17 M� 0 0

rK3Iab 0 3 M�−17 M� 0 3 M�−17 M� 0 0

D2 or χ2 11.4 ± 1.5 13.2 ± 1.5 11.4 ± 1.2 11.6 ± 1.5

E(B − V) 0.23 0.2 0.23 0.23
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Table 6. Results of the spectral synthesis of NGC 2110 nucleus. Same notation as in Tables 3 and 4.

Unconstrained Mass interval Dec. IMF Mass interval Standard Particular

Star solution Dec. IMF mode mode Standard mode mode solution

O7-BOV 3 ± 7 17 M�−30 M� 0 17 M�−30 M� 2 ± 67 0

B3-4V 0 3 M�−17 M� 0 3 M�−17 M� 0.1 ± 71 0

A1-3V 0 1.6 M�−3 M� 0 1.6 M�−3 M� 0 0

F2V 0 0.8 M�−1.6 M� 0.006 ± 7 1.4 M�−1.6 M� 0 3

F8-9V 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

G4V 0 0.8 M�−1.6 M� 3 ± 18 0.8 M�−1.1 M� 0 2 ± 14

G9-K0V 0 ≤0.8 M� 0 0.7 M�−0.8 M� 0 0

K5V 9 ± 8 ≤0.8 M� 32 ± 6.5 0.5 M�−0.7 M� 9 ± 10 32 ± 7

M2V 6 ± 2 ≤0.8 M� 6 ± 1 ≤0.5 M� 6 ± 1 6 ± 1

rG0IV 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

rG5IV 9 ± 12 0.8 M�−1.6 M� 10 ± 16 1.1 M�−1.4 M� 10 ± 12 9 ± 15

rK0V 19 ± 6 ≤0.8 M� 0 0.7 M�−0.8 M� 19 ± 8 0

rK3V 22 ± 5 ≤0.8 M� 27 ± 3 0.7 M�−0.8 M� 22 ± 7 26 ± 2

rM 1V 0 ≤0.8 M� 0 ≤0.5 M� 0 0

G0-4III 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

wG8III 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

G9III 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

K4III 15 ± 5 0.8 M�−1.6 M� 6 ± 4 1.1 M�−1.4 M� 15 ± 7 6 ± 4

M0.5III 12 ± 3 0.8 M�−1.6 M� 12 ± 3 1.1 M�−1.4 M� 12 ± 1.5 11.5 ± 3

M4III 2 ± 0.3 0.8 M�−1.6 M� 2 ± 0.2 1.4 M�−1.6 M� 2 ± 0.1 2 ± 0.2

M5III 0 0.8 M�−1.6 M� 0 1.4 M�−1.6 M� 0 0

rG9III 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

rK3III 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

rK3IIIbis 0 0.8 M�−1.6 M� 0 1.1 M�−1.4 M� 0 0

rK5III 2.5 ± 7 0.8 M�−1.6 M� 1 ± 8 1.1 M�−1.4 M� 2.5 ± 4 2 ± 8

G0Iab 0 3 M�−17 M� 0 3 M�−17 M� 0 0

K4Iab 0 3 M�−17 M� 0 3 M�−17 M� 0 0

M2Ia 0 17 M�−30 M� 0 17 M�−30 M� 0 0

rG2Iab 0 3 M�−17 M� 0 3 M�−17 M� 0 0

rK0II 0 3 M�−17 M� 0 3 M�−17 M� 0 0

rK3Iab 0 3 M�−17 M� 0 3 M�−17 M� 0 0

D2 or χ2 13.1 ± 2.0 13.5 ± 1.9 13.1 ± 1.2 13.5 ± 1.9

E(B − V) 0.05 0.0 0.05 0.05


